
Contents

Lecture 1: Introducing UML for Mobility

Lecture 2: Refining Mobility Designs

– Refining mobility activities

– Refining mobility in sequence diagrams

– A semantic approach to refinement: Mobile TLA

Lecture 3: Property-driven Development of Mobile Systems

M. Wirsing: UML for Global Computing 1

A Semantic Approach to Refinement: Mobile TLA

UML for mobility

– semi-formal graphical notation

– semantics and formal fondation non-obvious

– no notion for reasoning on mobile systems

– no abstract notion of refinement

Existing formalisms for mobile systems

– mostly calculi, some with associated logics

– “intensional” semantics, reflecting process structure

– no good notions of refinement

Reactive systems

– transition system semantics (next-state relation + fairness)

– temporal logic properties

– refinement : stuttering invariance

M. Wirsing: UML for Global Computing 2

Computational model

b

b b bb
b

b

b b bb
b

b

b b bb
b

�
�

�
�

��

�
�

�
�

��

B
B
B
B
BB

@
@

@
@

@@

�
�

�
�

��

�
�

�
�

��

B
B
B
B
BB

@
@

@
@

@@

�
�

�
�

��

�
�

�
�

��

B
B
B
B
BB

@
@

@
@

@@
a2joe a1 a3 a2joe a1 a3

shopper

found = ∅ found = ∅

shopper

a2joe a1 a3 . . .

shopper

found = {o1}

Configurations (t , λ)

t finite tree, edges labelled by unique names

λ assigns local states to nodes

Computations σ = (t0, λ0), (t1, λ1), . . .

M. Wirsing: UML for Global Computing 3

Shopping agent specification (1)

Assume: fixed, finite set Net of names, joe ∈ Net , shopper /∈ Net

Network topology

Topology ≡ 2
∧

n,m∈Net n〈m[false]〉 all nodes present at top level

Initial condition

Init ≡ ∧ joe〈shopper〈true 〉〉

∧ shopper [ctl = “idle”]

shopping agent in domain joe . . .

. . . and in “idle” state

Prepare shopper to shop for item x

Prepare(x) ≡ ∧ shopper〈true 〉 ∧ hshopper〈true 〉

∧ shopper [ctl = “idle”]

∧ hshopper [ctl = “shopping”]

∧ hshopper [target = x ∧ found = ∅]

shopping is (and stays) here

state changes from “idle” . . .

. . . to “shopping”

initialize target and found

M. Wirsing: UML for Global Computing 4

Shopping agent specification (2)
Remaining state-changing actions

GetOffer ≡ . . .

PickOffer ≡ . . .

get an offer and insert into found

select among offers in found

Move among network nodes

Moven,m ≡ ∧ n〈shopper〈true 〉〉

∧ shopper [ctl = “shopping”]

∧ n.shopper � m.shopper

shopping agent is in n’s domain

and is in “shopping” state

shopper moves to m’s domain,

preserving local state

Overall specification (ignoring fairness)

Shopper ≡ ∧ Topology ∧ Init

∧ 2
[
joe[(∃x : Prepare(x)) ∨ PickOffer] ∨

∨
n∈Net n[GetOffer]

]
vars

∧
∧

n∈Net 2
[∨

m∈Net Moven,m
]
−n.shopper

M. Wirsing: UML for Global Computing 5

Spatial extensions of TLA

Formulas evaluated at run σ and name n σ, n |= F

Explicit name references m[F]

– F holds at location m below . . . provided m exists

– Note : m may be arbitrarily deep in subtree

“Everywhere” operator 2F

F holds at all nodes of the subtree

Structural modification of trees α.n � β.n

– subtree at αn before transition equals subtree at βn after transition

– local state at moving subtree preserved

M. Wirsing: UML for Global Computing 6

System properties

The shopping agent is always at some net location

Shopper ⇒ 2
∨

n∈Net
n.shopper〈true 〉

The shopper idles only at its home location

Shopper ⇒ 2(shopper .ctl = “idle” ⇒ joe.shopper〈true 〉)

M. Wirsing: UML for Global Computing 7

Refinement of mobile systems

Operation refinement (Action Refinement)

– decompose high-level operations

– represented by implication (stuttering invariance)

Spatial decomposition (Location Refinement)

– refine high-level location n into a tree (with root named n)

– in general also distribute local state of n

Virtualisation of locations (Location and Move Refinement)

– implement high-level location n by structurally different hierarchy

– preserve external behavior : n hidden from high-level interface

M. Wirsing: UML for Global Computing 8

Spatial decomposition

Suppose visiting agents are kept in a “dock” location

b

b b bb
b

�
�

�
�

��

�
�

�
�

��

B
B
B
B
BB

@
@

@
@

@@
a2joe a1 a3

found = ∅
shopper

b

b b bb
bb b

b

�
�

�
�

��

�
�

�
�

��

B
B
B
B
BB

@
@

@
@

@@
�

�
��

@
@

@@

a2joe a1 a3

outindock

shopper
found = ∅

;

Still conforms to the original specification

– formula Shopper doesn’t mention locations dock , in, out

– location shopper is still below location a1

M. Wirsing: UML for Global Computing 9

Spatial decomposition in detail
Refined initial condition

DockedInit ≡ ∧ joe.dockjoe.shopper〈true 〉

∧ shopper [ctl = “idle”]

shopper still in joe’s domain

local state unaffected

Refined move actions

SendShoppern ≡ ∧ n.dockn.shopper〈true 〉

∧ shopper [ctl = “shopping”]

∧ n.dockn.shopper � n.outn.shopper

stuttering action at high level

MoveImpln,m ≡ ∧ n.outn.shopper〈true 〉

∧ n.outn.shopper � m.inm.shopper

specialization of Move action

RcvShopperm ≡ . . . another stuttering transition

The refined specification again implies the original one

M. Wirsing: UML for Global Computing 10

Spatial decomposition: general case

Usually, decomposition requires distribution of state

b

b b b

bbb

b

b b b

J
J

J
J

JJ
�

�
�

�
��

B
B
B
B
BB

J
J

J
J

JJ
b

ca

d e f

x3x2

b

ca

x x1
;

x = f(x1, x2, x3)

Refinement is then expressed as Impl ⇒ ∃∃∃∃∃∃ a.x : Spec

local state variable x hidden from high-level interface

M. Wirsing: UML for Global Computing 11

Virtualisation of locations

Modify spatial hierarchy

b
b b

bb
bb

b

J
J

J
JJ

J
J

J
JJ

ba

fc

ed

n

bb
b

b

J
J

J
JJ

md

e

b
b
bb

J
J

J
JJ

;
ba

fc

Location n hidden from interface Impl ⇒ ∃∃∃∃∃∃ n : Spec

preserve external behavior, except for location n

M. Wirsing: UML for Global Computing 12

SlowShopper : refine move action

Non-atomic moves across network

StartMoven ≡ ∧ n.shopper〈true 〉

∧ shopper [ctl = “shopping”]

∧ n.shopper � transit .shopper

shopper moves to transit /∈ Net

EndMovem ≡ ∧ transit .shopper〈true 〉

∧ transit .shopper � m.shopper

shopper moves to destination

Implementation does not imply specification

6|= SlowShopper ⇒ 2
∨

n∈Net n.shopper〈true 〉

Solution : hide shopper in original specification

|= SlowShopper ⇒ ∃∃∃∃∃∃ shopper : Shopper

M. Wirsing: UML for Global Computing 13

Summary and Future Work

Summary

– Simple refinement calculi for activity and sequence diagrams for mobility

– MTLA as a formal basis for a UML notion of refinement: Refinement is implication!

Current Work

– Refinement of other UML diagrams

– Connecting MTLA with UML

M. Wirsing: UML for Global Computing 14

