
1

GC Summer School, Edinburgh, July 2003

in cooperation with
Hubert Baumeister, Piotr Kosiuczenko, Nora Koch

Stephan Merz, Julia Zappe

UML for Global Computing
Martin Wirsing

LMU München

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

Travelling Reporter

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

Global Computing

„massive networked infrastructure composed of
highly diversed interconnected objects“

Systems which support
dynamic configuration
complex topologies
autonomous and mobile objects

Mobile Computing (Mobile Hardware)
Mobile Computation (Mobile Code)

EU Initiative „Global Computing“

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

Current ...

Software Engineering Standards (UML)
support only particular features of GC such as concurrency and real
time

Programming Languages (C++, Java, ML, Haskell, ...)
support only particular features of GC such as concurrency and
distribution

Middleware (CORBA, Jini, COM, SOAP, .Net, ...)
improves on client server model

but
are based on simple topology assumptions (e.g. TCP)
support only particular aspects of GC
have no (good) support for validation&verification

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

Global Computing needs ...

New support for software development
New features for modeling languages
Adequate development processes

New features for programming languages and middleware

and

Coupling of pragmatic and formal techniques
for analysis, validation, verification of GC systems

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

The AGILE Project

Goal:
Architectural approach to mobile systems development over a
uniform mathematical framework supporting

sound methodological principles,
formal analysis, and
refinement across levels of development

2002-2005, sponsored by EC Initiative on “Global Computing”

Partner:
LMU München, ATX Lissabon, U. Pisa, U. Lissabon,
U. Florenz, ISTI Pisa, U. Warschau, U. Leicester

2

Agile Approach

Case Studies

Existing
Modeling
Languages

Architectural
Views

Uniform
Mathem.
Basis

Mobile Applications

Mobile UML

Structural View on
Distribution&Mobility

Algebraic Models of
System Evolution

+

Graph-Orientied Semantic Framework
(Categ. Dgrms + Graph Transform. + Tile Logic + Institutions)

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

Contents

Lecture 1: Introducing UML for Mobility
Use Case Driven design
Class Diagrams
Sequence Diagrams
Activity Diagrams

Lecture 2: Refining Mobility Designs
Lecture 3: Property-Driven Development of Mobile
Systems

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

Unified Modeling Language

Graphical modelling language for OO systems
Means of communication

between developers
developers and users (?)

“Unification” of several predecessor methods
First standardization attempt Sep. 1997 by OMG
Current version 2.0 (Notation of Lecture 1.5)
Developed by Booch, Rumbaugh (OMT), Jacobson (OOSE)...
Consist of:

A number of modelling concepts
A concrete notation

Supports “Unified Process” development method

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

Goals of the UML

Description of essential program characteristics like a
construction plan
Structuring the problem as well as the solution
Abstracting from implementation details

Definition of different views

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

Structure:
Class diagram

Interaction, Behaviour:
Object diagram

Sequence diagram

Collaboration

Statechart

UML Description Techniques

Requirements, Functionality:
Use Case Diagram

Activity Diagram

Implementation:
Component Diagram
Deployment Diagram

Object Constraint Language (OCL)

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

(UML) Software Engineering Principles

A system is described by several documents
from several viewpoints

system
View-oriented
system modelling

Airport Flight

Passenger

UML documents

partial views

Use case Arrival
Includes Landing
Description
The plane is
landing. Then the
passengers
deplane and the
luggage is
unloaded. If the
passenger has
luggage then the
passenger claims
its luggage.

3

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

(UML) SE Principles (cont‘d)

Principle of underspecification
Data encapsulation and

separation of interfaces and implementations
Incremental development by refinement steps
Hierarchical composition and decomposition

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

Use Case Driven Design

Use Case
an interaction between user and system which serves
to fulfill a task
where

“system” = software to be developed
“user” = person or external system called “actor”

Use cases serve as functional requirement
description
and provide test cases

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

Major Development Steps

Identify classes of the
application domain

Class diagram

Identify use cases

Use case diagram,
scenarios, activity
diagrams

Specify the overall
system
Class diagram +
behavior specifications

Develop system
architecture

Architectural design

oo view functional view

oo view

refinement
M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

Use Case Diagram: Example Airport

ArrivalPassenger

Departure TakingOff

Landing Plane

<<include>>

Airport

Flight

use case
use case

actoractor

<<include>>

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

Use Case Description: Example

Use case Arrival
Includes Landing
Actors plane, passenger
Description The plane is landing. Then the

passengers deplane and the luggage is unloaded. If
the passenger has luggage then the passenger claims
its luggage.

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

Class Diagram

A class diagram defines the static structure of the
system
consisting of

classes and interfaces
connected by static relationships such as

association, aggregation and inheritance

4

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

*

Example: Class Diagram for Airport

Plane

Country

Flight Passenger

Airport

type
numberOfSeats
land()
takeOff()

number
date
boardingTime
gate

name
eat()
board()
deplane()

run

origin destination

has*

name

1

*

1

1

**

name

* *

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

Classes for Mobile Objects

Goal of the extension
Explicit notations for mobile objects and locations

Extensions
UML profile for mobility with stereotypes for locations, mobile
objects, and mobile locations

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

Abstract Classes for Mobility: 1st Approach

<<abstract>>

Mobile Object
<<abstract>>

Location
atLoc *0..1

0..1

atLoc

*

<<abstract>>

Mobile Location

Problem: Mobile Location inherits „atLoc“ twice:
from Location and from Mobile Object

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

0..1

atLoc

* <<abstract>>

Spatial

<<abstract>>

Mobile Object
<<abstract>>

Location

<<abstract>>

Mobile Location

Improvement: Due to the introduction of the abstract class „Spatial“,
Mobile Location inherits „atLoc“ only once, but ...

Abstract Classes for Mobility: 2nd Approach

Plane

Country

Flight Passenger

Airport

Spatial

Mobile ObjectLocation

Mobile Location

Abstract
classes
lead to
complex
class
diagrams

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

Solution: UML Profile for Locations

<<stereotype>>

mobile
<<stereotype>>

location

<<abstract>>

mobile location

<<stereotype>>

<<stereotype>>

spatial

<<metaclass>>

Class
Each instance
has at most one
attribute atLoc;
atLoc has no
cycles

5

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

Example: Class Diagram for Airport

Plane

Country

Flight Passenger

Airport

<<mobile location>>

<<location>>

<<location>>

<<mobile>>

type
numberOfSeats
land()
takeOff()

number
date
boardingTime
gate

name
eat()
board()
deplane()

run

origin destination

has*

name

1

* *

1

1

**

name

* *

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

Sequence Diagram

A sequence diagram describes a scenario,
i.e. an exemplary message flow
where

primary scenario: the typical case
secondary scenario: variant, exceptional case

Scenarios can describe different levels of abstraction
e.g. for use case, components, operations

Other description technique for scenarios:
collaboration diagrams

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

Sequence Diagram

name : Class other

: Class

stimulus

name (...)

object symbol

lifeline

activation

return create

delete

new (...)

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

Example: Check In

: Passenger : CheckIn Machine

checksIn ()

whichSeat

returnChoice ()

print ()

new ()

send ()

: Ticket

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

Mobile runs with SD: A first approach

ps
[at = JFK]

board()
<<become>>

ps
[at = ap]

notice()

ap
[at = JFK]

ap
[at = MUC]

fly()
<<become>>

notice()

ps
[at = MUC]

deplane()
<<become>>

Complex
model,
mobility
not explicit

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

Sequence Diagrams for Mobility

SDM are an extension of SD for modelling
the interaction between objects
topology - the containment relation
the migration of objects

Idea
blow up lifelines and message arrows for modelling
topology
generalize the concept of lifeline to contain object
flow for modelling mobility

6

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

c b

c migrates through a firewall
into b and terminates at the
same time as b.

Migration of an Object

ps pl

ps

A person ps migrates
into the plane pl and
leaves it .

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

Copying Objects

The mobile Object virus in PC 131 is
copied;
the copy lifes in PC 942

<<copy>>

131: PC

virus

virus

942 : PC

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

Opening and Destroying an Object

<<open>>

a

d

b

c

An „open“ message terminates
b; the inner objects c and d
continue to life

<<destroy>>

a b

dc

A „destroy“message
terminates b, c und d.

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

Advanced Features

Zoom-in/zoom-out view

Matching action boxes

Lifeline of a migrating object

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

Zoom-Out View

<<copy>>

virus

virus

942 : PC131: PC

Using Zoom-Out one may hide details of inner objects; only the
communication with outer objects remains visible.

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

Pattern Matching [cf. Maude]

Representation of mobile objects and object
configurations by terms

Object constructor: f : Names x Objects ---> Objects
Configuration constructor * : Objects x Objects ---> Objects

Empty configuration ε : ----> Objects

Variables X: Names

Unification modulo commutativity and associativity for
computing the names of migrated objects

7

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

Pattern Matching Beispiel

a

b

x

c

e z
d

e

Pattern matching of the 3 terms gives:
{X1 −> c, X2 −> d, X3 −> z, X4 −> e, Y1 −> a, Y2 −> c, Y3 −> z, Y4 −> e, Y5 −> b}

c before migration:
f(c, f(e, ε) * f(d, f(z, ε))

a after migration of c :
f(a, f(b, ε) *
f(X1,
f(X2,f(X3,ε))*
f(X4,ε)))

x after migration of a :
f(x, f(Y1, f(Y2, f(Y3,ε)*f(Y4, ε)) * f(Y5, ε)))

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

The Traveling Reporter Example

The traveling reporter flies from New York to Munich

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

D

GBWAN

USA

flight99

: Pass

x
LH1 : Plane

JFK

EU

Flight from New York to Munich

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

Flight from New York to Munich

D

GBWAN

flight99

EU

: Pass

x

USA

LH1 : Plane

JFK

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

D

GBWAN

flight99

EU

MUC

: Pass

: Pass

x

USA

LH1 : Plane

JFK

x

Flight from New York to Munich

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

D

GBWAN

flight99

EU

MUC

: Pass

: Pass

x

USA

x

dc

LH1

dcdcnb

pp

LH1 : Plane

JFK

x

Flight from New York to Munich

8

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

D

GBWAN

EU

MUC

: Pass

: Pass

x

USA

flight99

x

dc

LH1

dcdcnb

pp

LH1 : Plane

JFK

x

Flight from New York to Munich

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

Activity Diagrams

Activity diagrams are intended for applications that need
control flow or object/data flow models
An activity graph describes a flow of actions which are
connected by transitions
Concurrency is expressed by fork and join states
Swimlanes represent responsibilities of parts of the
activity diagram

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

Activity Diagram Example: Arrival

boarding

send
mail

flying

take off

landing

MW LH1

deplaning

Fork
state

Join
state

Action

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

Activity Diagram with Flow States

Take off

MW LH1

send mail flying

deplaning landing

boarding
Flow
state

MW
[atLoc = JFK]

MW
[atLoc = LH1]

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

Activity diagrams for Mobility

Goal of the extension
To model how actions change the location of mobile
objects

Extensions
Stereotypes <<move>> / <<clone>> for actions
Two Notations

Responsibility Centred
Location Centred

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

<<move>>

Responsibility Centered View

boarding Take off
<<move>>

MW LH1

MW
[atLoc = JFK]

MW
[atLoc = LH1]

LH1
[atLoc = JFK]

LH1

send mail flying

deplaning
<<move>>

landing
<<move>>MW

[atLoc = MUC]
LH1

[atLoc = MUC]

9

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

Move Actions

boarding
<<move>>MW

[atLoc = JFK]
MW

[atLoc =LH1]

LH1

MW

JFK

MW

boarding
<<move>>

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

Modeling the Flight

MUC : Airport

LH1 : Plane

boarding
<<move>>

Take off
<<move>>

JFK : Airport

MW

MW

LH1 : Plane

MW

landing
<<move>>

deplaning
<<move>>

MW

LH1 : Plane

send mail

flying

MW

M. Wirsing: UML for Global ComputingM. Wirsing: UML for Global Computing

Summary and Current Work

Summary
First approach for explicit modeling of mobility in UML
Simple solution
Used already in industry and for teaching
(DEGAS-Project, SWE-Praktikum)

Current Work
Semantic Foundation
(Translation to GTS and Tiles with Corradini/Montanari,
Coordinated Categories with Fiadeiro,
Mobile TLA with Merz)

