Contents Tacice

Lecture 1: Introducing UML for Mobility

Lecture 2: Refining Mobility Designs

— Refining mobility activities
— Refining mobility in sequence diagrams
— A semantic approach to refinement: Mobile TLA

Lecture 3: Property-driven Development of Mobile Systems

M. Wirsing: UML for Global Computing

A Semantic Approach to Refinement: Mobile TLA Tacice

UML for mobility

— semi-formal graphical notation

— semantics and formal fondation non-obvious
— no notion for reasoning on mobile systems
— no abstract notion of refinement

Existing formalisms for mobile systems

— mostly calculi, some with associated logics
— “intensional” semantics, reflecting process structure
— no good notions of refinement

Reactive systems

— transition system semantics (next-state relation + fairness)
— temporal logic properties
— refinement : stuttering invariance

M. Wirsing: UML for Global Computing

Computational model

IiAGlLE

joe a; a> _as joe a; a> _as
shopper shopper
found = () found = 0

Configurations (t,\)

t finite tree, edges labelled by unique names

A assigns local states to nodes

Computations o= (tg, A\g), (t1, A1), ...

joea; a> _as
shopper
found = {01}

M. Wirsing: UML for Global Computing

Shopping agent specification (1) Tacice

Assume: fixed, finite set Net of names, joe € Net, shopper ¢ Net
Network topology
Topology = O A mene N{M[false) all nodes present at top level

Initial condition

Init = A joe(shopper{true)) shopping agent in domain joe ...

A shopper [ctl = “idle”] ... and in “idle” state

Prepare shopper to shop for item x

Prepare(x) = A shopper(true) A Oshopper (true) shopping is (and stays) here
A shopper [ctl = “idle”] state changes from “idle” . ..
A Oshopper [ctl = “shopping”] ... to “shopping”

A Oshopper [target = x A found = ()] initialize target and found

M. Wirsing: UML for Global Computing

Shopping agent specification (2) Taci

Remaining state-changing actions

GetOffer = ... get an offer and insert into found

PickOffer = ... select among offers in found

Move among network nodes

Movenm = A n(shopper(true)) shopping agent is in n’s domain
A shopper [ctl = “shopping”] and is in “shopping” state
A n.shopper > m.shopper shopper moves to m’s domain,

preserving local state
Overall specification (ignoring fairness)

Shopper = A Topology A Init
A D[joe[(ﬂx . Prepare(x)) V PickOffer] Vv /| cnet n[GetOffer]}

A /\neNet O [\/meNet Moven,m} —n.shopper

vars

M. Wirsing: UML for Global Computing

Spatial extensions of TLA Mrare

Formulas evaluated at run ¢ and name n o,n=F
Explicit name references m[F]
— F holds at location m below ... provided m exists

— Note : m may be arbitrarily deep in subtree

“Everywhere” operator OF
F holds at all nodes of the subtree
Structural modification of trees a.n > G.n

— subtree at an before transition equals subtree at Gn after transition
— local state at moving subtree preserved

M. Wirsing: UML for Global Computing

IiAGlLE

System properties

The shopping agent is always at some net location

Shopper = 0O \/ n.shopper(true)
neNet

The shopper idles only at its home location

Shopper = O(shopper.ctl = “idle” = joe.shopper (true))

M. Wirsing: UML for Global Computing v

Refinement of mobile systems

IiAGlLE

Operation refinement (Action Refinement)

— decompose high-level operations
— represented by implication (stuttering invariance)

Spatial decomposition (Location Refinement)

— refine high-level location n into a tree (with root named n)
— in general also distribute local state of n

Virtualisation of locations (Location and Move Refinement)

— implement high-level location n by structurally different hierarchy
— preserve external behavior : n hidden from high-level interface

M. Wirsing: UML for Global Computing

Spatial decomposition

IiAGlLE

Suppose visiting agents are kept in a “dock” location

shopper

found = ()

Still conforms to the original specification

— formula Shopper doesn’t mention locations dock, in, out
— location shopper is still below location a;

M. Wirsing: UML for Global Computing

IiAGlLE

Spatial decomposition in detall

Refined initial condition

DockedInit = A joe.dockj,..shopper (true) shopper still in joe’s domain

A shopper [ctl = “idle”] local state unaffected

Refined move actions

SendShopper, = A n.dockp.shopper (true) stuttering action at high level
A shopper [ctl = “shopping”]
A n.docky,.shopper > n.out,.shopper
Movelmplh,m = A n.outy.shopper (true) specialization of Move action
A n.outy.shopper > m.iny,.shopper
RcvShopperm = another stuttering transition

The refined specification again implies the original one

M. Wirsing: UML for Global Computing 10

Spatial decomposition: general case

IiAGlLE

Usually, decomposition requires distribution of state

C C
b N2 b
X X1

X = f(x1,X2,X3)

Refinement is then expressed as Impl = da.x : Spec

local state variable x hidden from high-level interface

M. Wirsing: UML for Global Computing

11

Virtualisation of locations Tacice

Modify spatial hierarchy

/n f N

Location n hidden from interface Impl = dn: Spec

preserve external behavior, except for location n

M. Wirsing: UML for Global Computing 12

SlowShopper : refine move action Thoice

Non-atomic moves across network

StartMove, = A n.shopper (true) shopper moves to transit ¢ Net
A shopper [ctl = “shopping”]
A n.shopper > transit.shopper

EndMove,, = A transit.shopper (true) shopper moves to destination

A transit.shopper > m.shopper

Implementation does not imply specification

7= SlowShopper = 0O\/cnet N-Shopper (true)

Solution : hide shopper in original specification

= SlowShopper =- dshopper : Shopper

M. Wirsing: UML for Global Computing 13

IiAGlLE

Summary and Future Work

Summary

— Simple refinement calculi for activity and sequence diagrams for mobility
— MTLA as a formal basis for a UML notion of refinement: Refinement is implication!

Current Work

— Refinement of other UML diagrams
— Connecting MTLA with UML

M. Wirsing: UML for Global Computing 14

