
Secure Global Computing
with XML Web Services:

Theory and Practice

Andy Gordon

Microsoft Research

EEF Global Computing Summer School

Edinburgh, Scotland, July 7-11, 2003

Lecture 1, Tuesday 11:00-12:30

2

Syllabus
n Lecture 1, Tuesday 11:00-12:30

n Web services

n Lecture 2, Tuesday 16:30-18:00
n Security protocols
n Type systems for secrecy and authenticity

properties

n Lecture 3, Wednesday 9:00-10:30
n Analysing web services security

This course reflects joint work with M. Abadi, K.
Bhargavan, C. Fournet, A. Jeffrey, and R. Pucella

3

1: Web Services
n Basics of Web Services

n Demo: Constructing a Web Service

n SOAP-Level Security

n Abstract vs XML Views of Simple Sample

n Demo: Signing Message using WS-Security

Part I: Basics of
Web Services

Websites for computers not humans; XML
versus HTML; SOAP, WSDL, and HTTP;
current state of adoption

5

1993: Websites for Humans
n HTTP: very simple access protocol

n Text-based so bulkier than binary; latency insensitive

n URLs: pointers to remote documents
n Lack referential integrity of familiar pointers

n HTML: document model
n Mixes raw data with presentational markup

n MIME: very coarse type system for web documents
n (The Semantic Web initiative: typed pointers, roughly)

n CGI: remote procedure calls
n But streaming data model, unlike local-area RPC

From a programming language perspective, an unusual, for
1992, model of computation, but rather effective

6

Websites for Computers B.X.E.
n “A web service is a website intended for computer programs

rather than human beings” (Barclay et al)

n Can trace the origins of web services before the XML Era:
much work on software to access the web programmatically
n Programmatic browsing: spiders, Cardelli and Davies’

service combinators, …
n Every algorithmic behaviour of web browsing should

be scriptable
n URL = pointer + bandwidth

n Programmatic data access: “screen-scraping”, Perl,
Marais’ WebL
n Widely downloaded, but didn’t take off

The thing you have to remember about pioneers is that a
lot of them got shot

7

1998: XML
n Standard syntax for labelled ordered trees

n Two kinds of label: elements and attributes
n <MyElement MyAttrib=“fred”>chas</MyElement>

n Namespaces for modularity
n URI qualifying element and attribute names

n Type systems: regular expressions for trees, roughly
n DTDs – early, simple, but no namespaces
n XML Schema – later, complex, but standard

n The one that matters for SOAP web services
n Relax NG – simpler, has human readable syntax

n Query languages:
n XPath – W3C standard
n Many PhDs and papers…

8

Essential XML

n Resembles the official W3C data model, the Infoset

n XML intended originally as standard semi-structured data
model for database integration

n XML as a general-purpose messaging format came later

9

Websites for Computers X.E.
n “XML Web Services” refers to SOAP stack of specifications:

n SOAP – message format
n Syntax of request, response, fault messages

n WSDL – service description
n Interface: function name, parameter and return types

n UDDI – service discovery
n Search for service by attributes (like Yellow Pages)
n Not yet widely used in practice

n BPEL4WS – service composition
n Programming language for automating business

processes, such as B2B order processing
n Some sort of merger of IBM WSFL, Microsoft XLANG,

and Sun WSCI … so quite complex
n Opportunity for clean and simple alternative…?

10

SOAP
n Simple Object Access Protocol, early version in 1999

n Descends, in part, from earlier XML-RPC proposal
n Deployed commercially, but lacked extensibility

n SOAP envelope – request, response, or fault – sent from one
end-point to another, possibly via intermediaries
n Has optional header and mandatory body

n Conventions for encoding requests and responses

n Most commonly, SOAP sent over HTTP transport, but other
underlying transports possible, such as HTTPS/SSL

n Usually request/response pattern, others possible

n Many implementations
n .NET is Microsoft’s implementation of SOAP web services

11

A Sample Web Service

SOAPSOAP
RequestRequest

Implementation via
proxy class and
HTTP transport

Smart client for
checking orders

www.bobspetshop.com

PetShopService ws = new PetShopService();
Order o = ws.GetOrder(20);

Implementation via
WebService classes

in Web Server

SOAPSOAP
ResponseResponse

[WebMethod]
public Order GetOrder(int orderId) {
return orderWebService.GetOrder(orderId); }

Pet Shop
databaseVendor-neutral

XML-encoding
over HTTP

The Internet

12

A Sample SOAP Request

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<soap:Body>
<GetOrder xmlns="http://microsoft.com/petshop">
<orderId>20</orderId>

</GetOrder>
</soap:Body>

</soap:Envelope>

n Says: “get me status of order 20”

n XML not meant to be read by humans, so we’ll omit namespace
info, and trailing brackets…

13

A Sample SOAP Request

<Envelope>
<Body>
<GetOrder>
<OrderId>20</>

n Says: “get me status of order 20”

n XML not meant to be read by humans, so we’ll omit namespace
info, and trailing brackets…that’s better

14

A Sample SOAP Response

<Envelope>
<Header>
<Timestamp>
<Created>2003-03-11T23:36:06Z</>
<Expires>2003-03-11T23:41:06Z</>

<Body>
<GetOrderResponse>
<orderId>20</>
<date>2003-03-11</>
<userId>adg</>
…

n Unlike the client making the request, the server has included a
timestamp in the optional Header

A SOAP header

15

WSDL
n Web Services Description Language, early version in 2000

n Like IDL in CORBA/DCOM, etc, published by a server,
and consumed by client to construct proxy

n Most of what you need to know to consume a service
n But nothing about security, for example

n A WSDL document has 5 kinds of named description
n Type: most commonly an XML Schema
n Message: type for the body of a SOAP envelope
n Port type: set of operations (function signatures) with

input/output message types
n Binding: concrete transport protocol for a port type, e.g.,

SOAP over HTTP, HTTP GET, HTTP POST
n Service: set of ports, each a binding plus address

AddInt ::= <AddInt> <a>int</> int</></>
AddIntResponse ::= <AddIntResult>int</>

<message name="AddIntSoapIn">
<part name="parameters" element="AddInt"/>

<message name="AddIntSoapOut">
<part name="parameters" element="AddIntResponse"/>

<portType name="AddNumbersSoap">
<operation name="AddInt">
<input message="AddIntSoapIn" />
<output message="AddIntSoapOut" />

<binding name="AddNumbersSoap" type="AddNumbersSoap">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"/>

<soap:operation name="AddInt">
<operation soapAction="http://microsoft.com/.../AddInt" />

<service name="AddNumbers">
<port name="AddNumbersSoap" binding="AddNumbersSoap">
<soap:address location="http://localhost/.../usernamesigning.asmx"/>

Demo: Constructing
a Web Service

High-level RPC model; SOAP messages;
WSDL descriptions

Next: Three ways in which SOAP web
services are being used, and what’s actually
new?

18

(1) On the Public Internet
n Aim: outsource user-interface to

specialists

n Specialist storefronts
n Ex: Products sold through

Amazon, but associate site gets
commission

n 25k developers since Jul’02

n Specialist visualizations
n Ex: TouchGraph re Google

n Specialist smart clients
n Ex: SourceForge project

19

(2) Within a Private Intranet
n Aim: XML as common language to integrate systems obtained

from different vendors

n Ex: single service to calculate quotes uniformly no matter how
customer contacts an insurance company
n call centre
n sales force
n website

n Today, biggest growth area for web services, in part because
there are few new security concerns

20

(3) Between Private Intranets
n Aim: support inter-institution workflows

n E-business transactions
n E-science GRID

n This is the hardest of the three cases to secure

n Needs being addressed by crypto-based security specs
n Single sign-on: scientist may access 100 sites
n Federation: eg can company A permit just certain company

B employees to access shared service?
n Delegation: eg can I permit online travel agent to consult

my calendar service, make bookings?

21

Web Services: What’s New?
n Though their core is roughly XML-encoded RPC – rather old! –

what’s new about SOAP web services is the combination of:
n Vendor-neutral, Internet-scale, high-level tools

n Signs of fervour,
n Wide support from commercial & OSS suppliers
n Weekly news of progress at OASIS and W3C

n yet reasons for caution,
n Cost of SOAP encoding?
n Lack of SOAP security?

n and some competition,
n Fielding’s REST: HTTP-based web services
n ebXML: XML version of earlier UN EDI format

Part II: SOAP-Level
Security

Transport- versus application-level security;
WS-Security for embedding a range of
security tokens within SOAP headers

23

The 2002 Security Story
n The 2002 best practice was to build secure web services using

an SSL (as in https) transport

n SSL gives transport- not application-level security
n Messages secured point-to-point not end-to-end
n Messages cannot securely be filtered or routed
n Messages not encrypted in files or databases
n Moreover, SSL has scalability problems

n Party line (aka Web Services Security Roadmap) security within
SOAP envelopes is better:
n For end-to-end, application-level security, independently of

underlying transports

24

WS-Security: Syntax Summary

Security ::= <Security ?Actor> *SecurityToken </>
SecurityToken ::=

<UsernameToken>
<Username>String</>
?<Password Type=“PasswordType”>String</>
?<Created>String</>
?<Nonce>Base64Binary</>

| <BinarySecurityToken>Base64Binary</>
| <SecurityTokenReference>

<Reference URI=“Uri”>
| <KeyInfo>*KeyInfoItem</>
| <Signature>SignedInfo SignatureValue</>
| <ReferenceList>+<DataReference URI=“Uri”/></>
| EncryptedKey
| EncryptedData

Security element is
child of SOAP Header

UsernameToken
identifies particular user

BinarySecurityToken
embeds an existing

format such as an X509
public-key certificate, or a

Kerberos certificate

25

Outline Security Architecture

Signed responseB → A:Message 4

Signed requestA → B:Message 3

Signed tokensSTS → A:Message 2

Signed token requestA → STS:Message 1

n Abstract family of protocols:
n A wants to talk to B but may have insufficient security

tokens to satisfy B’s security policy
n Trust policy tells which tokens are valid
n Authorization policy tells if valid tokens suffice for request

n So A gets tokens from Security Token Server STS

n Abstracts from underlying crypto technologies

n Will consider three party protocols (but not in XML form) in Lecture 2

A

STS

B4

1
2

3

26

Security Spec Overview
n Several specs released since summer 2002:

n WS-Security: message integrity, confidentiality,
authentication; security token attachment, both XML
(SAML, XrML) and binary (Kerberos, X509)

n WS-Trust: request and issue security tokens, manage
trust relationships

n WS-SecureConversation: establish and share security
contexts, derive session keys

n WS-SecurityPolicy: security requirements

n Plus several implementations:
n Microsoft WSE (Web Service Enhancements)

n RTW Dec 2002, free plugin for VS.NET 2002 and later
n Product implementing WS-Security, WS-Routing, and

DIME attachments
n Others from IBM, Verisign, etc

Part III: Abstract vs XML
Views of Simple Sample

We illustrate WS-Security by explaining the design of a simple but
typical authentication protocol

Get Get
Order Order

Order Order
InfoInfo

28

Sample Security Goals
n Suppose a human A with password p uses a client I to invoke a

web service at URL S
n S = http://www.bobspetshop.com/ws/orderstatus.asmx

n Without some kind of authentication, anybody could request the
private details of anyone else’s order

n Simple solution to require p-based signature of:
n Message body

n to show request from A, and has not been modified
n Timestamp

n to detect replays, with cache of recent messages
n Web server S

n to detect redirection from another server

29

Scope of our Threat Model
n The threat model is an attacker who can replay, redirect,

assemble new messages, but cannot brute force secrets
such as passwords
n Formal statement usually credited to Dolev and Yao

1983, but basic ideas in Needham and Schroeder’s
pioneering 1978 work on crypto protocols

n Can verify that crypto protocols establish various safety
properties in spite of such an attacker:
n Message authentication – against unauthenticated access
n Message integrity – against parameter manipulation
n Message confidentiality – against eavesdropping
n Message freshness – against replays

n Like all formal or informal methods, certain threats lie
outside the model, and must be addressed separately
n Disclosure of configuration data
n Unauthorized access via SQL injection or cross-site scripting

30

An Abstract Protocol

n Security goal expressed as a correspondence
n Each end-event corresponds to a begin-event

n In Lecture 2, we will explain how to formalize diagrams like this
within the pi calculus, and verify safety with respect to any
Dolev-Yao opponent
n who can replay, redirect, assemble new messages, but cannot

brute force secrets such as passwords

n To justify this assumption, p must be a strong password, stored
on client I, and not just a weak memorizable password subject
to dictionary attacks

n Next, a wire-level view of the implementation…

GetOrderResponse(orderInfo)S → IMessage 2
end(S,A,t,orderid)S logsEvent 1’

begin(S,A,t,orderid)I logsEvent 1
S,A,t, h(S,t,orderid)p,GetOrder(orderid)I → SMessage 1

A Signed Request
<Envelope>

<Header>
<path actor="next">

<action>http://bobspetshop/ws/OrderStatus</>
<to>http://www.bobspetshop.com/ws/orderstatus.asmx</>
<id>uuid:5ba86b04-3c0f-428b-8dd6-17804286fe40</>

<Timestamp>
<Created>2003-02-04T16:49:45Z</>
<Expires>2003-02-04T16:50:45Z</>

<Security>
<UsernameToken>

<Username>adg</>
<Password>Ouywn2V6ikNNtWYL29gl9R3CPBk=</>
<Nonce>cGxr8w2AnBUzuhLzDYDoVw==</>
<Created>2003-02-04T16:49:45Z</>

<Signature>
<SignedInfo>
<Reference URI="#..."><DigestValue>Ego0...</>
<Reference URI="#..."><DigestValue>5GHl...</>
<Reference URI="#..."><DigestValue>efb0...</>
<Reference URI="#..."><DigestValue>dFGb...</>
<Reference URI="#..."><DigestValue>23io...</>
<Reference URI="#..."><DigestValue>E4G0...</>

<SignatureValue>vSB9JU/Wr8ykpAlaxCx2KdvjZcc=</>
<KeyInfo><SecurityTokenReference><Reference URI="#..."/>

<Body>
<GetOrder>

<orderId>20</>

Routing header
identifies action

and serverUsernameToken assumes
both parties know adg’s

secret password p Password digest =
sha1(nonce+time+p)

proves knowledge of p

Nonce to prevent replays;
receiver needs to cache
recently seen nonces

hmacsha1(key, SignedInfo) where
key=psha1(p+nonce+time)

Each DigestValue is the
sha1 hash of the URI target

URI arrows implemented
using GUID Id attributes

Hence, signature can
prove this is a fresh
message from adg

32

Aside: Secure Hash Functions
n A hash function is a pseudo random function mapping an

arbitrary length input to n bits

n Additionally, a secure hash function satisfies:
n One-way: For given y, computationally infeasible to find

x with y=h(x)
n Weak collision resistance: For given x, computationally

infeasible to find x’ with h(x)=h(x’)
n Collision resistance: It is computationally infeasible to

find any x, x’ with h(x)=h(x’)

n Examples: MD5 (n=128), SHA-1 (n=160)

n In Dolev-Yao formal models, a secure hash function is
represented as a symbolic constructor with no inverse

33

Sample: Username Signing
// Create an instance of the Web service
AddNumbers serviceProxy = new AddNumbers();
SoapContext requestContext = serviceProxy.RequestSoapContext;

// Configure URL in proxy from external config file
ConfigureProxy(serviceProxy);

// Add the security token and request a signature
UsernameToken token = new UsernameToken("adg", "OpenSesame",

PasswordOption.SendHashed);
requestContext.Security.Tokens.Add(token);
requestContext.Security.Elements.Add(new Signature(token));

// Call the service
Console.WriteLine("Calling {0}", serviceProxy.Url);
int sum = serviceProxy.AddInt(a, b);

// Success!
string message = string.Format("{0} + {1} = {2}", a, b, sum);
Console.WriteLine("Web Service called successfully: {0}", message);

After proxy constructs SOAP
message, the security filter
will compute the signature

After call, ResponseSoapContext
describes tokens and signatures

on response

34

An Encrypted Request

<Envelope>
<Header>

<path actor="next">
<action> http://bobspetshop/ws/OrderStatus </>
<to>http://www.bobspetshop.com/ws/orderstatus.asmx</>
<id>uuid:ced7a259…</id>

<Timestamp>
<Created>2003-03-13T18:24:43Z</>
<Expires>2003-03-13T18:25:43Z</>

<Security>
<ReferenceList>

<DataReference URI="#EncryptedContent-90853130…" />
<Body>

<EncryptedData Id="EncryptedContent-90853130…“
<EncryptionMethod Algorithm="tripledes-cbc" />
<KeyInfo><KeyName>User adg’s Symmetric Key</></>
<CipherData><CipherValue>fnNQgEFqOes5+g…</></>

WS-Routing header

WS-Timestamp header

WS-Security header
ReferenceList manifest:

list of pointers to
EncryptedData elements

Encrypted SOAP body

35

Message Filtering in WSE

User Code

WSE Runtime

SOAP

Context

SOAP

Custom filters

DIME

Security

Routing

36

Aside: WS-Routing

n Client requests a service from server A, which in fact routes it on to
server B

n Routing determined by a referral cache at A

n If B needs to be taken offline, we can update the cache to point at
C, transparently to the client

n Aside to an aside: DIME enables non-XML, binary attachments

Demo: Signing with
WS-Security

To try this at home, you need:

Windows XP Pro (not Home Edition)

Visual Studio .NET or Visual Studio .NET 2003

WSE http://msdn.microsoft.com/webservices/building/wse/default.aspx

38

1: Summary
n SOAP and WSDL implement a fairly standard RPC

mechanism on top of HTTP
n but that has achieved unprecedented interoperability,

and works on a global scale

n XML-DSIG, XML-ENC, and WS-Security are a basis for end-
to-end security guarantees, from encryption, signatures, and
embedded security tokens;
n novel features include abstraction from underlying crypto

technologies, and flexibility of signatures

n XML or not, new crypto protocols are often wrong
n Lecture 2: type-theoretic techniques for verification
n Lecture 3: application to SOAP-level security protocols

39

1: Resources
n Cardelli and Marais websites, for service combinators, and WebL

n http://www.luca.demon.co.uk/
n http://www.hannesmarais.com/index.html

n Standards tracks and whitepaper
n http://www.w3.org/2002/ws/
n http://www.oasis-open.org
n http://msdn.microsoft.com/ws-security/

n Abiteboul of INRIA and Leymann of IBM, on web services:
n http://www-rocq.inria.fr/~abitebou/PRESENTATION/WebServices-EDBT02.pdf
n http://www.btw2003.de/proceedings/proceedings.en.shtml

n General introduction to computer security (one of many…)
n http://www.cl.cam.ac.uk/Teaching/2001/IntroSecurity

n My Top Three Web Service Blogs
n http://www.gotdotnet.com/team/dbox/rss.aspx
n http://weblogs.cs.cornell.edu/AllThingsDistributed/index.rdf
n http://www.scottishlass.co.uk/rss.xml

End of
Part 1

Secure Global Computing
with XML Web Services:

Theory and Practice

Andy Gordon

Microsoft Research

EEF Global Computing Summer School

Edinburgh, Scotland, July 7-11, 2003

Lecture 2, Tuesday 16:30-18:00

42

2: Types for Crypto Protocols

n Basic ideas of crypto protocols

n How the Dolev-Yao threat model can be rephrased
within a process calculus
n Attacker can modify, decrypt, replay network traffic,

but cannot simply guess keys (even by brute force)

n How secrecy properties can be proved by typing
n Continuation of long literature on security levels

n How authenticity properties can be proved by typing
n Continuation of long literature on effect systems

Basic Ideas of Crypto
Protocols

Protocols are quite short, and are often
specified by message sequences.

Even assuming perfect crypto algorithms,
replay and impersonation attacks are possible.

44

A Little History
n 1978: Needham and Schroeder invent authentication

protocols; descendants eg SSL now widely deployed
n 1981: attack found on symmetric key protocol (!)
n 1987: Burrows, Abadi, and Needham invent a formal

logic of authentication (“BAN logic”)
n 1995: attack found on asymmetric key protocol (!!)
n 1997: Several formal methods for “BAN problem”

n Tradeoff between accuracy and approximation:
theorem-proving versus model-checking

n Today: Many formal methods now developed
n Several deliver both accuracy and automation

n Examples: Cohen’s TAPS, Blanchet’s Proverif

45

Ex I: Sending Messages

n A and B share a secret key KAB
n A wishes to send a series of instructions to B

n We wish to secure against tampering and replays,
and authenticate A’s identity to B

n Encryption prevents tampering, and helps guarantee
authenticity

n A nonce challenge prevents replay attacks

NBB → A:Message 1

{msg,NB}KABA → B:Message 2

46

Ex II: Server-Based Login

n Principal A wishes to prove its presence to
principal B, via an authentication server S

n Although A and B have no keys in common, the
protocol can exploit secret keys KAS and KBS that
A and B share with S

PDA A
knows KAS

Network B
knows KBS

Server S
knows KAS
and KBS

47

Ex II: Message Sequence

{NB}KASA → B:Message 3

NBB → A:Message 2
AA → B:Message 1

{NB}KBSS → B:Message 5

B,{A,{NB}KAS}KBSB → S:Message 4

n Message 5 meant to prove to B that A is currently
running the protocol

n But it doesn’t mention A, so by manipulating parallel
sessions, an attacker C may login as A

48

Attacking Ex II

1. C→B: A
2. B→C: NBA

3. C→B: {NBA}KCS

4. B→S: B,{A,{NBA}KCS}KBS

5. S→B: {…}KBS

1. C→B: C
2. B→C: NBC

3. C→B: {NBA}KCS

4. B→S: B,{C,{NBA}KCS}KBS

5. S→B: {NBA}KBS

n Here A is offline, but insider C runs two parallel
sessions which end with B believing A has logged in.

n To fix, include the identity of A in messages 3 and 5.

49

Discussion

n We include the additional names in Ex II to prevent
an impersonation attack

n Infamously, crypto protocols are vulnerable to attack,
without breaking the underlying crypto algorithms

n Ongoing need for protocol verification: new
technologies force invention of new protocols, and
change security assumptions

n The message notation is abstract, but not completely
precise; e.g., authentication goals left implicit

n So, how might we specify properties formally…

Formally Specifying
Security Properties

We might use any one of a great many formalisms.

As it’s the basis of several type systems for security,
we pick the untyped spi-calculus of Abadi and Gordon
(CCS’97, Concur’97)

Related process calculi include the sjoin-calculus, the
applied π-calculus, and several others

51

The Spi-Calculus in One Page

The statement decrypt M is {x}N;P means:

“if M is {x}N for some x, run P”

Decryption evolves according to the rule:

decrypt {L}N is {x}N;P → P{x←L}
n Decryption requires having the key N
n Decryption with the wrong key gets stuck

n There is no way to extract N from {L}N

n Abstraction introduced by Dolev and Yao (1983)

52

Specifying Authenticity

NBB → A:Message 1

{msg,NB}KABA → B:Message 2

(A sending msg to B)A beginsEvent 1

(A sending msg to B)B endsEvent 1’

Each end-assertion to have distinct, preceding begin-
assertion with same label

Attacks (replays, impersonations) show up as violations
of these assertions

Named correspondence assertions by Woo and Lam,
but also injective agreements by Lowe.

53

Authenticity Specified in Spi

send(msg,k) @
inp net(no);
begin “Sender sent msg”;
out net ({msg,no}k);

recv(k) @
new(no); out net(no); inp net(u);
decrypt u is {msg,no’}k;
check no’ is no; end “Sender sent msg”;

sys(msg1,…,msgn) @
new(k);
(send(msg1,k) | … | send(msgn,k) |
repeat recv(k))

A
B

54

Secrecy Specified in Spi

For all (msgL1, msgR1), …, (msgLn, msgRn),
sys(msgL1,…,msgLn) 3 sys(msgR1,…,msgRn)

n No opponent O should be able to distinguish runs
carrying different messages.

n We interpret P3Q as may-testing equivalence.
n A test is a process O plus a channel c.
n A process passes a test (O,c) iff P|O may eventually

communicate on c.
n Two processes equivalent iff they pass the same tests.

n In fact, our example fails this spec…

55

A Small Information Leak

n Consider sys(msg1,msg2). The opponent certainly
cannot obtain either of the messages in the clear, but
can it tell whether they are equal?

n One may reason that A’s inclusion of the nonces
always distinguishes {msg1,no1}k and {msg2,no2}k

n But the opponent may feed its own nonce no twice to
A, cause A to emit {msg1,no}k and {msg2,no}k , and
hence can tell whether msg1=msg2

n To fix this, A sends {msg,no,co}k for some fresh
confounder co instead of simply {msg,no}k

56

Many Variations Are Possible

n There is a vast literature on equationally defined
information flow, e.g., “non-interference properties”
n Focardi and Gorrieri (JCS 1994) were pioneers in

the setting of process calculi

n As usual, the formalism (choice of equivalence and
operational semantics) may abstract too much
n Our spec is insensitive to covert timing channels
n Mitchell et al study more refined calculi (CCS98…)

n Still, we now have specs of authenticity and secrecy…

Secrecy Types

Introduction to “Secrecy by Typing in Security
Protocols” by Abadi (JACM 1999)

Draws on earlier work on security levels to
control information flow (Denning,…), and on
types for π (Milner, Pierce and Sangiorgi,…)

58

Origins of Type Theory
n Cambridge 1901: Russell

uncovers a paradox in
Frege’s system of
arithmetic

n Later, 1908, he proposes
his Theory of Types to
patch the bug

Your system admits
S={x | x∉x}.
But is S∈S?

Whoops!

59

Three Security Levels
n There are three types T for data

n Un for public data known to the opponent
n Secret for private data assumed not to leak to

the opponent
n Top for arbitrary data, either Un or Secret

n Judgment E º M : T means message M has type T
n Judgment E º P ok means process P well-typed

60

Typing Public Channels

n The rules for communication on public channels
n allow communication of public Un data
n but prevent communication of Secret or Top data

n Informally:
n If M:Un and N:Un then out M N ok
n If M:Un and x:Un º P ok then inp M (x:Un);P ok

61

Typing Secret Keys

n The rules for cryptography using secret keys
n preserve types while sending data on public channels
n force inclusion of suitable confounders

n Informally:
n If M1:Secret and M2:Top and M3:Un and N:Secret

and n a fresh confounder then {M1,M2,M3,n}N:Un
n If M:Un and N:Secret and

x1:Secret,x2:Top,x3:Un,x4:Top º P ok then decrypt
M as {x1:Secret,x2:Top,x3:Un,x4:Top}N;P ok

62

Secrecy for Ex I

send(msg:Top,k:Secret) @
inp net(no:Un);
new(co:Secret);
out net ({_,msg,no,co}k);

recv(k:Secret) @
new(no:Un); out net(no); inp net(u:Un);
decrypt u is {_,msg:Top,no’:Un,co’}k;
check no’ is no;

sys(msg1:Top,…,msgn:Top) @
new(k:Secret);
(send(msg1,k) | … | send(msgn,k) |
repeat recv(k))

A
B

63

Secrecy by Typing

n Beware, does not say no flow from Secret to Un

n Instead, provided public channels and secret keys
have types Un and Secret, respectively, then Top
data, e.g., the protocol payload, not observable

n In our example, net:Un,msg1:Top º sys(msg1) ok, so
we obtain desired secrecy property (also n-ary case)

n Proof relies on Opponent Typability; any O can be
typed if all its variables of type Un

Theorem (Abadi)
If E=x1:Un,…,xn:Un and E,y:Top º P{y} ok and
E º M,M’:Top then P{M} 3 P{M’}.

Authenticity Types for
Symmetric-Key Crypto

All the work on authenticity types is by Gordon
and Jeffrey.

Work on types for correspondence assertions
and symmetric-key crypto at MFPS’01, CSFW’01.

Draws on earlier work on effect systems for
resource control in functional languages.

65

Specifying Authenticity

NBB → A:Message 1

{msg,NB}KABA → B:Message 2

(A sending msg to B)A beginsEvent 1

(A sending msg to B)B endsEvent 1’

Each end-assertion to have distinct, preceding begin-
assertion with same label

Attacks (replays, impersonations) show up as violations
of these assertions

Named correspondence assertions by Woo and Lam,
but also injective agreements by Lowe.

66

Authenticity Specified in Spi

send(msg,k) @
inp net(no);
begin “Sender sent msg”;
out net ({msg,no}k);

recv(k) @
new(no); out net(no); inp net(u);
decrypt u is {msg,no’}k;
check no’ is no; end “Sender sent msg”;

sys(msg1,…,msgn) @
new(k);
(send(msg1,k) | … | send(msgn,k) |
repeat recv(k))

A
B

67

The Two Main Judgments
n Judgment E º M : T means message M has type T
n Judgment E º P : [L1,…,Ln] means process P has

effect [L1,…,Ln], a (multiset) bound on the events
that P may end but not begin
n If L:T then end L : [L]
n If L:T and P:e then begin L;P : e−[L]

n Metaphor: end’s and begin’s like costs and benefits
that must be balanced.

68

Typing Symmetric Crypto
n We drop Secret and Top and add some new

types, including pairing and tagged unions

n Messages of type Un are data known to the
untyped opponent, as before

n Messages of type Key(T) are names used as
symmetric keys for encrypting type T
If M:T and N:Key(T) then {M}N:Un
If M:Un and N:Key(T) and x:T º P : e ,

then decrypt M as {x:T}N;P : e

69

Typing a Nonce Handshake

n Messages of type Nonce[L1,…,Ln] prove begin-
events labelled L1,…,Ln have previously occurred.

n Example nonce lifecycle:
1. Receiver publishes new N:Un
2. Sender receives N:Un, asserts begin L, casts

nonce into Nonce[L], returns within ciphertext
3. Receiver decrypts message, checks just once for

presence of N:Nonce[L], then asserts end L
n Effect in the Nonce[L] type allows transfer

n Each cast is a cost; each check is a benefit

70

Semantics of cast
The process cast x to (y:Nonce e);P evolves into the

process P{y←x}
Only way to make name of type Nonce e
The name is a proof events in e have happened

It “costs” the effect e:
If E º x : Un and E, y:Nonce e º P : e’

then E º cast x to (y:Nonce e);P : e+e’
Only kind of type-cast in the system

71

Semantics of check
Process check x is y;P evolves into process P if x6y;

but otherwise gets stuck.

It “pays for” the effect e in P:
If E º x : Nonce e and E º y : Un and E º P : e’

then E º check x is y; P : e’−e
For each new(y:Un);P, we require that the name

y be used in a check at most once
Enforced by adding a new kind of effect;

details omitted

72

Typing Ex I

send(msg:Msg,k:MyKey):[] @
inp net(u:Un);
begin “Sender sent msg”;
cast u to (no:MyNonce(msg));
out net ({msg,no}k);

recv(k:MyKey):[] @
new(no:Un); out net(no); inp net(u:Un);
decrypt u is {msg:Msg,no’:MyNonce(msg)}k;
check no’ is no; end “Sender sent msg”;

Msg @ Un
MyNonce(m) @ Nonce [“Sender sent m”]
MyKey @ Key (m:Msg, MyNonce(m))

73

Authenticity by Typing

For Ex I, we can check the following:

net,msg1,…,msgn:Un º sys(msg1,…,msgn) : []

Theorem (Robust Safety)
If x1,…,xn:Un º P : [] then P is robustly safe.

A process P is safe iff in every execution trace, there is
a distinct begin L for every end L.

A process P is robustly safe iff for all begin- and end-
free opponents O, P|O is safe.

74

Typing Ex II

“A proving presence to B”B endsAssertion 2

“A proving presence to B”A beginsAssertion 1

{tag3(B,NB)}KASA → B:Message 3

NBB → A:Message 2

AA → B:Message 1

{tag5(A,NB)}KBSS → B:Message 5

B,{tag4(A, {tag3(B,NB)}KAS)}KBSB → S:Message 4

PrincipalKey(p) @ Key(Cipher3(p) + Cipher4(p) + Cipher5(p))
Cipher3(A) @ (B:Un, NB:Nonce[“A proving presence to B”])
Cipher4(B) @ (A:Un, cipher:Un) --seems redundant

Cipher5(B) @ (A:Un, NB:Nonce[“A proving presence to B”])

75

Typing Ex II, again

“A proving presence to B”B endsAssertion 2

“A proving presence to B”A beginsAssertion 1

{tag3(B,NB)}KASA → B:Message 3

NBB → A:Message 2

AA → B:Message 1

{tag5(A,NB)}KBSS → B:Message 5

A,{tag3(B,NB)}KASB → S:Message 4

PrincipalKey(p) @ Key(Cipher3(p) + Cipher5(p))
Cipher3(A) @ (B:Un, NB:Nonce[“A proving presence to B”])

Cipher5(B) @ (A:Un, NB:Nonce[“A proving presence to B”])

76

Implementation

n Checked a standard suite of symmetric key protocols

n Re-discovered known bugs, found redundancies

n See MSR-TR-2001-49, http://cryptyc.cs.depaul.edu

Authenticity Types for
Asymmetric-Key Crypto

Recent work (G&J CSFW’02) on authenticity
types for asymmetric-key crypto, including
public-key encryption and digital signatures

Secrecy types for asymmetric crypto, Abadi
and Blanchet (FOSSACS’01), is the closest
related work

78

Abstracting Asymmetric Crypto
Terms Enc k and Dec k extract the two parts of a

asymmetric key-pair, the name k

Term �M�N is M encrypted with key N
Process decrypt L is �x�N;P attempts to decrypt L

with key N
decrypt �M�Enc k is �x�Dec k;P → P{x←M}

Fairly standard model; has known limitations

Same operational semantics models both public-key
crypto and digital signature applications

79

Typing Asymmetric Crypto
Names of type KeyPair(T) represent a key-pair for

transforming T data.

Terms of type EncKey(T) and DecKey(T) are
encryption and decryption keys, respectively.
If p:KeyPair(T) then Enc p:EncKey(T).
If p:KeyPair(T) then Dec p:DecKey(T).
If M:T and N:EncKey(T) then �M�N:Un.
If M:Un and N:DecKey(T) and x:T º P well-

typed, then so is decrypt M as �x�N;P.

80

Jargon: Public versus Tainted
We (re-) introduce a subtype order T<:U

If M:T and T<:U then M:U
Hence, we characterize data that may flow to or

from the opponent:
Let a type T be public iff T<:Un
Let a type T be tainted iff Un<:T
Ex: Un is both public and tainted
Ex: Top is tainted but not public

81

Subtyping Asymmetric Keys
Variance rules reminiscent of types for input and

output channels (see Pierce and Sangiorgi)
If T<:U then EncKey(U)<:EncKey(T)

(contravariant)
If T<:U then DecKey(T)<:DecKey(U) (covariant)
KeyPair(T) neither co- nor contravariant.

For both Opponent Typability and to allow
publication of keys for Un, both EncKey(Un) and
DecKey(Un) are tainted and public.

82

Analysing our Abstraction

Can prove the following:
(PK) EncKey(T) public iff T tainted
(DS) DecKey(T) public iff T public

So how can we apply key-pairs of type KeyPair(T)
If (PK) but not (DS): public-key crypto
If (DS) but not (PK): digital signature
If both (PK) and (DS): have T<:>Un, beware!
If neither, model degenerates to symmetric key

83

Ex III: Authentication by Certs

NBB → A:Message 1

�A,KA�KCA-1,�msg,B,NB�KA-1A → B:Message 2

(A sending msg to B)A beginsAssertion 1

(A sending msg to B)B endsAssertion 2

pKCA, pKA -- key-pairs
KCA @ Dec pKCA -- CA’s verification key (known to B)
KCA-1 @ Enc pKCA -- CA’s private signing key
KA @ Dec pKA -- A’s verification key (initially unknown)
KA-1 @ Enc pKA -- A’s private signing key

Server A authenticates to client B via certificate from CA

84

Ex III: Types for the Key-Pairs

As before, a name of type Nonce[(A sending msg to
B)] bears witness to a distinct preceding begin-event
labelled [(A sending msg to B)]

(DS) applies to both key-pairs, since AuthMsg(A) and
DecKey(AuthMsg(A)) are public (assuming T public)
So verification keys public, signing keys private

Type-checking verifies that A can authenticate to B

AuthMsg(A) @
(msg:T, B:Un, N:Nonce[(A sending msg to B)]

pKCA: KeyPair (A:Un, KA: DecKey(AuthMsg(A)))
pKA: KeyPair (AuthMsg(A))
KCA-1: EncKey (A:Un, KA: DecKey(AuthMsg(A)))

Authenticity Types:
Two Refinements

With symmetric-key protocols, nonces can be public.

With public-key, nonces may need to be private.

Hence, we need new nonce types and new effects.

86

Public Nonces Insufficient

Replaced symmetric encryption with asymmetric

B has now no reason to believe message 2 from A
Unsafe, and indeed fails to type-check

(DS) rather than (PK) holds
since payload type is public but untainted

NBB → A:Message 1

�A,msg,NB�KBA → B:Message 2

(A sending msg to B)A beginsAssertion 1

(A sending msg to B)B endsAssertion 2

Encryption with Encryption with
BB’’s public keys public key

87

Ex IV: Encrypt Outgoing Nonce

Now, B reasons that since only A can obtain NB from
�NB�KA, A must have sent Message 2.

This protocol is safe.

To type-check it, we need new secret but tainted types
for the nonce challenge and response.

�NB�KAB → A:Message 1

�A,msg,NB�KBA → B:Message 2

(A sending msg to B)A beginsAssertion 1

(A sending msg to B)B endsAssertion 2

88

Typing Private, Tainted Nonces

Names of type PrivChall[] are private but tainted
challenges

Names of type PrivResp[L] are private but tainted
responses, witness to a distinct begin-event L

With these typings, can verify the protocol

For (PK), taint AuthMsg(P), by assuming msg:Top

AuthMsg(P) @
msg1(N: PrivChall[]) +
msg2(msg:Top, Q:Un,

N:PrivResp[(Q sending msg to P)])
KA: EncKey(AuthMsg(A))
KB: EncKey(AuthMsg(B))

89

Adding Trust Effects

The effect msg:T asserts the existing name msg has type T
Before checking the nonce, B knows only that msg:Top
If the nonce-check fails, B knows nothing more about msg
If it succeeds, B can downcast msg to type T

AuthMsg(P) @
msg1(N: PrivChall[]) +
msg2(msg:Top, Q:Un,

N:PrivResp[(Q sending msg to P), msg:T]
KA: EncKey (AuthMsg(A))
KB: EncKey (AuthMsg(B))

90

Assessment of Authenticity Types

Benefits
n Familiar program/type-check/debug cycle
n Little human effort per protocol
n No bound on size of opponent or protocol
n Types are as intuitive as BAN formulas
n Directly check implementations
Limitations
n No automatic discovery of attacks
n Type inference problem still open
n Usual Dolev-Yao perfect encryption assumptions
n Incompletenesses, like any type system

91

2: Conclusions

The Dolev-Yao threat model of crypto protocols may be
formalized within process calculi

Secrecy and authenticity properties may be formalized
using behavioural equivalences and events

Suitable type systems may establish both, even in the
presence of an untyped attacker

There are many other formal methods; see our papers
for a discussion

DePaul/MSRC Cryptyc Project working to develop type-
checked protocol implementations
DePaul funded from NSF Trusted Computing program

92

2: Resources
n Cryptyc

n http://cryptyc.cs.depaul.edu
n http://research.microsoft.com/~adg/cryptyc.htm

n Blanchet’s Proverif verification tool

n http://www.mpi-sb.mpg.de/~blanchet/

End of
Part 2

Secure Global Computing
with XML Web Services:

Theory and Practice

Andy Gordon

Microsoft Research

EEF Global Computing Summer School

Edinburgh, Scotland, July 7-11, 2003

Lecture 3, Wednesday 9:00-10:30

95

3: Analysing web services security

n Validating a security abstraction by typing

n XML with symbolic crypto

n Username signing example

n X509 signing example

n All part of our Samoa project…

96

MSRC Samoa Project
n Goal: exploit advances in the analysis of security protocols in

the practical setting of XML web services.

n Outcomes so far:
n An implementation of declarative security attributes for web

services
n A. Gordon and R. Pucella, Validating a web service

security abstraction by typing. In 2002 ACM
Workshop on XML Security, Nov 2002

n Design of a logic-based approach to checking SOAP-based
protocols
n K. Bhargavan, C. Fournet, A. Gordon, A semantics for

web services authentication, in preparation
n Actionable feedback to internal group

n http://Securing.WS

Part I: A Web Service
Security Abstraction

With Riccardo Pucella

An informal design, and pre-WS-Security implementation

We formalize the application-level within an object calculus,
and the SOAP-level within the spi-calculus.

The validation is a type-preserving semantics of the object
calculus in the spi-calculus

98

A Security Abstraction

n Each web method has one of three security levels
n None, Auth or AuthEnc

n Akin to SRC Secure Network Objects, for example

n Enough to support various authorisation mechanisms

class BankingServiceClass {
string callerid;

[WebMethod] [SecurityLevel(Level=Auth)]
public int Balance (int account)

[WebMethod] [SecurityLevel(Level=AuthEnc)]
public string Statement (int account) }

99

A SOAP-Level Implementation

B, {res(w,balance(amount),t,NA)}KABB → A:Message 4

A, {req(w,balance(acc),t,NB)}KAB,NAA → B:Message 3

w, res(getNonce(NB))B → A:Message 2

w, req(getNonce())A → B:Message 1

n We assume key KAB shared between A and B
n We also consider key establishment with certs

n Messages 1/2 establish security context: fresh nonce
n Could avoid first roundtrip by including timestamps

n Messages 3/4 are the actual call/return

n Implemented using SOAP extensions in VS.NET

100

An AuthEnc Envelope
<?xml version="1.0" encoding="utf-8" ?>
<soap:Envelope …>

<soap:Header>
<DSHeader …>
<callerid>Alice</callerid>
<calleeid>Bob</calleeid>
<np>13</np>
<nq>-1</nq>
<signature>4E:00:6F:00</signature>

</DSHeader>
</soap:Header>
<soap:Body>

9D:8F:95:2B:BC:60:B1:73:A7:C4:82:F5:39:20:97:F7:69:71:66:
D3:A3:A0:90:B9:9B:FE:71:0A:65:C1:EF:EE:99:CB:4D:8A:40:37:
CA:1E:D0:03:50:34:76:8C:E3:F3:30:DD:C9:34:19:D4:04:CB:39:
7D:1A:84:2F:CA:30:DA:68:7E:E1:CB:07:9C:EB:79:F9:E9:4B:47:
5B:94:56:D7:22:0E:02:CD:AA:F5:D3:40:C1:EC:13:FB:B9:E6:4F:
13:CD:70:FD:BA:18:80:FC:50:F3:75:F2:2F:95:50:5D:41:7E:C8:
8B:BB:AB:76:C9:59:BA:E2:3B:E5:4D:79:71:E4:AD:18:5A:4B:EA:
29:17:30:90:66:08:27:ED:B4:BD:2E:89:06:6D:0B:56:40:43:35:
A1:77:AE:12:7E:4B:19:26:B5:24:1A:D9:67:3D:A0:9E

</soap:Body>
</soap:Envelope>

101

What Do We Have So Far?
n We have outlined a new “security abstraction”

n Defined by custom attributes on web methods
n Implemented by SOAP extensions

n Next, to validate using types:
n We formalise the abstraction as an object calculus
n We specify its semantics by translation into spi
n Since the translation preserves typings, attacks

representable in spi are impossible
n Verification of formal model, not running code

n Still, verified implementations are coming within
reach

102

Back to our SOAP protocol

B, {res(w,N,t,NA)}KABB → A:Message 4

res(A,B,w,N,t)A endsEvent 4

res(A,B,w,N,t)B beginsEvent 3

req(A,B,w,M,t)B endsEvent 2

req(A,B,w,M,t)A beginsEvent 1

A, {req(w,M,t,NB)}KAB,NAA → B:Message 3

w, res(getNonce(NB))B → A:Message 2

w, req(getNonce())A → B:Message 1

SharedKey(a,b) @ Key(Union(
req(w:Un, m:Un, t:Un, Nb:Nonce[end req(a,b,w,m,t)]),
res(w:Un, n:Un, t:Un, Na:Nonce[end res(a,b,w,n,t)])))

Specify authenticity via
event correspondences

Verify via generic types for
crypto keys and nonces

103

A Calculus of Web Services
n Object calculi are OO-langs in miniature

n Small enough for formal proof
n Big enough for study of specific features

n Abadi and Cardelli “A Theory of Objects”
n Igarashi, Pierce, and Wadler “Featherweight Java”
n Gordon and Syme BIL; …

n We include an application-level view of a web service
n A service is neither an object nor a value

n WSDL neither object-oriented nor higher-order
n But a service implemented via a server class

n Recall the BankingServiceClass
n And may be accessed directly or via a proxy class

variablex,y,z

objectnew c(v1,…, vn)

variablex
nullnull

principalp

valueu,v ::=

method callv.l(u1,…,un)

conditionalif u=v then a else b

valuev
letlet x=a in b

field lookupv.f

service callw:l(u1,…,un)

method bodya,b ::=

signaturesig ::= B(A1 x1,…,An xn)

principalId
objectc

typeA, B ::=

service namew∈WebService
principal namep∈Prin

field namef∈Field
method namel∈Meth

class namec∈Class

n For each class c∈Class,
n map fields(c) defines field names and types
n map methods(c) defines method names, signatures, and bodies

n For each service w∈WebService,
n principal owner(w) hosts the service
n class class(w) implements the service

n constraint: fields(w) = Id CallerId

105

An Informal Semantics
n How to evaluate a body b as principal p:

n To evaluate v, terminate with v at once
n To evaluate let x=a in b{x}, first evaluate a as p to v, then

evaluate b{v} as p
n To evaluate if u=v then atrue else afalse, evaluate au=v as p
n To evaluate v.f, when v=new c(v1,…, vn) and f is the ith field

of c, terminate with vi
n To evaluate v.l(u1,…,un), when v=new c(v1,…, vn) and l in c

has signature B(A1 x1,…,An xn) and body b{this,x1,…,xn},
evaluate b{v,u1,…,un} as p

n To evaluate w:l(u1,…,un), evaluate the method call new
class(w)(p).l(u1,…,un) as owner(w)

106

A Formal Semantics
n We map type B to spi message type [B]
n We map value v to spi message [v]
n We map body b running as p to spi process [b]pk where k

is a continuation channel

n We represent SOAP envelopes as spi messages

n We represent security guarantees by embedding begin- and
end-assertions

n These security guarantees (that is, robust safety) follow as a
corollary of type preservation

Theorem (Type Preservation)
If E º b : B then [E], k:Ch([B]) º [b]pk : []

107

Summary of Part I
n Coding experiments in 2002, pre-WS-Security, showed we

could implement an abstraction of SOAP-level security

n Formal model shows Cryptyc can verify basic design
n A novel approach to verifying secure RPC
n Exposes some limitations of the type theory

n No good model of compromised insiders

n A criticism of this abstract approach to protocol verification
is that it’s not clear which details are safe to omit
n Hence, we are developing a version of the pi calculus

that directly embeds XML messages with crypto

Part II: XML with
Symbolic Crypto

With K. Bhargavan and C. Fournet

We develop a symbolic Prolog-like notation for
XML and predicates on XML

For example, we can write predicates defining
envelopes, username tokens, and signatures

Hence, we will subsequently be able to specify
security protocols that use such tokens

109

Our XML Model Part 1

n Represents valid, parsed XML

n Sorts string, att, atts, item, items, plus some others

n Adapted from Siméon and Wadler's model (POPL’03)

n Resembles the W3C Infoset recommendation

110

Logical Predicates

n A Horn logic over our many-sorted algebra
n primitive formulas for equality and list membership, but

no recursively-defined predicates

n Given certain implementability constraints, logic programs
may be compiled into Abadi and Fournet’s applied pi calculus
n Much like spi, but parametric on the algebra of values

111

Ex I: A SOAP request

n The predicate hasBody(item, b) below means b is the body of
envelope env (the wildcard _ matches anything):

n Next, a body requesting info on OrderId:

n Overall:

112

Ex II: A SOAP Response

n Body of the response concerning OrderId owned by user u

n Overall:

113

Need for Symbolic Crypto
n To specify interesting security properties, our predicates

need to talk about cryptographically significant byte arrays
encoded as strings within XML, i.e., security tokens

n For example, a UsernameToken may be added to a security
header to identify the origin of a message
n Nonce contains the Base64-encoding of random number
n Password contains the Base64-encoding of a secure hash

of the shared password, the nonce, and the timestamp

n To do this, we add new sort bytes, and extend string

<UsernameToken>
<Username>adg</>
<Password>Ouywn2V6ikNNtWYL29gl9R3CPBk=</>
<Nonce>cGxr8w2AnBUzuhLzDYDoVw==</>
<Created>2003-02-04T16:49:45Z</>

114

Our XML Model Part 2

115

Inverses, Equations

n Following Dolev and Yao, model includes no inverses for
cryptographic “one-way” functions
n sha1, p-sha1, hmac-sha1

n Nor for the function modelling user/password databases
n principal

Plus destructors for
elements and attributes

116

Ex: User Token with Digest

<UsernameToken>
<Username>adg</>
<Password>Ouywn2V6ikNNtWYL29gl9R3CPBk=</>
<Nonce>cGxr8w2AnBUzuhLzDYDoVw==</>
<Created>2003-02-04T16:49:45Z</>

117

Ex: A Security Header
n User tokens occur within an envelope’s security header:

n Hence, we can stipulate that an envelope contains a user
token with a password digest:

118

Discussion: Password Digests
n We are assuming underlying transport is unencrypted

n What does hasUserTokenDigest(e,u,pwd,n,t,b) tell us?

n Not very much in itself:
n That u recently possessed the password pwd
n Assuming that t is recent, that S doesn’t itself generate

such tokens, and that only S and u possess pwd
n Nothing in sha1(concat(n,concat(utf8(t),utf8(pwd))))

specific to body b, so cannot infer u meant to send b to S
n Worse, since n and t are public, the digest invites a

dictionary attack to recover the pwd (outside our model)

n Explains why, to authenticate the message, we need to add
a signature of the body based on a key derived from pwd

119

Signing Key from User Token
n Following stipulates the key k derived from the password,

timestamp, and nonce; unlike the digest, k must be secret

120

Formalizing Document Refs

n The group bound together in a signature is given by a finite
sequence of references
n URI points to an item t, typically a node in the envelope
n DigestValue is a secure hash of the item

n ref(t,r) means that r is such a reference to t

n When checking a signature, we know what’s to be signed;
the URI attribute is an untrusted processing hint

<SignedInfo>
<Reference URI="#..."><DigestValue>Ego0...</>
<Reference URI="#..."><DigestValue>5GHl...</>
<Reference URI="#..."><DigestValue>efb0...</>

121

Formalizing Signatures
<Signature>

<SignedInfo>
<Reference URI="#..."><DigestValue>dFGb...</>…

<SignatureValue>vSB9JU/Wr8ykpAlaxCx2KdvjZcc=</>
<KeyInfo><SecurityTokenReference><Reference URI="#..."/>

122

Username Signed Message
n We need one final predicate:

123

WS-Security Protocol 1

e2 where soapGetOrderResponse (e2, orderid,A) S → IMessage 2
end(A,n,t,orderid)S logsEvent 1’

begin(A,n,t,orderid)I logsEvent 1
e1 where hasUserSignedBody(e1,A,p,n,t,b) and
isGetOrder(b,orderid)

I → SMessage 1

n Authentication formalized as a correspondence;
authorization decision not formalized

n We describe this protocol as a process Q, and take the
opponent O to be any arbitrary process in parallel
n Details omitted; this is much as in Lecture 2

n Theorem: Q | O is safe, that is, in every run, every end-event
corresponds to a preceding begin-event

n Proofs use a combination of process calculus techniques, and
are compositional

124

Summary of Part II
n We propose a method for analysing SOAP-level protocols

n Identify the principals taking part in the protocol
n Describe the exchange of messages, and the events

that are to be in correspondence
n Formalize security checks using predicates in our XML

model with symbolic crypto
n Define applied pi processes to represent behaviour of

principals, by interpreting predicates as processes
n Prove robust safety

n In our paper, we use standard process calculus
techniques

n We are also exploring automatic techniques

Part III: X509 Security
Tokens

We can handle protocols based on public-key
signatures, and also protocols relying on
SOAP intermediaries

126

Our XML Model Part 3

127

Our XML Model Part 3

n Now, we can define well-formed X509 security tokens:

128

X509 Signed Message
n We add a new clause to the definition of isSigVal and define

a new top-level predicate

129

WS-Security Protocol 2

e2 where soapGetOrderResponse (e2, orderid,u)S → IMessage 2
end(A,n,t,orderid)S logsEvent 1’

begin(A,n,t,orderid)I logsEvent 1
e1 where isGetOrder(b,orderid) and
hasX509SignedBody(e1,kr,A,W,S,b,ea,et,ei)

I → SMessage 1

n As before, we describe this protocol as a process Q, and take
the opponent O to be any arbitrary process in parallel

n Theorem: Q | O is safe, that is, in every run, every end-event
corresponds to a preceding begin-event

130

Contributions of the Paper
n Details and theorems for examples:

n Username/password signatures
n X509 signatures
n Firewall-based authentication

n Application of three standard security principles:
n Use explicit syntax for cryptographic transforms
n Identify explicit goals (not just secrecy…)
n Separate verification from discovery of evidence

n Some advice: beware weak passwords, verify all headers
have been signed, use short frag URIs

131

3: Conclusions, Futures
n Successfully bridged gap between theoretical pi threat model

and XML used in WS security protocols
n Began with abstract view of SOAP, but was

advantageous to work with direct XML moel
n Put effort into real samples, eg, MS Pet Shop
n Found attacks within threat model
n Proved wire-level theorems about protocols

n Next step, automated analyses within our new symbolic
model of XML security protocols
n Many potential users of WS-Security

n BPEL4WS, OGSA, …
n Not many “best practices” just yet

n Lots of standard syntax, little standard semantics

132

Overall Summary
n Unlike other initiatives, safe bet that web services will be

widely deployed
n If Grid happens, it will be WS-based
n If Semantic Web happens, ditto!

n Moreover, web service security engineering presents
additional challenges

n Subtlety and lack of standardized semantics for WS-Security
great opportunity to exploit successful development of
formal methods for crypto

End of
Part 3

