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Abstract

The performance modeller may attempt to quantitatively analyse the behaviour of com-
puter systems by building performance models. Such models may become unwieldy,
and so high-level structured modelling techniques have been developed. A stochastic
process algebra (SPA) provides such a technique, a compositional modelling calculus.
Hillston’s PEPA is an SPA, a classical process algebra enhanced to represent the per-
formance of systems. This thesis uses PEPA as a foundation, and examines different

ways to assist the SPA performance modeller.

A weak stage in the SPA methodology is the calculation of concrete performance mea-
sures, since much research does not focus beyond a steady-state probability vector.
A framework is developed for specifying steady-state performance measures for PEPA
models. The technique is used at the high-level of the process algebra, and not applied
directly to states, or the stochastic process. It employs an enhanced modal logic to
allow the modeller to identify interesting model behaviour. Furthermore, the mod-
eller may choose to study only the behaviour of subcomponents in the model context.
The method automatically specifies a Markov reward model (MRM). The modal logic
is suitably expressive; it is shown to characterise PEPA’s strong equivalence relation.
Conditions are given under which model subcomponents may be aggregated such that
the MRM is guaranteed to be strongly lumpable. The technique is compared to various

other solutions to the reward specification problem.

If a randomly distributed model feature possesses the insensitivity property, then the
equilibrium solution of the model only depends on the mean of the distribution. A
new SPA combinator is defined which builds a model from a set of simple components
restricted to queue to perform particular activities. It is demonstrated that a subset
of the activities of these SPA models are insensitive, and therefore may have generally
distributed durations. Furthermore, it is proven that a model of this structure exhibits
a product form solution over its submodels, allowing its solution to be expressed as
a product over the smaller solutions of its parts. This work leads to a more general
examination of insensitivity in SPA models. An extension to PEPA is defined which
allows activities with generally distributed durations. Balance conditions are given
which guarantee the insensitivity of these activities. However these conditions are

strong, and at the level of the stochastic process.

Models of transaction processing systems (TPS) are presented as a case study. These
systems consist of a centralised database, and a set of transactions which access database
objects. Sample performance measures are specified for TPS models, and a model of a
TPS is constructed using the new combinator, guaranteeing the insensitivity of a subset

of its activities.
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Chapter 1

Introduction

1.1 Background and Aims

The work presented in this thesis adds to the repertoire of techniques available to the
stochastic process algebra (SPA) performance modeller. The thesis is concerned with
both the construction, and the performance analysis, of SPA models. Performance
modelling deals with the analysis of the dynamic behaviour of systems. Models of
such systems can quickly become large and unwieldy, and so building these models
in a compositional fashion can greatly assist analysis. This motivates the choice of
PEPA [44], a prominent stochastic process algebra, as the modelling language for the
work in this thesis. This chapter presents an overview of the thesis, identifying the

main results.

PEPA is also termed a Markovian process algebra (MPA), meaning that the perfor-
mance aspects of a PEPA model can be understood by a translation to a (continuous
time) Markov chain. The stochastic process can then be mathematically exploited, for
example, to calculate the steady-state probability distribution over the states of the
model. In the literature, the Markov chain has been extended specifically to cater for
the extraction of performance properties. A Markov reward model (MRM), equips a
Markov chain with a reward structure (or reward function), a map over the states of
the stochastic process to the real numbers. Different reward structures can be used to
analyse classes of model measures (depending on interpretation), for example steady-
state, transient and cumulative measures. Furthermore, such reward structures have
been employed in the analysis of several classes of modelling languages, for example
stochastic Petri nets (SPN) and queueing models [36]. Methods also exist for specify-
ing a reward structure over a SPA model, in order to calculate steady-state measures
(for example [5]). One aim of this thesis is to provide a powerful technique for a PEPA

modeller to specify a reward structure for steady-state measures. The method exploits



the compositional benefits of working with a process algebra, and allows performance
measures to be automatically calculated. In order to improve the uptake of process al-
gebras, the modeller must have intuitive, useful and automated methods to go beyond
a steady-state probability distribution, to the calculation of numerical results. The
PEPA Reward language employs a modification of a published modal logic. Process
algebras and modal logic enjoy a fruitful relationship, in that they both can be defined
in terms of the same mathematical structures. The modeller uses the logic to identify
model states with a required property, and may then assign a particular reward to these
states. Implicitly, this builds a MRM. The theory of PEPA defines several equivalence
relations, the most useful of which corresponds to lumpability over the Markov chain of
a model. Called strong equivalence, it serves as the basis for an exact model aggregation
procedure, thus serving to reduce the size of the performance models. The connection
between the modal logic of the PEPA Reward language and a PEPA model give the
modeller conditions to ensure that rewards assigned to strongly equivalent states are
equal. This means that the modeller can apply a model aggregation procedure without

having to alter the specification of any rewards.

Recently, much research effort has been spent on extending the expressiveness of stochas-
tic process algebra. Continuous time Markov chains are the subject of a wealth of
analysis techniques, but it has been argued that in many real-life circumstances, the
Markovian assumption is unrealistic. Markovian process algebra models feature timed
activities which are exponentially distributed only. PEPA is an MPA, and employs an
interleaving semantics. In essence, this means that in building the stochastic process,
the independent parallel composition of two activities is treated as a choice between
the two possible sequential orderings. When activity durations are distributed ac-
cording to a negative exponential random variable, this interpretation is valid, since
when one activity completes, the time the other has been active can, statistically, be
disregarded this is why the negative exponential distribution is termed memoryless.
However, many phenomena are not characterised by exponential distributions, for ex-
ample timeout features in network protocols. This has led to several new process algebra
designs, with so-called ‘start-termination’ (ST) semantics, where an activity is split into
two atomic events—enabling, and completion. Models of these algebras are understood
by a translation to a more flexible stochastic process, the generalised semi-Markov pro-
cess (GSMP). States of this process are characterised by sets of active elements, where
the duration of each element can be distributed arbitrarily. These elements are given
lifetimes sampled from their distributions, and then notionally time passes until a life-
time completes. The completing element and the current state determine the successor

state; on changing state, elements which are also present in the successor state retain



their spent lifetimes. This property makes the GSMP suitable as a model for a gen-
erally distributed SPA, but unfortunately, analysis is difficult in general. A common

approach is to resort to simulation in order to determine performance measures.

In this thesis, the GSMP is also employed, but the motivation of the work is different—
it is to establish conditions in MPA (specifically PEPA) models where the modeller
need not assume that activities are exponentially distributed. This work makes use
of the theory of insensitivity in stochastic processes, a theory which was developed
in the context of the GSMP. If a GSMP is insensitive to its generally distributed ac-
tive elements, then these active elements may be arbitrarily distributed with identical
means and the steady-state solution is provably equal. Insensitivity of a process can
be guaranteed by the satisfaction of a set of insensitivity balance equations over that
process. The theory of insensitivity has been applied to other high-level modelling
paradigms, for example stochastic Petri nets [38]. The motivation of this work was to
investigate the introduction of generally distributed transitions in models, and appli-
cations include aggregating particular places of the net to give an insensitive ‘skeleton’
structure, and incorporating age dependent routing, where the probability of choosing a
successor marking depends on the time at which a transition fires. However, such work
on Petri nets seems to be hampered by the lack of structure in models, and it seems to
be unclear how such techniques could be applied systematically to more complex Petri

net models.

Insensitivity theory suggests a route by which generally distributed activities can be
incorporated into MPA models. This is done by providing a faithful mapping from
a particular structure of MPA model to a GSMP, where activities are represented in
the active elements of the process. By showing the insensitivity balance equations are
satisfied, it can be deduced that the activities of the MPA model may be arbitrarily
distributed with the same mean. This approach differs from others, in that it exploits a
particular structure of PEPA model, and guarantees that all models built to this struc-
ture will possess the given insensitivity property. Such work is related to published
research on identifying MPA models with a product form solution. A PEPA model has
a product form solution if the solution of the model can be expressed as a product term
where the solutions of the model subcomponents are present as subterms. For example,
one structure of model [46] exhibits several independent components which compete for
access to a resource, and has been shown to exhibit product form. The insensitive struc-
ture identified in this thesis can also be viewed as a contention between subcomponents
over resources, where subcomponents may be blocked and forced to queue in order to
proceed. Interestingly, the structure designed to be insensitive to generally distributed

activities also possesses a product form solution over subcomponents.



A result by Hillston [43] showed that under some conditions on the cooperation present
in a PEPA model, a generally distributed activity could be safely introduced. This
alternative approach motivates the further study of insensitivity later in this thesis.
Instead of relying on the GSMP model, general distributions can instead be arbitrarily
closely approximated by the use of a distribution called the Erlang mixture. Introduc-
ing Erlang mixtures into PEPA models ensures the model remains Markovian, but also
means that it can become infinite-state. However, this is shown to happen in a con-
trolled fashion, such that the analysis of these models remains possible. These models
incorporating generally distributed activities are not built according to some structural
recipe, but they must satisfy some conditions. For example it must be the case that
two generally distributed activities cannot both become enabled simultaneously. From
here, a balance equation property similar in spirit to insensitivity balance, guarantees
that the steady-state solution of each of these models is identical to that possessed by

the model’s exponentially distributed counterpart.

These two strands extend the range of techniques available to construct and to analyse
SPA models. With the uptake of process algebras on the rise, it is important to show
that these techniques are useful in practice. Models of transaction processing systems

are used to showcase the research presented in this thesis.

1.2 Synopsis

In this section, a more detailed chapter-by-chapter breakdown of the thesis is presented.

Chapter 2 presents the mathematical background to the thesis. This draws on a variety
of notation commonly employed in the study of SPA, as well as giving a brief introduc-
tion to the concepts employed from the theory of stochastic processes. PEPA, the SPA
used for the presentation of this thesis work, is introduced, including a description of the
key concepts required for this thesis. Amongst these are the operational semantics, the
translation to a continuous time Markov chain, and the strong equivalence relation. A
breakdown of types of performance measures and reward structures used for stochastic
processes is presented, and finally, the tools available for the analysis of MPA models

are discussed.

Chapter 3 focuses on the analysis of PEPA models. The PEPA Reward language is
motivated as a means to specify and automatically generate performance measures
from PEPA models. The modal logic PML,, is introduced, and is shown to characterise
PEPA’s strong equivalence relation, in that two strongly equivalent PEPA processes
are shown to satisfy exactly the same PML,, formulas. Some results on SPA contexts

are then presented. This will provide the necessary theory for allowing the study of the
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behaviour of PEPA subcomponents in the context of a larger model. The definition
of the satisfaction of PML,, formula in context is provided, and conditions are given
for the safe aggregation of subcomponents in context such that the truth of any PML,
formula is preserved. The PEPA Reward language is then formally defined, making use

of PML, and PEPA contexts, and some examples given to illustrate its use.

Chapter 4 introduces the theory of insensitivity, and the generalised semi-Markov pro-
cess on which it was based. This motivates the study of insensitivity in PEPA models.
A structure of model is devised, the form of which can be built by the application of a
derived PEPA combinator to a set of sequential components, that is components with-
out the PEPA cooperation combinator. The derived combinator implicitly introduces
an arbiter subcomponent, which is placed in cooperation with the sequential compo-
nents. The effect of the arbiter is to introduce bottlenecks, such that at particular
points, the subcomponents must queue, and all those not at the head of the queue are
blocked. A mapping from this structure of model to a GSMP is then exhibited, such
that the GSMP preserves the performance semantics of the PEPA model, and where the
active elements of the GSMP are built using PEPA activities. A general solution form
for these models is demonstrated, and shown to be a product form over the sequential
components of the queueing combinator. A set of insensitivity balance equations is
then formed, and shown to be consistent with the general form of solution. This im-
plies that the model is insensitive to its residence time in those substates (states of each
subcomponent) where the subcomponent is not either currently entering or leaving a
queue. In particular, this implies that for these substates, an enabled activity may be

generally distributed.

In Chapter 5, insensitivity is developed by modelling general distributions with the
Erlang mixture. This distribution is a probabilistic sum over sequences of exponen-
tial distributions, and can approximate many distributions arbitrarily closely. gPEPA
is introduced, a syntax for describing PEPA models with generally distributed activi-
ties. Several restrictions are placed on gPEPA; significantly, two generally distributed
activities may not synchronise, and furthermore, two may not be newly enabled simulta-
neously. A semantics for gPEPA is presented which generates a transition system built
with both probabilistic and exponential transitions. The transition system is shown
to be consistent, and a (possibly) infinite-state continuous time Markov chain model is
developed. From this, more balance equations are formulated, which specify that the
probabilistic flux out of a sequential component of the model is equivalent to the flux
into that component. It is shown that for a given gPEPA model, if sequential local
balance holds for all sequential components enabling generally distributed activities,

then the model is insensitive to these activities. This generalises a result originally



presented by Hillston [43].

These chapters demonstrate the two themes of this thesis providing techniques for the
construction and the analysis of PEPA models. Chapter 6 presents a case study which
exemplifies these techniques. Models of a transaction processing system are developed
in PEPA. The first model is built using the combinator presented in Chapter 4, and
therefore it is shown that it is unnecesary to assume that parts of the model need
be exponentially distributed. Subsequently, models based on the work of Pun and
Belford [63] are presented, and the PEPA Reward language is used to automatically

generate performance measures consistent with those demonstrated in [63].

Chapter 7 concludes the thesis, and proposes directions for future work.



Chapter 2

Background

2.1 Introduction

This chapter presents the background material necessary for this thesis. It begins
with some mathematical preliminaries vital for much of the work presented, including
some material on random variables, probability theory and stochastic processes. Then
PEPA is introduced, the stochastic process algebra used to present the major work
in this thesis. PEPA is briefly related to other stochastic process algebras, and its
key features are discussed, such as the operational semantics, its interpretation as a
continuous time Markov chain, and the equivalence relations with which it is equipped.
The tools available for working with PEPA models are then described. Finally, some
background more specific to the work in the main chapters is summarised—firstly, the
use of reward structures, and secondly, the use of general distributions, in high-level

performance modelling.

2.2 Mathematical Preliminaries

2.2.1 Some Notation

Throughout this thesis, the following notation is used consistently. A vector of n items
is denoted (v, v9,... ,v,) and is represented succinctly by v. Concatenation of vectors
is denoted by their juxtaposition, for example wv. (z,y) represents an ordered pair,
and a multiset S of items v; is formally a set of pairs (v;, j), where each v; represents an
item, and j > 0 the number of occurrences of that item in the multiset. The multiset is
denoted {Jv1,va, ... [}. Set membership notation, v; € S is abused to mean (v;, j) € S for
some j when the multiset is clear from context. [ is used to represent multiset union,
and is defined as traditionally. 1(.) is an indicator function which takes a predicate as

an argument, such that 1(P) = 1 if P is true, and 1(P) = 0 otherwise.
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2.2.2 Probability

Probability is important in modelling many real-life systems, including computer and
communications systems. Probability theory plays an integral part in the theory of
stochastic process algebras. In this section, some notation and commonly used results

are presented.

Consider a sample space, (), representing the set of all possible outcomes of an experi-
ment. An observable outcome of an experiment is formalised by an event, a subset of

Q. An event space satisfies the following properties:

Definition 2.2.1. An event space € over a sample space S is a subset of 2% such that

e () € e—this event occurs for every outcome of the experiment.

o [fe € e then e € e—if e denotes the occurence of an observable, then € denotes

the fact that the observable did not occur.

o Ife; € fori>1then|J;2 e € this means if any of e; can individually occur

then ‘one of e; occurred’ is also an event.

A space satisfying these axioms is also known as a sigma algebra. A probability measure

P is defined over an event space, the set of observable outcomes of an experiment.

Definition 2.2.2. Pr(.) is a probability measure on an event space € with sample space

Q if the following axioms hold:

e 0<Pr(e)<1 foralece
e Pr(2) =1

o Pr(lU2,e) =22, Pr(e;) fore;ce, eiNej =0 if i # j

Therefore, all probabilities lie in the range [0, 1], and the probability that the outcome of
any experiment lies in the entire sample space is 1, that is, it is certain. The probability
that either of two mutually exclusive events occur is given by the sum of their respective

probabilities.

When determining the probability of an event e, there may be information about a
related event f, which has occurred. Therefore the probability of e is conditioned on
f, that is the sample space of e is restricted to f. The probability of e conditional on
f is given by Pr(en f)/Pr(f) and is denoted in this thesis by Pr(e| f).

11



2.2.3 Random Variables

Random variables play an important role in this thesis. PEPA models implicitly employ
exponentially distributed random variables, and later work in this thesis attempts to
generalise PEPA by introducing generally distributed random variables into the algebra.

Some notation and preliminary definitions are given here.

Definition 2.2.3. A random wvariable X is a function from a sample space ) to the

real numbers. The probability that X is in a subset R of the real numbers is given by

Pr(X € R) = Pr(A) where X(a) € R if and only if a € A and A is an event.

Therefore the probability assigned to a random variable is the probability of its inverse
image in the sample space, provided that this is an event. In this thesis, X and Y will

be used to range over random variables.

The probabilistic characteristics of a random variable can be defined entirely in terms of
a cumulative distribution function (CDF, also probability distribution function). Given
a random variable X, the CDF is denoted Fx(-), and is given by Fx(y) = Pr(X <),
meaning the probability that the random variable X takes some value less than or equal
to y. The event space consists of the sigma algebra over subsets of the real line of the
form (a,b], that is open on the left and closed on the right. This implies that a CDF is
non-decreasing, right continuous, and that lim, ., F(z) =1 and lim,_,_, F(z) = 0.
All work in this thesis is with continuous random variables, that is where the range of

values taken by each random variable is uncountable.

The support set of a random variable X is the closure of the set of arguments a of
X for which X (a) # 0. Each random variable used for modelling in this thesis can be
viewed as a positive ‘time-to-complete’ of some model event. This implies that for each
such random variable X, its support set Sx will be such that if a < 0 then a & Sx.
The hazard rate of a random variable, hx (y), is the probability per unit time that the
random variable will take a value in an arbitrarily small range after y given that it does

not take a value in [0, y]. More precisely, this is given by a limit statement, i.e.

hy(y) = Jim DFXE Wy TAY) | X >y)

2.2.1
Ay—0 Ay ( )

Markovian performance modelling makes exclusive use of the negative exponential ran-

dom variable.

Definition 2.2.4. A random variable X is negatively exponentially distributed with

parameter A if

Fx(y)=1-e™N

12



for all y > 0, and Fx(y) = 0 otherwise.

A common abbreviation for negatively exponentially distributed is exponentially dis-
tributed; these terms have the same meaning. The expected value of X with parameter
A is given by

(e}

BX) — [ yirx)

— 0o

oo
= [—yeky]g°+/ e (2.2.2)
0

= 0+ [-(1/N)e ]S =1/

The hazard rate, or failure or completion rate of an exponential random variable X

with parameter X is given by

(Ae Ay)/(1 = Fx(y)))

hxly) = AlyiJgo Ay
—Ay —Ay
(e Ay e
Ay—0 Ay
Y (2.2.3)

In fact an exponential random variable is characterised by having a constant rate of
failure, or completion. The exponential random variable is said to be memoryless;
this means that the probability that it completes after some time ¢ is the same as the
probability it completes after some time ¢+ s given that it has not completed by s.
This property is very convenient in giving a stochastic semantics to PEPA processes, as
detailed in Section 2.3.3. In this thesis, an exponential random variable with parameter
A is denoted Exp(2).

Many other kinds of continuous random variable are useful in performance modelling.
For example, the uniform random variable has two parameters, a and b, a < b, and
defines a random variable where the probability of any value varies uniformly between

a and b i.e.

—~

y—a)/(b—a) ify€la]

Pr(X <y)= ify<a

)

otherwise

A uniformly distributed random variable will be denoted Uni(a,b). Random variables
may also be formed by combining exponential random variables. For example, the
E'rlang-k random variable consists of the convolution of k exponential random variables.
This means that the probability that an Erlang-k distribution takes a value less than or
equal to y is given by the probability that k identically distributed exponential random

variables take values that when added together are less than or equal to y. An Erlang-k
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distribution models the time a customer takes to pass through k identically distributed

exponential service centres in a queueing network.

Some common operations on random variables are used in this thesis. For example,
assuming X and Y are independent, the sum of the two, Z = X + Y has a distribution

function given by
Fu(t) = Pr(X + Y < 1) = / Fx(s — t)dFy (s) (2.2.4)
0

In similar fashion, the difference of two random variables, Z = X — Y, can be taken—
the result is the random variable such that when it is convolved with Y gives a distribu-
tion function equal to Fx(:). The minimum of (independent) X and Y is the random
variable that intuitively characterises the winner of a ‘race’ between X and Y. It is

denoted by min(X,Y), and the distribution function is given by
Foinxy)(t) =1-Pr(X >t Y >t) =1~ / (1= Fx(t)(1—Fy(t)dt (2.2.5)
0

More generally, the minimum of a set of independent random variables, S = {X;}, is

denoted by min{X; € S}. Finally, the probability that X is less than Y is defined as
o
Pr( X <Y)= / (1 —Fy(t))dFx(t) (2.2.6)
0

Intuitively, this gives the sum over each infinitesimally small interval of the probability
that X takes a value in that interval, while Y takes a value to the right of that interval.
In the case that X and Y are exponentially distributed, some of these expressions can

be analytically simplified. Let the parameters be A and u respectively. Then

Pr(X <Y) = M +np)
Fmin(X,Y)(t) = 1—e Ot (227)

Therefore, the minimum of two exponentially distributed random variables is also ex-

ponentially distributed—the exponential is closed under minimum.

2.2.4 Stochastic Processes

A stochastic process provides a mathematical description of an evolving system, de-
scribing the sequence of states it enters over time. Formally, a stochastic process is
defined to be a family of random variables, {X;:t € T}. T denotes the parameter
space, and the random variables represent the measurements of some physical charac-
teristic of the system, parameterised by ¢ € T'. The domain of each X; is given by some
set S, the state space of the process. The parameter space is often taken to represent
time; therefore any set of instances of {X;:¢ € T'} can be viewed as a sample path of

the process, its position given by X; at time ¢.
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When T is countable, the stochastic process is called discrete time; otherwise the process
is said to be continuous time. When studying a stochastic process, a modeller may
typically wish to ascertain properties such as first passage time, that is the distribution
of the time taken to reach state B € S given that the current position is state A € S.
Alternatively, a common requirement is the probability of finding the process in some
subset of S in the ‘long term’, that is as ¢t — oco. This latter property is of crucial
interest when modelling with PEPA, and in this thesis. A state i of a process is said to
be recurrent if it is certain (the probability is 1) that the first passage time of 4, starting
at 4, is not infinite. It is positive-recurrent if the expected value of the first passage
time is not infinite. A stochastic process is said to be stationary if the distribution
of X(t+ s)— X(t) is independent of . A process is said to have the Markov property
(and therefore be a Markov process) if for t1 < to < ...<t, <t €T,

Pr( Xy =z| Xy, =21,... . Xy, =2,) =Pr( Xy =2 | Xy, = ) (2.2.8)

n

That is, given the value of X; at some t € T, the future path of X, for s > ¢ does not
depend on knowledge of X, for u < ¢; the current state is the extent of the memory
of the process. A continuous time Markov chain is defined to be a stochastic process
possessing the Markov property, and with a continuous parameter space T'. Later in
this chapter, it will be shown that PEPA can be given a stochastic process semantics in
terms of a continuous time Markov chain. In fact all stochastic processes used in this

thesis are continuous time.

Suppose a continuous time Markov chain is in a state ¢ € S at time ¢. The time that the
process will remain in state ¢ before making a transition to state j # i is exponentially
distributed with parameter denoted ¢;;. Therefore at time ¢ + At, the system will be
in state j € S with probability

qij At + o(At) ifi#j

1— Zj;éi gijAt+o(At) ifi=j
If the Markov process has n states, it is characterised by its n x n infinitesimal generator

matriz QQ = (gi;), where ¢;; = — > ;i @ij by convention.

Since these g;; are constant, two interpretations can be given to the rate of movement
from state i to state j. These are shown in Figure 2.1. In the interpretation on the left,
the sojourn time in state ¢ is distributed as ¢; = min{Exp(g;;) }——since these are expo-
nential distributions, this sojourn time is distributed as Finin{Exp(q;;)} (t) =1 — e ZnGirt,
Then the probability of changing to state j is given by p;; = ¢ij/ >4 ¢ir- The product
of these two terms is exactly the conditional sojourn time in state 7 given that the next

state is j.
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Figure 2.1: Two views of a state change in a CTMC

An aggregation of a Markov process is achieved by inducing a partition over the state-
space of the process. Each partition of states from the original process provides a state
in the aggregate process. The infinitesimal generator matrix of the lumped process
can be formed by summing over the transition rates of states in a partition. However,
in general, the steady-state solution of the aggregate process will be unrelated to the
steady-state solution of the original. If the aggregate process is a strictly lumpable
partitioning of the original process, then the equilibrium solutions are related—the
probability of being in a state of the aggregate, Ilg, is given by the sum of the proba-
bilities of being in the original states which make up the class, ), 7. Two Markov
processes are lumpably equivalent if they have lumpable partitions with equal num-
bers of elements, and there is a one-to-one correspondence between the partitions that
matches the aggregate rates between the partitions (the degenerate case of one partition
containing all states is disallowed). Lumpability is closely related to a process algebraic

equivalence relation, and this is detailed in Section 2.3.5.

A more general stochastic process is the semi-Markov process. Formally, this can be
viewed as a renewal process which, on each renewal, chooses a successor state based
upon a discrete time Markov chain. This means that sojourn times in states may be
arbitrarily distributed, and the process only possesses the Markov property on state
changes. A semi-Markov process can be thought of as a generalisation of two simpler
stochastic processes—if the state-space is of size 1, then it is a simple renewal process;
if the state sojourn times are exponentially distributed, then it is a continuous time
Markov chain. The semi-Markov process is a first step on the path to incorporating
generally distributed random variables into stochastic process algebras. For more details

on the nature of these processes, see [34, 52].

2.2.4.1 Balance Principles

The focus in this thesis is on stochastic processes in steady-state. This is characterised
as a particular long-term behaviour of a stochastic process. A process in steady-state
has the following properties. First, it is irreducible, that is, intuitively, that all states

can be reached from all other states. Second, it is ergodic, meaning also that each of
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its states is positive-recurrent. Then it can be shown that there is a unique probability

distribution, © = (71,72, ...) such that
Q=0 (2.2.9)

Intuitively, this means that the process reaches a situation where the probabilities of
being found in any particular state remain fixed after some time t. If the process is in

state k at time ¢, the distribution a short time later is given by
e+ A0) — ma(t) + (3 aums(0) At + o(A) (2:2.10)
i=1
In the limit as At — 0, this gives
dr(t)/dt = m(t)Q (2.2.11)

At steady-state, dr(t)/dt = 0, giving Equation (2.2.9) above. Let m represent () at
steady-state i.e. lim;_ 7(t). Then the equation can also be written in the following

form:

T i =Y g (2.2.12)
J#i J#i

These equations are called the global balance equations (or balance conditions) of the
Markov process in equilibrium, or at steady-state. Therefore at steady-state, m; is the
proportion of time that the process spends in state ¢. The flur out of a state is given
by the probability of being in that state multiplied by the rate at which the state is
left. The flux in to the current state is the sum over for each predecessor state, the
probability of being in that state multiplied by the rate at which that state is left to
arrive in the current state. Recall that residence time in a state of a continuous time

Markov chain is exponentially distributed, and therefore g;; is constant in ¢ for all i, j.

It is possible to place more restrictive balance conditions on a Markov process, and this

leads to some interesting properties. Consider the following equations, for all 7, j:
Tigij = Tjqji (2.2.13)

If a Markov process satisfies this property, then it is said to be in local balance. This
implies that when the time parameter of the process is reversed, the resulting process is
statistically identical to the first process. The resulting stationary distribution of such
a process is given by a simple product of ratios of instantaneous transition rates. Notice
that any solution to these local balance equations is also a solution to the global balance
equations. A slightly less strict set of local balance equations results in a property called

quasi-reversibility. This property was first described in a queueing theory setting, for

17



networks of queues, or queues with multiple classes of customers. Here, given any state
i, a set of states S(r,7) is specified, which represents those states with one more class

r customer than 7. The local balance equations are then:

Y Q= Y g (2.2.14)

JES(ry) jeS(ryi)
For a multi-class open queueing network where each node is quasi-reversible, it can
be shown that the equilibrium solution is a product form over the nodes of the queue.
This is a powerful property, ensuring that the nodes are independent of each other,
despite the traffic flow between them. Notice again that a solution to the local balance

equations is also a solution to the global balance equations of the process.

More forms of local balance equation are employed in this thesis, in order to ensure
insensitivity of a stochastic process. A stochastic process is said to be insensitive if
its steady-state distribution depends on the distribution of one or more of its lifetime
variables only through the mean. Insensitivity implies that all generally distributed
lifetimes may be replaced by arbitrarily distributed lifetimes, and so long as the mean
is preserved, the steady-state solutions of both processes will be identical. Typically,
exponentially distributed lifetimes are used as replacements, due to their elegant math-
ematical properties. This then allows a conventional Markovian analysis to be car-
ried out. Matthes [58] devised a new stochastic model, the Generalised Semi Markov
Scheme, a generalisation of a semi-Markov process. The process resides in a state, in
which multiple lifetimes are ‘alive’, and the ‘death’ of any one of these causes a change
of state. Matthes showed that this model was insensitive to the distributions of these
lifetimes if a particular set of balance equations was satisfied assuming all lifetimes
are exponentially distributed (retaining their means). This result was proved in an
alternative fashion by Schassberger [67], by using probabilistic miztures of Erlang-k
distributions to approximate generally distributed random variables. Continuity argu-
ments were then used to extend this result to arbitrarily distributed random variables.
An example of an insensitive process is the semi-Markov process. Intuitively, this pro-
cess has only one lifetime per state; when this lifetime dies, the process changes state
according to a discrete time Markov chain. The form of the distribution of this lifetime
is unimportant, since the mean of the lifetime governs the steady-state probability of
being present in that state. This observation is borne out by considering the set of in-
sensitivity balance equations for any semi-Markov process—they are always consistent
with (in fact equal to) global balance for the exponential version of the semi-Markov
process. Chapters 4 and 5 make use of the insensitivity results above as a way to

incorporate generally distributed random variables into PEPA.
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2.3 Stochastic Process Algebras

In recent years, interest has grown in the use of a process algebra based methodology for
performance modelling and evaluation. Stochastic process agebras (SPA) resulted from
the development of classical process algebras by the inclusion of timing and probability.
Systems are modelled by terms of the algebra, as an interaction of agents, or processes
(not to be confused with stochastic processes, described earlier). The behaviour of each
process is defined by the activities it can perform, or compositionally by the behaviour

of its subcomponents.

In this section, the key features of SPA are described, focusing on PEPA, a prominent
SPA, and the particular algebra used for the work in this thesis. The transition graph
semantics of PEPA are described, which lead directly to an interpretation as a stochastic

process. Finally, PEPA’s major equivalence relations are introduced and defined.

2.3.1 Classical Process Algebras

Process algebra theory introduces processes as terms of an algebraic language which
comprises a small number of basic combinators. These are used to compositionally
describe the behaviour of a system. Two famous examples of classical process algebras
are Milner’s CCS [59] and Hoare’s CSP [47]. Transitions such as P - @, stating
that process P may become @ by performing the action « underpin the behavioural
meaning of a CCS or CSP process. Transitions are derived by structured rules, in that
the behaviour of a compound process is inferred by operational rules from the behaviour

of its subcomponents.

Processes are defined by terms of the algebra, and are built from broadly the same set
of combinators (allowing for some differences in interpretation). For example, if v is an
action, and P is a process, then by application of the CCS action prefix combinator,
«a.P is a process. Intuitively, this process is capable of performing an « action and
evolving into P. P is called a (a-)derivative of a.P. This intuition is formalised in the

action prefix rule of CCS:

o ey

This has no premises (conditions above the line), and therefore is an axiom. F is a
process variable, and so it states that any prefix process can make a transition signifying
that an action has been performed. Another combinator of CCS is choice, e.g. P+ Q
is a process which may perform an action enabled by either P or () the choice is

competitive, and the derivative of P + (@ is either the derivative of P or (), depending
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on which action is chosen. An important combinator for compositional modelling is the
parallel combinator, P | (), expressing that P and () may proceed independently, or
possibly cooperate on particular activities by handshaking. Each of these combinators
has a corresponding rule, defining precisely which transitions may be inferred. PEPA
has an analogue of each of these combinators, and its particular interpretation will be

given later.

The semantics of a CCS process is given operationally, in the style of Plotkin [61],
and results in a labelled transition system. The semantics is interleaving, in that the
independent parallel composition of two processes is treated as a choice between the
possible sequential orderings of the enabled actions. CCS models are qualitative in
that they express no timing information, only the relative ordering of actions. They
may also be said to be reactive, in that the possible behaviours of a CCS process may
be constrained by placing it in an environment, another process, with which it must

cooperate.

2.3.2 Adding Random Variables

Classical process algebras do not provide facilities that allow the modelling of a system
as a stochastic process. This motivated the creation of stochastic process algebras,
which feature one critical difference—a duration is associated with each action. A
timed action is represented by two items of data—an action type, such as «, and an
activity rate, such as r; together an activity a = (a,r). The value r represents the
parameter of an exponential random variable, and therefore each activity is deemed
to have an exponentially distributed ‘time-to-fire’, or ‘time-to-completion’. The dis-
tribution function of a is denoted Fj, and is given by Exp(r). If a process enables
several activities (aq,77), (a2, 72),..., the behaviour is governed by a ‘race-condition’;
one activity will complete first, and the time until completion of the race will be
distributed as the minimum of the rates of the enabled activities, i.e. min{Exp(r;)}.
This execution policy means that the non-determinism present in CCS is replaced by
probabilistic branching in PEPA; the probability that (c;, ;) completes is given by
Pr(Exp(ri) < min{Exp(r;):j # i}) =ri/ 3>, .; ;. Such a process can be said to be gen-
erative in that it is completely specified and can evolve independently of an environ-

ment [69].

A process algebra which features timed activities governed only by exponential random
variables is also termed a Markovian process algebra. In this thesis, a and b will typically
range over activities,  and (3 over action types, and r and s over activity rates. Activity

rates range over RT U {rT :r € RT }, where R" is the set of positive real numbers. The
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symbol T means that a rate is passive, a concept explained in the next section. The

set of all action types is denoted A, and the set of all activities is denoted by Act.

Three Markovian process algebras are prominent in the literature. MTIPP [30] was
developed at the University of Erlangen, and EMPA [8] was developed at the University
of Bologna. Both of these algebras have been developed to include immediate actions,
that is, actions that are resolved without the passing of time. This idea is not discussed
further in this thesis. PEPA [44], developed by Hillston at the University of Edinburgh,

has a concise theory, and will be used to illustrate the concepts behind SPA.

2.3.3 Syntax and Semantics of PEPA

As is the case for CCS, the behaviour of a PEPA process, and how it interacts with
the environment, is determined by a small set of combinators. While most Markovian
process algebras agree on the kind of combinators that should be provided, they disagree

on some particular details.

Definition 2.3.1 (Syntax of PEPA). Let A be a set of process constants, and let
Ag C A be a set of sequential process constants. The syntax of PEPA processes is
given by

S = (a,r).S | S+T | As
n= PEEQ | P/IL|ALS (2.3.1)

This is a two-level grammar. Any process described by § is termed a sequential com-
ponent. A process P consists of a model configuration of sequential components. The
combinators described by P persist over process transitions; the combinators described
by S do not. This distinction between levels is vital when considering a PEPA model
as a stochastic process in steady-state. Due to this property, a PEPA model may be
described as a sequence of sequential components, so long as a record is kept of the
static structure. For example, if P is the process ((a,r).R BI(S/L)) || T', then it may
be denoted ((c,r).R, S, T) p. Each PEPA combinator is described briefly below:

Prefix: if P is a process, then (a, r).P is a process that performs (o, ) (an activity of

type a, exponentially distributed with mean %) and then evolves into P.

Summation/Choice: if P and @) are processes, then P + @ is a process that expresses
the conflicting competition of P and ). The current activities of both P and @)
are enabled; a race condition determines the first to complete and distinguishes

the component into which the process evolves.
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Constant: if P is a process and A def P, then A is a process that behaves in exactly

the same fashion as P.

Cooperation: if P and @ are processes, and L is a set of action types, then P Bﬁ Q is
a process that expresses the parallel and synchronising execution of both P and
). Both components proceed independently on activities whose types are not in
the cooperation set, L. However, those activities whose types are contained in
L require the participation of both P and @. If one of the components may not
perform the activity in its current state, the other component becomes blocked
on that activity. If both are capable of performing the activity, the activity may

occur with a rate which reflects the rate of the slower participant.

If the cooperation set L is empty, the parallel composition of P and @) is denoted

P || Q. More generally, the parallel composition of a set of I-indexed processes is

given as [[.c; Pi.

Hiding: if P is a process, and L is a set of action types, then P/L is the process
that can behave exactly as P, except that if P would perform an activity of type
a € L, then P/L would perform a silent activity denoted by the type 7. Activities
whose types are in L are said to be hidden, and cooperation is not possible on 7

activities.

A classical process algebra combinator missing from PEPA is the nullary combinator
0. This is the deadlocked process, which is incapable of performing any action. This
is a deliberate omission from PEPA, because such a process can only assist in writing
process descriptions which may lead to absorbing states in the underlying performance
model. To date, the focus with PEPA modelling has been on steady-state ‘long-run’
performance measures, and 0 has no useful place in such processes. Note that it is still
possible to provide a description of a PEPA process which is incapable of performing
any activity—an example is given in Equation (2.3.4).

Within any given PEPA model, several activities with the same action type, say «,
may be enabled, and will race to complete, but to an external observer, there will be

a single rate at which activities of type a complete. This is called the apparent rate of

a. The following definition is from [44].
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Definition 2.3.2 (Apparent Rate). The apparent rate of action type a in compo-
nent P is denoted 1,(P), and is given by:

_r dfa=p
ra((8,r)-P) = {0 otherwise

Toe(P + Q) Ta(P) +7"a(Q)
_ Jra(P) ifaglL
ra(P/L) = {0 otherwise
{ra(P)+ra(Q) ifadlL
min(ry(P),7,(Q)) otherwise

To(P B2 Q)
This means that the apparent rate of an activity of type a enabled on both sides of
a choice is given by the sum of the rates of the activities; they compete in a race.
However, for a cooperation, where « is in the cooperation set, the apparent (witnessed)
rate of « is given by the minimum of the rates possible by each component. Therefore

the slowest participant determines the rate of the cooperation.

A PEPA activity can also be given a passive rate, denoted by T. An activity of the
form a = (a, T) does not determine the rate at which a occurs—in fact, a must occur in
cooperation with another enabled a, the cooperating component determining the rate
at which the activity occurs. If the semantics of PEPA determine that a particular
process P enables a passive activity, then P is called incomplete, and on its own cannot
provide a basis for a performance evaluation. It is possible to give a simple syntactic
algorithm which will always detect if a PEPA process is incomplete; however it may
also reject as incomplete a PEPA process which is not. Currently, there is no known
syntactic procedure which will always determine if a PEPA process is not incomplete.
Passive rates may appear in apparent rate expressions, and so the following inequalities

and equations specify how such expressions may be manipulated:

r o< wT for all 7 € R* and for all w € N
w1l < wyl if wy < wo, for all wy,we € N
w1 T +wT = (wyp+wy)T forall wy,wy €N
w1 T w1

= for all wi,wy € N

Figure 2.2 presents the operational semantic rules for PEPA. Collectively, the set of

rules is called PEPA Rules. The formal semantics of a PEPA process is given by
(a,7)

a labelled multi-transition system (C, Act,{——:(a,r) € Act}), where C is the set of

(e,r)
all PEPA components, and the relation —— is the least relation that can be inferred

using PEPA Rules.
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Prefix (a,r)

_ _
Choice
B B
(a,r) , (a,r) ,
—_ e
Coop o (a g L) o (g L)
EDXF—SE XF Ep—SEDAF
(a7T1) ’ (a,?“g) ,
(€ l)
(auR) / /
E D§ F—5FE D§ F
where R = (r1/ro(E))(r2/ra(F)) min(ro (E), 7o (F))
(e,r) 7 B (ar)
Hide (¢ L) (e L)
(r) (rr)
E/L%E /L E/L%E /L
(ar) _,
- def
Const — (A= F)
(ar)
I o

Figure 2.2: Operational semantic rules of PEPA
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The semantics of PEPA ensure that the transition systems for 7' and R below are

equivalent;:
PY(a,r).P RY (a,r).R, + (B,5).Rs
def def
Q = (63 S)Q Rl = (63 S)R
TP Q R ¥ (a,7).R (2.3.2)

This is an interleaving semantics. This may seem at odds with the notion of timed
activities, since the intuition for 7' is that the enabled activities do not interfere with
each other, and when one completes, the other continues without being affected. How-
ever, R insists that when one completes, the other is then restarted. These views are
consistent with each other due to the fact that activities are distributed exponentially.
Therefore, when one activity completes, the time for which another has been enabled
can be statistically dismissed—the distribution is memoryless. This means that for
PEPA, a resume semantics is equivalent to a restart semantics. Non-interleaving se-
mantics have been developed for stochastic process algebras. For example, Katoen [51]
develops a quantitative extension of event structures, which provides a partial order of
process terms expressing only the necessary causality between activities, and not arbi-
trary interleavings. These semantics have the advantage that models grow linearly as
the number of cooperating components increase—a transition graph semantics grows
exponentially, motivating work on the state-space explosion problem. However, sys-
tematically mapping an event structure model to a stochastic process remains as work

to be addressed.

(o)
Now some basic definitions regarding transitions are given. If P——P’ then P’ is

(aur)
called a ((a, r)-) (one-step) derivative of P. If P——, then there exists some P’ such

that P’ is a (a, r)-one-step derivative of P. If P ——— then there exists some (a,r)
a7r (a’r)
such that P——; if P —— P’ then there exists some («, ) such that P——P’. If

(o)
P % P’ then there is some rate r such that P——P’. Finally, °P is used to range

over processes P’ such that P/ —— P.

Definition 2.3.3 (Derivative set). The derivative set of a PEPA process P is de-

noted ds(P), and is the smallest set of components such that

e Peds(P)

e if P' € ds(P) and P —— P", then P" € ds(P).

The derivative set of a process captures the set of all reachable derivatives. The deriva-

tive set is used in the definition of the derivation graph of a PEPA process.
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Definition 2.3.4 (Derivation graph). The derivation graph of a PEPA process P

is a labelled directed multi-graph (G, E), where G = ds(P), and E is a multiset of

labelled arcs such that (P', P",(a, 1)) € E with the same multiplicity as the number of
r)

Q,
distinct inference trees which imply P'——P" .

The (multi-)set of all activities possible by a process P is denoted Act(P), and is equal

to LﬂP’Gds(P) Lﬂ{a:P’l»} a.
2.3.4 Deriving a Continuous Time Markov Chain

The derivation graph of a PEPA model may be used to give the model a stochastic
process semantics, enabling performance evaluation to be carried out. A PEPA model

can be interpreted as a continuous time Markov chain as described below.

Theorem 2.3.1 (PEPA Model as a CTMC [44]). For any finite PEPA model P,
define the stochastic process {Xy:t € T} such that Xy = P’ € ds(P) implies that the

process behaves as P at time t. Then {X;:t € T} is a continuous time Markov chain.

Consider any derivative, P’ € ds(P). P’ will enable some number of activities,
a; = (ay, 1), each of which is exponentially distributed. The syntactic terms are the
states of the stochastic process, and the conditional sojourn time in a state, Spr 5(t), is
the probability the time spent as P’ will be at most ¢ given that the sojourn ends with
the completion of activity a. Recall the duration of each activity a; is exponentially
distributed as F,, (t) = 1 — e "it. It is then straightforward to show that the uncondi-
tional sojourn time in any state, Sp/(t) represents an exponentially distributed random

variable with parameter ), i, and therefore this process has the Markov property.

Now some notation is presented. Given a derivative P, the exit rate (or departure rate)
from P is the parameter of the distribution governing the sojourn time in P. It is
denoted g(P). The transition rate between two components P and P’ is given by
q(P, P = > r (2.3.3)
(cv,7)
(eyr): P— P}
These ¢(P, P') provide the off-diagonal elements of the infinitesimal generator matrix

of the continous-time Markov chain, Q.

As stated, in this thesis performance analysis is meant with respect to models in steady-
state only. Some conditions must be placed on the semantics of a PEPA model to ensure

it results in a stochastic process with an equilibrium solution.

Definition 2.3.5 (Cyclic PEPA process). A PEPA process P is cyclic if for all
P’ € ds(P), P € ds(P').
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This implies that behaviour may always be repeated, and therefore that the stochastic
process underlying P is irreducible. If the semantics are finite, then the process is also
guaranteed to be ergodic, and thus the stochastic process is guaranteed to have a unique

equilibrium probability distribution over the derivatives of the process.

A PEPA model must be cyclic in order to be ergodic, but this condition is not sufficient

for it to be ergodic. To see this, consider the following PEPA process definitions:

p (a,7).P'
Q = (8.5).Q
def
R = P{Eﬂ}@ (2.3.4)

This process is deadlocked, since it cannot proceed with any activity. Such PEPA

processes are illegal when performing a steady-state analysis.

2.3.5 Equivalence Relations

A key feature of a process algebra is a notion of equivalence between two processes.
First of all, this requires a commitment to the nature of equivalence over processes.
Several notions have been proposed. The simplest of these is called trace semantics [47].
The idea is that two processes are considered equivalent if they can perform identical
‘execution-traces’, where a trace is simply a finite sequence (a;, as,...) of activities. If
a two processes have identical (possibly infinite) trace sets, then they are considered
equal. This notion is unsatisfactory because a process a.(b.P + c.Q) has the option of
performing either an b or ¢ activity of type after it has performed a. However, the trace
equivalent a.b.P + a.c.() commits to either b or ¢ by performing a. Therefore, when
a process is considered to be observable, that is able to interact with an environment,
the former process is less restricted than the latter. This led to the development of
equivalence relations based on bisirmulation, which were adapted for use with Markovian

process algebras.

Bisimulation aims to capture the notion of the equivalence of two processes as deter-
mined by an observer. The following definition is a bisimulation relation for PEPA

analagous to that for a classical process algebra.

Definition 2.3.6. R is a bisimulation relation if for P, Q) processes, and (P, Q) € R,
then for all a = (a, 1) € Act,

o Whenever P -2 P’ then for some Q', Q = Q', and (P', Q") € R;

o Whenever Q > Q', then for some P', P -2+ P', and (P', Q") € R.
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Notice that at each stage, if a process enables an activity, then its counterpart must be
able to match it, and vice versa. T'wo processes P and () are bisimilar if there is some
bisimulation R such that (P, Q) € R.

While this candidate relation captures the qualitative observable behaviour of a PEPA
process, it fails to be a suitable notion of equivalence because it equates two processes
with wildly different timing behaviour. This may be mitigated by the addition of a

condition to the definition:

ra(P) =7a(Q) (2.3.5)

The addition of this extra condition results in PEPA’s strong bisimulation relation. Two
processes are strongly bisimilar, written P ~ @, if there is some strong bisimulation
relation which equates them. However, this relation still falls short. Consider the

following PEPA process definitions:

d
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(). Q + (0 r). Q"+ (7). Q)
' (8.5).Q (2.3.6)
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P and @ satisfy the conditions required for being bisimilar. However, any observer also
witnessing the passing of time would detect that q(P,P’) x 2 =q(Q, Q’), therefore,
that the transition rates from two bisimilar processes to two bisimilar processes are
different.

The solution for PEPA is an equivalence relation called strong equivalence. This is based
on the probabilistic bisimulation of Larsen and Skou [56], which relates two processes if
the probability of moving to a derivative in a set of probabilistically bisimilar processes
is equal for the two processes. In PEPA, two processes P and () are analogously strongly
equivalent if some relation R forms equivalence classes of processes such that P and
are both in the same class, and the rates at which P and @ both perform an activity

of given type a to make a transition to any equivalence class are the same. Formally,

Definition 2.3.7 (Strong equivalence). An equivalence relation R CC xC is a

strong equivalence if whenever (P, Q) € R, then for alla € A, and S € C/R,

Y q(P.Pa)=) qP.Qa) (2.3.7)

P'es Q'eS

P and @ are said to be strongly equivalent if there is some strong equivalence relation
R such that (P, Q) € R, and it is written P = (). In particular, there is no strong

equivalence relation relating the processes in Equation (2.3.6).
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Strong equivalence has two crucial properties. The first is that it is a congruence; this
means that it is preserved by all PEPA’s combinators. Concretely, if P = @), then P and
@ can be placed in any PEPA ‘context’, intuitively a process algebra structure with a
hole for a process, and the resulting two processes will be strongly equivalent. For exam-
ple, P = () implies that P DLQ R=qQ DLQ R for any set of action types L, and process R.
The reader is referred to [44] for a proof. This means that a modeller may take a PEPA
model, and arbitrarily replace subcomponents with others that are strongly equivalent,
and the result is a process that is strongly equivalent to the original. That this may
be an advantage to the performance modeller is due to the second crucial property of
strong equivalence—that strongly equivalent processes generate lumpably equivalent
continuous time Markov chains. Recall that a lumped Markov process corresponds to
an exact aggregation of a generally larger Markov process. In terms of PEPA processes,
a process P which generates a stochastic process which is equal to the lumped process
underlying ) will have a state-space no larger than (). Therefore, this property pro-
vides the PEPA modeller with an exact aggregation technique—components in models
can be replaced with strongly equivalent partners, resulting in a model with a smaller
state-space, but with a lumpably equivalent and thus exactly aggregated stochastic
process. In Chapter 3, contexts are formally introduced, and this property of strong
equivalence is exploited to provide the performance modeller with an expressive method
to specify performance measures which are preserved under strong equivalence. Each
Markovian process algebra has a similar notion of strong equivalence see [30, 8] for

more details.

Other useful equivalence relations exist for PEPA. For example, isomorphism is a struc-
tural property, and two processes are isomorphic, written P = () if they generate equiv-
alent derivation graphs. At the simplest level, syntactic equivalence between P and @
specifies that P is ezactly @, that is that P is a variable representing a process identical
in structure to (). This is denoted P = @, and is used often in this thesis to simplify

presentation.

2.4 Reward Structures for Performance Measures

The performance of Markovian stochastic processes can be studied using a mathemat-
ical formalism called the Markov reward model. This model consists of two structures;
a continuous time Markov chain, and a reward structure. The reward structure is in-
troduced by Howard [49], and provides a very general framework for calculating perfor-
mance measures. Its use is to specify rewards which accumulate as the Markov process

evolves. Howard defines reward structures with respect to semi-Markov processes; in
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this full generality, a reward structure is:

e a yield function, y;;(0); while the process occupies state i of the semi-Markov
process, having chosen a successor state j, it earns reward at a rate yij(a) at a

time o after entering the state.

e a bonus function, b;j(v); when the transition from state i to state j is made at

some time v, the process earns the fixed reward b;;(v).

In most applications, the generality that this model affords is not needed, and some
simplifications are made. In fact, for the applications described in this thesis, the yield
rate is fixed to be constant during the occupancy of a state, and does not at any point

depend on the choice of successor state. This gives

yij(0) = p(i)
Moreover, bonus functions are discarded; therefore, a reward structure will consist of a
constant yield function only. A simple method can be used in order to calculate some
steady-state performance measures. Given a reward structure p(i) associating a reward

with state i, and m;, a steady-state probability distribution as would be obtained by
solution of a PEPA process, then

Z p(i).m; (2.4.1)

gives a simple scalar value. This reward has different meanings, depending on the

interpretation of the value of p(7).

Alternative modelling paradigms make use of reward structures. For instance, stochas-
tic Petri net models may have a reward structure specified over the reachability graph
(which can be generated given a particular initial net marking). The use of reward
structures is illustrated with the following simple example. Consider the SPN pre-
sented in Figure 2.3. Place Pj acts as a semaphore, and ensures that places P, and P;
cannot both contain tokens at the same time. In this way, the Petri net can be seen to
model two processors, where each wishes to gain exclusive access to ‘common memory’.
The reachability graph is simple in this case, and is shown in Figure 2.4. An example
of an interesting performance measure may be the throughput of accesses to common
memory. In this case, the reward structure is defined such that a reward is assigned to
each state that enables transition 75 or Tj; the value assigned is the rate at which the
state in the reachability graph is left. The dot-product construction above would then

give the throughput value as required.

An exposition of the use of Markov reward models and reward structures is given by

Haverkort and Trivedi [36]. The reward structure can be instantiated in different ways
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Figure 2.3: A simple stochastic Petri net example

(1,0,1,1,0)

(0,1,0,1,0) (1,0,0,0,1)

Figure 2.4: The reachability graph

so as to specify a wide range of performance variables. Let {X;:¢ > 0} be a finite-
state CTMC, representing the evolution of a system in time. The reward rate of the
system at time ¢ is denoted by the random variable R;. One of the simplest useful
properties is the probability of completing a given amount of work in a specified time
interval. This can be specified by the random variable Y, parameterised by ¢, meaning

the accumulated reward until time ¢:

Y1) = /Ot Redr

The questions asked of these models may be about cumulative or instantaneous be-
haviour. An example of a question about cumulative performance is simply ‘what is
the total output of the machine at time ¢?’, and therefore would involve Y (t), the
accumulated reward. An alternative question is ‘what is the rate of work now?’,
which would involve Ry, the instantaneous reward rate. However, the modeller may
instead wish to address the long run behaviour of the system, for example ‘what is
the average throughput of the machine?’ This would involve the time-averaged accu-
mulated reward as time ¢ tends to infinity, that is limy_,. E[Y (¢)/t]. The different
families of performance models for which reward structures are employed are illus-
trated in Table 2.4, which is reproduced in part from [70]. Reliability models con-

sider only two levels of performance—operational and failed. Therefore the range of
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‘ Model Family ‘ Absorbing states ‘ Reward Structure ‘

Reliability all have 0 reward {0,1}

Availability {0,1}
Imperfect repair at least one has 0 reward R U {0}
Guaranteed completion none have 0 reward R U {0}

Figure 2.5: Families of Markov reward models

the reward structure is simply {0,1}. Reliability models are such that all and only
states with 0 reward are absorbing. Haverkort and Trivedi define ‘system reliability’ as
Rel(t) = Pr(R; = 1,Y7 € (0,t)), that is the probability the system is not in a failure
state in the interval (0,¢). Moreover, the long run availability may be denoted Rel(c0),
that is the probability of finding the model in a non-failure state as t tends to infinity.
Awailability models differ in that 0 reward states need not be absorbing, and therefore
they can capture the repair of failed components. A further generalisation is the class
of imperfect repair models. The range of the reward structure for such models is the
set of positive real numbers, R™ U {0}. Typically a non-empty set of states with 0
reward are absorbing, but the more general reward structure is intended to indicate
a varying level of performance of the system, such as the failure of some, but not all,
components. Finally, the set of models with the guaranteed completion property are
all those such that no set of absorbing states has a 0 reward. This means that the
probability of residing in a 0 reward state indefinitely is zero, and therefore any finite
amount of reward will be accumulated if the time interval is long enough. For instance,
models of fault-tolerant systems in which all system failure states can lead to a repair

state are said to have the guaranteed completion property.

With this taxonomy, it can be readily seen that the Petri net example presented in
Figure 2.3 is an example of a time-averaged accumulated reward. The model should
have an irreducible subset of states if long run behaviour is to be studied, and in fact
is ergodic. The reward structure takes values in the set RT U {0}; states which enable
T or T, are assigned a reward equal to the rate at which these transitions are taken,

and all other states receive the value 0.

When modelling using PEPA, the aim is to generate a model such that the underlying
CTMC is ergodic. Since, then, every state is reachable from every other in finite
time, it would be inappropriate to attempt to study models with imperfect repair.
Indeed the focus is on the computation of steady-state measures, that is looking at
the system long after all short-term effects have disappeared. In the literature, several
systems have been described using PEPA, and reward structures have been constructed

manually (by examining regular patterns in the state space of process expressions)
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and then used to calculate pertinent measures, such as throughput and utilisation, for

example [48, 27, 11, 45].

Sanders and Meyer [66] present a wide range of example performance variables resulting
in several classes of performance measures. Their modelling paradigm is the stochastic
automata network, a model which incorporates features of both stochastic Petri nets and
queueing models. By use of a more general reward structure, incorporating both yield
and bonus functions, the authors demonstrate reliability, availability and throughput
measures. Furthermore, their yield functions may be defined in terms of the current
marking of the SAN this provides them with an expressive way to isolate particular

states which can be specified at the level of the SAN.

2.5 High-Level Models with Generally Distributed Ran-
dom Variables

A theme of this thesis is the use of generally distributed random variables in PEPA,
a Markovian process algebra. Much research is currently devoted to incorporating
generally distributed random variables into other high-level modelling paradigms. An

overview of the foundational work is presented here.

2.5.1 Stochastic Petri Nets

Several extensions of stochastic Petri nets have been proposed which introduce generally
distributed random variables. The random variables are used to govern the firing time
of net transitions. Extended stochastic Petri nets (ESPN) were proposed by Dugan
et al. [26]. They allowed generally distributed transitions if the following rules were

satisfied:

1. The firing time of non-conflicting transitions which are enabled concurrently must

be exponentially distributed.

2. The firing time of an exclusive transition, a transition which is never enabled

concurrently with another, may be generally distributed.

3. A transition in conflict may be generally distributed, but all others with which it

conflicts must be exponentially distributed.

The intuition for these rules can be understood by examining the authors’ choice of
stochastic model, which they required to be a semi-Markov process (SMP). The first

two conditions can be readily understood by recourse to the global balance equations of
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the stochastic process. The first rule ensures that at the level of the stochastic process, it
is unnecessary to remember the spent lifetimes of transitions—general distributions are
forbidden in this case. The first condition rules out generally distributed concurrently
enabled non-conflicting transitions. The second rule allows a generally distributed
transition when it is never enabled concurrently with another. The enabling of such a
transition will be represented at only one state in the stochastic process; if the state
change is the result of another transition firing, then the generally distributed transition
must be cancelled by the rule, and will not need to resume in the successor state. The
second condition listed above is a strong one; for such a transition 7', every marking in

which it is enabled represents a state in which no other transitions are enabled.

As described by Henderson and Lucic [37], the third condition can be understood as
a practical concession which means that an SMP, which features general distributions,
may still be generated and solved with little computational effort. The restriction leads
to tractable next state probabilities, due to a result presented by Ajmone Marsan and
Chiola [2]. In principle, all concurrently-enabled transitions which conflict may be gen-
erally distributed. When one fires, all others are disabled, and a realistic interpretation
is that when re-enabled, each transition is assigned a new time-to-live. This means that
for any such marking, a successor marking will not require a record of any transition’s
residual lifetime. Since the transitions notionally compete, the next marking should be
chosen based on the transition which is fastest to fire. Therefore, the distribution of
the sojourn time in a state of the SMP is given by the minimum of the distributions

associated with each transition.

Deterministic and stochastic Petri nets (DSPN) were proposed by Ajmone Marsan and
Chiola [2]. Such nets employ exponentially distributed and constant firing delays. A
restriction is that in no marking may there be more than one deterministic transition
enabled this allows a tractable analysis of the DSPN. When a deterministic transition
is enabled competitively with exponential distributions, the stochastic process under-
lying a DSPN is a semi-Markov process; when enabled concurrently with exponential
distributions, the process is a Markov regenerative stochastic process. Such a process
possesses the Markov property at regeneration points only; at the level of the DSPN,
these points correspond to the firing of a deterministic transition. Ciardo et al. [14]
and Lindemann [57] provide a comprehensive summary of this class of stochastic Petri

nets and their underlying stochastic processes.
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2.5.2 Stochastic Process Algebras

A popular approach to incorporating generally distributed random variables into SPA is
to build a process algebra calculus where every activity may have a generally distributed
lifetime. Such an approach has both benefits and disadvantages. The obvious and
greatest advantage is the extra modelling flexibility this affords the user. There is
no longer a requirement that model activities have durations which are exponentially

distributed only.

One disadvantage is that some familiar process algebra rules are no longer applicable in
general. For example, consider the parallel composition of two processes, each capable of
performing a single activity. The familiar expansion law states, using informal notation,
that a || b is observationally equivalent to a.b + b.a. However, when a and b are not
modelled with memoryless distributions, the interleaving approach is incorrect. This is
because after one activity completes, the choice does not represent the spent lifetime

of the other activity.

When general distributions may be used arbitrarily in a process algebra model, it
becomes very difficult, in general, to solve the process, if, for example, the user is inter-
ested in a steady-state probability distribution. Markovian models can be mapped to
CTMCs, and these may be solved for steady-state using linear algebra. Non-Markovian

process algebra models correspond to less restricted stochastic processes.

An early non-Markovian approach to process algebra was exemplified by Strulo and
Harrison [35]. Their framework enhanced traditional process algebra with probabilistic
and timed features, resulting in a model with several distinct transition relations. Their
approach to performance evaluation was to show how their models could evolve over

time via a discrete event simulation.

A recent example of a process algebra incorporating general probability distributions is
Generalised Semi-Markovian Process Algebra (GSMPA), by Bravetti et al. [12]. Their
calculus incorporates all the traditional process algebra combinators, including choice
and parallel composition, and they provide a mapping to a GSMP, the stochastic pro-
cess introduced in Section 4.2.1. GSMPA is provided with a ST semantics, meaning the
evolution of an action is represented as a combination of action start and action termi-
nation. One ramification of this decision is that a choice among actions is governed by a
preselection policy, essentially meaning the choice is over transitions representing action
starts. This action partitioning is similar to that present in Interactive Markov Chains
(IMC), presented in the thesis of Hermanns [41]. Hermanns separates actions into two
disjoint sets—immediate actions, and exponentially distributed actions. His framework

allows a theory of weak bisimulation which is a congruence over the operators of the
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language of IMC; familiar CCS-style weak bisimulation is used over immediate actions,
and MPA-style strong equivalence is used over exponentially distributed actions. Of
course, the models of IMC processes are interpreted as continuous-time, and when all
non-determinism is resolved, lead to CTMCs. The same weak bisimulation approach is
used in later work by Bravetti et al. [13]. Here they restrict GSMPA such that it is only
possible to synchronise on untimed actions. The resulting calculus is called Interactive
Generalized Semi-Markov Processes (IGSMP). The restriction allows a weak bisimula~
tion result similar to IMC where the stochastic process remains a GSMP. Furthermore,
the authors list as further work extending their equivalence such that collections of
timed silent activities can be aggregated in similar fashion to non-timed silent activ-
ities. For example, since their calculus incorporates general distributions, a sequence
of 7-actions could be reduced to a single 7-action distributed as the convolution of the

distributions of those in the sequence.

In [12], Bravetti et al. give an example of a simple queueing system modelled in GSMPA,
where the queue has a deterministic service time. They determine that the resulting
GSMP is insensitive when particular states of the GSMP model are amalgamated, and
then derive a CTMC which they are able to solve conventionally for steady-state. This
is in contrast to the new derived combinator for PEPA presented in Chapter 4—it does
not allow the modeller the freedom to arbitrarily use generally distributed activities.
However, it means that the modeller need not assume that any of a particular set of
activities used in the model are exponentially distributed. Moreover, the insensitivity
is guaranteed and does not need to be determined by the modeller on a model by model

basis.

An alternative stochastic process algebra is spades(#), introduced by D’Argenio et al.
[21]. Once more, the authors choose to separate the stochastic timed behaviour of
the model from the actions it performs. Again this immediately gives a more visible
correspondence with a GSMP. For example, if P is a spades process, then so is {|{C [} P
where {|C [} represents a set of clocks. Each clock has a distribution function, and thus
corresponds to an active element of a GSMP. {C[} P represents a process where all
clocks in {{C[} are set according to their distribution functions, and begin counting
down. The spades process C +— P represents the process that may become P if the
clock C' has reached zero. This represents a state change in a GSMP when an active
element reaches the end of its lifetime. Of course their calculus allows processes to be
expressed in which clock settings persist over transitions, and thus spent lifetimes are
respected. Moreover due to their separation of action and duration, they recover a form
of the expansion law. However for performance evaluation, they do not attempt to use

analytical techniques, and instead choose discrete event simulation.
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Finally, El-Rayes et al. [28] propose a distinctive approach to using general distributions
in process algebra. They propose PEPAT} | a modification of PEPA, such that activities
can be distributed by phase-type probability distributions, and furthermore, consider
models representing potentially infinitely many customers in a queueing system. The
solution of an infinite-state model relies on it having a restricted structure—it must be
decomposable into an initial portion, and a repetitive portion. The stochastic process
underlying such a restricted PEPAT] model will then have a (infinite) generator matrix
with a particular repeating structure, and can be solved by using matrix geometric
methods. Despite features in PEPAT} which are superficially similar to those present
in the work of this thesis, the methods presented are quite dissimilar. The models built
in Chapter 4 implicitly contain models of queues, but none may contain an arbitrary
number of customers. On the other hand, the theory of insensitivity employed need
not restrict attention to phase-type distributions only. Furthermore, the models in this
thesis can be solved in an entirely conventional way, as if all activities were exponentially

distributed, a property guaranteed by the theory of insensitivity.

2.6 Tools for Performance Evaluation with SPA

In this section, the various tools available for performance modelling with SPA are
described. The focus is on tools for modelling with PEPA, especially since the main

tool is extended to incorporate some of the theory presented in Chapter 3.

2.6.1 The PEPA Workbench

The PEPA Workbench [29, 18] processes a textual description of a PEPA model, and
generates output which can be used to calculate a steady-state probability distribution
for the model. The Workbench performs some well-formedness checks on the model as
it attempts to internally generate a derivation graph. These checks include ensuring
that the model is built correctly according to PEPA’s grammar, and that no deadlocks

are possible (and therefore that the process underlying the model is ergodic).

Once the derivation graph is built, the Workbench generates a data file which represents
the infinitesimal generator matrix of the PEPA model. In Figure 2.6, the PEPA model
has two components which execute independently in parallel. Each component has three
states and so the generator matrix for the corresponding Markov process has dimension
nine. Even with an example as small as this one, it is apparent that a modeller would
not wish to construct a Markov process matrix by hand for fear of introducing errors.
The matrix does not represent the structure of the PEPA model, and contains rates

only.
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—2r1 r1 r1 0 0 0 0 0 0
def 0 —r1—1rg 0 2 1 0 0 0 0
Py = (start,r).P2 0 0 —ri—-re O r ro 0 0 0
Py % (run,rs).Ps 3 0 0 -rm—-r3 O 0 0 1 0
def = 0 0 0 0 —2ro 0 9 ro 0
Ps = (stop,73)-P s 0 0 0 0 —ri—r3 7 0 0
0 r3 0 0 0 0 —ro — T3 0 72
Pl P 0 0 r3 0 0 0 0 —ra—r3 72

0 0 0 r3 0 r3 0 0 —2r3

Figure 2.6: The task of the PEPA Workbench

The modeller can make a choice of generating the matrix in a form suitable for process-
ing by various mathematical software packages, for example, Maple or Mathematica, or
in a more primitive form suitable for processing directly by a small program which im-
plements the biconjugate gradient algorithm (see [62] for more details). These tools are
all able generate a steady-state distribution m, given the generator matrix ), subject

to the constraints
mQ=0and Y m=1 (2.6.1)
i

The Maple package has the added advantage that for reasonably small state-spaces, it is
able to compute a steady-state probability distribution in terms of one or more symbolic
rates. The textual description of the model above would be of the form illustrated in

Figure 2.7.

# P_1 = (start,r_1).P_2 ;
# P_2 = (run,r_2).P_3 ;

# P_3 = (stop,r_3).P_1 ;
P_1 || P_1

Figure 2.7: Sample input to the PEPA Workbench

2.6.1.1 The PEPA State Finder

The PEPA State Finder is a tool to allow the modeller to explore the state space of
a model, with a view to building a reward structure in order to generate performance
measures. It provides a simple regular-expression pattern language for matching the
syntax of a PEPA model description. For example, given the example presented in
Figure 2.6, a pattern of the form ‘P; || *” would match against P; || P; for i =1,2,3.
In this way a particular subset of the state space may be isolated, simplifying the
construction of a reward function. The method is straightforward to use, but suffers
from some drawbacks—these are discussed in Chapter 3, where an alternative and more

expressive technique is presented.
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2.6.2 The TIPPtool

The TIPPtool is a modern graphical tool which supports the performance evaluation
of Markovian TIPP models. The input language is LOTOS-based [9], and the tool
provides facilities for functional analysis (for example, reachability analysis), and for
the calculation of both steady-state and transient measures. It should be noted that the
language of Markovian TIPP provides explicit support for deadlocked processes, with
the goal of transient analysis in mind. The TIPPtool can thus calculate properties
such as the mean time to absorption in a particular state (which is represented by
a deadlock term). Built in to the TIPPtool are numerical routines able to solve the
generator matrix underlying a TIPP model to generate a steady-state solution. The
TIPPtool is capable of performing compositional minimisation of a TIPP model using
any of several variants of a strong equivalence style relation. Finally, in order to generate
steady-state performance measures, the TIPPtool also allows areas of the state-space

to be isolated by use of regular expressions over the syntax of process terms.

2.6.3 TwoTowers

The Markovian process algebra EMPA has tool support for performance evaluation in
the shape of the TwoTowers [7] application. TwoTowers makes use of two existing tools,
the Concurrency Workbench of North Carolina [64], and MarCA [71]. The Concurrency
Workbench is a tool designed for qualitative analysis with classical process algebra,
providing facilities like model-checking, and reachability analysis. MarCA is a tool
designed specifically for the stationary and transient analysis of Markov processes.
TwoTowers simply provides an interface to each of these tools, thereby eliminating
the requirement for producing custom written solvers and analysers. TwoTowers can
process models representing EMPA, processes—EMPA,. is an extension of EMPA to
enable the expression of rewards in the process algebra syntax. This method of reward

specification is discussed in Chapter 3.
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Chapter 3

Performance Specification
Techniques for SPA

In this chapter, a technique is presented which allows a class of performance mea-
sures to be automatically derived from SPA performance models. Although one of the
strengths of SPA languages is their formality and the support that this provides for
automated reasoning, deriving performance measures from SPA models is often carried
out in an ad hoc manner. Clearly this will inhibit the uptake of SPAs for performance
modelling. Filling this gap with a rigorous method for specifying and calculating perfor-
mance measures from SPA models would strengthen a weak stage in the SPA modelling
methodology. The method proposed is for the specification and automatic calculation
of steady-state performance measures only. To use the technique, the performance mod-
eller provides a specification, the language of which is based upon a modified modal
logic. The modeller can furthermore choose to study the behaviour of a set of subcom-
ponents within the context of the model. This specifies a reward structure which may
be automatically generated, and the resulting Markov reward model can be solved to

derive the measure.

The chapter begins with a critique of current reward specification techniques for SPA.

3.1 Reward Specification with SPA

In this section, two previously published methods of reward specification, specifically for
SPA, are discussed, with a breakdown of their strengths and weaknesses. The problems
each has suggest features that an alternative specification method might possess. Such

an alternative, the PEPA Reward language, is described in Section 3.2.
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3.1.1 Using Regular Expressions

In [42], Hermanns and Mertsiotakis describe the reward specification mechanism used
in their TIPPtool, an application for analysing SPA performance models. Given an SPA
model, the CTMC is formed by a standard construction from the labelled transition
system, itself formed using operational inference rules. Then in order to build a reward
structure, they use a regular expression over the syntax of the process algebra term. In
essence, this treats the algebra term like a string of characters. For example, consider

the following SPA term:
P> @Q where P e (o, 7).(B,s).P (3.1.1)

The regular expression ‘_ x (3, %). P+’ would match all algebra terms that contained a
process prefix term enabling an activity of type 3, and which then evolves into P (‘.
is used to denote whitespace). The syntax of regular expressions used in the TIPPtool
is similar to that provided by the Unix tool, grep, e.g. * expresses ‘0 or more syntactic
characters’, and ‘ej | ex” matches a string if either e; or es matches. Once matched, a
separate method is used to assign a value to these states in the reward structure. For
example, the PEPA State Finder tool [18] provides a characterisation of the matching
states in the form of a function, parameterised on the steady-state vector, which can
be evaluated by a computer algebra package. The modeller may then manipulate the
reward as appropriate. The regular expression technique is ‘complete’ in the sense that
it can be used to select any combination of states in the transition system, and thus in
the Markov chain. This is because it is trivial to write a regular expression that picks
out syntactically one process algebra term only, and the regular expression language has
a disjunction combinator. Of course this could become infeasible for any reasonably
sized model; the idea of the technique is that one regular expression may capture a
number of ‘interesting’ process algebra terms (and thus Markov chain states), and with
these states a common value can be associated. Moreover, most users are familiar with
the language of regular expressions, and this makes the method simple to pick up and

use.

However, although this method is convenient, and has proven useful, it certainly is not
ideal for a number of reasons. Most of the criticisms below stem from identifying states
of interest by studying the syntax of a process algebra model, rather than by using the
semantics. Firstly, it does not seem clear how a user would capture all terms enabling an
activity of type «. If the ability of the model to perform an « indicated the availability
of a particular resource, this would be a reasonable requirement. Again, consider the
model presented in Equation (3.1.1). A regular expression such as ‘x(a, x).x” would

suffice to pick out the derivative (a, 7).(8, s).P B2 Q; however, this may equivalently
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be written as P P (), which exhibits no syntactic occurrence of a. Another problem
with the use of regular expressions is that they disregard the structural aspects of
process algebra that allow, for instance, commutativity of terms in a synchronisation.
For example, behaviourally, the term @ D§ P is equivalent to Equation (3.1.1); many
process algebra equivalences exist, but no practical equivalence distinguishes these two
terms, since this is counter-intuitive. Unfortunately, it may be the case that distinct
regular expressions are required to capture such permutations of process ordering. This
suggests that a suitable reward specification technique for process algebra will focus on

the visible behaviour of components, rather than their syntactic structure.

The lack of theoretical fit between process algebra and regular expressions is highlighted
further by consideration of algebraic manipulations. Equivalence relations may be used
to show that one process is behaviourally and performance equivalent to an aggregated
process. The transition system of the aggregated process will typically be smaller than
that of the original, since conceptually, each state of the aggregate consists of a set
of states of the original. The strong equivalence relation ensures that these states are
grouped together in such a way that the behaviour of the process is equivalent to the
other in any context, and that the rate of departure from an aggregate state to another,
is commensurate with the performance of the original. A PEPA modeller would rightly
expect to be able to replace a component of a model with another strongly equivalent
component, without altering the model’s stochastic behaviour. However, if the modeller
chooses to use regular expressions to specify the reward structure, it may be the case
that the same regular expression will not do the same job in both cases. Consider the

two processes in Equation (3.1.2) to be strongly equivalent.

P = (a,2r).P
Q lof (a,7).Q" + (a,7).Q’ (3.1.2)

An observer will not be able to differentiate two larger PEPA processes, where one
has P placed in a context, and the other has (). Any regular expression of the form
‘(a, 2r).«" will select P, but not @; any weakened expression of the form ‘(«, *).*’ runs
the risk of selecting other components enabling an activity of type a. The solution
here is to have a specification mechanism which can examine the timing capacity of
components to make particular transitions to equivalent components.

By the arguments above, it can be seen that by using regular expressions, it is easy to
capture states which should not be included in calculations, and to miss out states which

should be included. Certainly it seems that the match between regular expressions and

process algebra models is uneasy.
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3.1.2 Instrumenting SPA Models with Rewards

An alternative reward specification technique for SPA is advocated by Bernardo [5]. The
method uses the Markovian process algebra EMPA; however variants of this method
have been described for both PEPA; in [44], and TIPP, in [42]. The idea is not to
use a separate formalism for specifying rewards, but rather to extend the language of
the process algebra itself. This is done by adding a parameter to activities, denoting
a reward value; for instance, («, ) becomes (o, T, p), meaning that any model state
enabling this activity has a contribution of p in the reward structure. It is assumed
that rewards are additive; therefore, if a model state represents a process algebra term

which enables two activities, (a,r,p) and (3, s, k), the reward assigned to that state

will be p + k.

In this chapter, discussions of this technique will make use of PEPA. Consider the
simple model below:

cpu (work, w, w).(idle, 4, 0). CPU

Suppose the throughput of this model was required. The Forced Flow Law states that
the throughputs in all parts of a model must be proportional to each other. It can
be seen that the throughput of the model is determined by the throughput of either
activity; therefore, a reward of w is associated with the work activity (the activity
was chosen arbitrarily; a reward of i could have been associated with idle). With r
denoting the reward structure, and assuming a simple enumeration of the states of the
transition system, the total reward would be calculated as ), r; - m;. Since r; = w in
those states enabling work, this correctly gives the throughput as the rate at which
useful work is carried out when possible, multiplied by the probability of being in a

state in which useful work can be done.

Bernardo’s extended process algebra is called EMPA,. In [5], the traditional notion of
MPA equivalence is extended to incorporate the reward structure induced by EMPA,..
The new relation is called strong extended Markovian reward bisimulation equivalence,
denoted ~gprrp; this is ~gyp, EMPA’s equivalent of PEPA’s strong equivalence,
with an extra feature that behaves as follows. R is a strong extended Markovian reward
bisimulation iff PR (Q implies that P and @ are strongly equivalent, and for each action
type a the rewards P and () accrue on making an a-transition to some equivalence
class are the same. P ~gyprp Q if P and ) are related by some strong extended
Markovian reward bisimulation equivalence. Bernardo shows that ~gyreC~gMmB,
meaning the new equivalence relation is finer-grained; but the relation is also claimed
to be a congruence, meaning equivalent terms, which accrue the same reward, also

accrue the same reward in any process algebra context. Subsequent to the publication
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of this result, D’Argenio and Hermanns demonstrated that the congruence property
does not actually hold for the full class of EMPA terms, in particular in cases where
equivalent processes which enable different numbers of passive activities of the same
action type are then forced to synchronise with an exponentially distributed activity.
In his thesis [6], Bernardo establishes that despite this problem, the congruence result
holds for a large and useful class of EMPA, and by extension EMPA,., terms. Due to
Bernardo’s approach, it is straightforward for a modeller to incorporate the specification

of rewards into EMPA models, and this is a definite strength of EMPA,..

However, it can be argued that attaching rewards to activities both lacks expressive

power, and can become cumbersome to use. This can be shown with a simple example;

consider the PEPA model below:

CPU; def (geti, \;).(release, ;). CPU;
SHMemory o (gets, T).(release, T).(geto, T).(release, T).SHMemory
(CPU; || CPU,) . B SHMemory (3.1.3)

{getj,release}

The shared memory resource will be accessed by two processes, CPU; and CPU,,
performing the activities get; and gets; however these processes must take turns.
Suppose the modeller wished to find the utilisation of the resource by CPU;. The
shared memory is held by CPU; when the first instance of release is enabled, but
not when the second is enabled. The modeller would thus have to realise that only the
first instance of the release activity should be instrumented with a reward value of 1;
effectively, the modeller would have to study the behaviour of SHMemory which is non-
local to the instances of release. Better would be a specification method capable of
assigning rewards based on more complex process behaviour. Next consider a modeller
attempting to calculate the throughput of accesses to shared memory, given SHMemory.
Unfortunately, although SHMemory defines the behaviour of the shared memory, its
activities are passive and therefore the processors decide for how long they require
access. Therefore the modeller has to study the processors together with the shared
memory, in order to decide which CPU activities represent accesses, and instrument
these activities only with rates for rewards (A7, and Ag). If either processor uses get;
for a purpose other than accessing shared memory, this problem becomes non-trivial

for the modeller.

In a comparison between PEPA and generalised stochastic Petri nets [25], it is sug-
gested that the reward specification for PEPA requires improvement, and highlights
the usefulness of basing a reward on states which enable two different activities. Both
techniques above struggle with this simple requirement. The proposal developed in this

chapter is based upon the ability to be this flexible, by exploiting a logic for studying
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the dynamic behaviour of models.

3.2 Results for Constructing the PEPA Reward Language

In this section, some background results are presented which underpin the use of the
PEPA Reward language. The idea behind the PEPA Reward language is to use a
modal logic, capable of expressing properties of a process, in order to determine a
specific reward structure over a Markovian model. This idea was initially discussed by
Hermanns in an extended abstract [40], but other than in published work presented in
this thesis [15, 19] does not seem to have been developed elsewhere. There is much active
research on the topic of logics for the verification of probabilistic systems. Hansson
and Jonsson [32] present a logic called PCTL, based upon the qualitative temporal
logic CTL [20]. PCTL is capable of expressing properties such as ‘after a happens,
with 95% probability b happens within ¢ time units’. This means a property can be
proven true over a chosen fraction of the execution paths of the model. However,
this logic is interpreted over discrete time Markov chains. Later work by Baier and
Kwiatkowska [3] introduces non-determinism meaning that an execution of the model,
a computation tree, is determined with respect to a scheduler, which resolves non-
determinism. De Alfaro and Manna [23] adapt discrete time logic verification rules to a
continuous setting. Their models are timed transition systems, the temporal behaviour
of which can be represented by discrete traces, or continuous traces. A discrete trace
is a snapshot of the state of the system at a sequence of time points, and a continuous
trace gives the state of the system over a sequence of intervals of the real line. They
demonstrate that if a temporal logic formula is finitely variable, its validity over discrete
traces implies its validity over corresponding continuous traces. However, transitions
in their models are specified by minimum and maximum delays, which is unsuitable
for working with continuous time Markov chains, where exponential random variables
have no maximum firing time. Aziz et al. [1] present an alternative logic called CSL,
specifically for verifying properties of continous time Markov chains. Again similar
to CTL, it can express properties such as the PCTL example given above. Their
semantics leads to definite integral terms over exponentials. By using number theoretic
arguments, their result is that model checking CSL is effective, but they only speculate

on the practicality of such a procedure.

In contrast to these methods, the logic chosen in this chapter is not temporal. A
temporal logic features operators for, for example, expressing long-run properties, or
for expressing properties that hold indefinitely often into the future. The aims of

this work differ, in that the goal is not verification as such, but rather to provide an
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expressive language for specifying steady-state performance measures. PEPA models
may be large, but are only relevant for steady-state analysis when finite; in practise,

the expression of arbitrary temporal properties is more than is required here.

A modal logic formula will give a behavioural specification of the performance property
of interest. In the same way that a classical temporal logic formula expresses a predicate
over states of a transition system, a simple modal logic formula itself will express a
predicate over the states of the transition system underlying the PEPA model. A
specific set of states will be capable of the behaviour specified by the logical formula, and
the others will not. Of course, this suggests that in order to calculate the partitioning,
a model checking procedure should be employed. In the next section, a particular
modal logic is studied, and it is shown why it is an appropriate choice for use with
PEPA. Following this, the role of the logic in the Reward language is defined. The
PEPA Reward language allows the modeller to exploit the compositionality present
in a PEPA model, and to focus attention on particular subcomponents of a model.
Some results are presented which highlight the extent to which this may be used in

partnership with model aggregation.

3.2.1 A Logical Foundation for the Reward Language

The PEPA Reward language was first presented in [15]. The basis of the technique is
a specification logic, used to describe the behaviour of process algebra models. The
particular logic chosen then was Hennessy-Milner logic (HML) [39], a simple modal
logic suitable for verifying non-temporal properties of classical models i.e. qualitative
models without probabilities, random variables, or explicit reference to the passing of

time. The syntax of HML formulas is given by
Fu=tt|-F|FIANF| (oF (3.2.1)

The semantics below are the ‘obvious’ translation of the classical semantics given with
respect to, for example, models of CCS processes. They indicate why this logic may
not be ideal for working with PEPA processes. Formally, the semantics is given over
the labelled multi-transition system of a PEPA model.
Definition 3.2.1. Let P be a PEPA model. Then =i is a satisfaction relation
defined as the least relation satisfying the following rules:

P =pwmr, tt

P =L ~F if P FEpaL F

P =ume F1 A By if P L F1oand P Epaw Fo

P v (@)F if P25 P and P’ l=gyp F (3.2.2)
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The intuitive meaning of most of the modal operators is clear. P gy () F if there
exists a derivative P’, such that P can make an a-transition to P/, at any rate, and
P' = F.

In [39], Hennessy and Milner show that if two (classical) processes are strongly bisimilar,
then they satisfy the same HML formulas. Furthermore, the converse holds, so long as
the processes are image-finite. This result reinforces the prevalent view of bisimulation
as a natural process equivalence, and also suggests that HML is very suitable as a

classical process logic.

The most useful equivalence relation over PEPA models is strong equivalence. Re-
call that strongly equivalent processes generate lumpably equivalent Markov chains,
and therefore the equivalence relation forms the basis of an exact model aggregation

technique. Consider the following simple PEPA processes:
P = (a,r).(B,s).P
Q % (a.2).(8,9).Q (3.2.3)

These models are not strongly equivalent. Both generate Markov chains with two states,
but for the first chain, the steady-state probability of being in the state corresponding
to P is s/(s+ ), while in the second chain, the steady-state probability of being in
the state corresponding to @ is s/(s + 2r). However, P and @) cannot be distinguished
by any HML formula. The proof of this simple fact is omitted, but is clear because P
and () only differ syntactically in the rate of one activity and no HML formula refers

to rates.

When the stated aim of the logic is to specify process behaviour, it seems that HML
may not be an ideal choice. It is reasonable to expect that a PEPA modeller may
wish to identify derivatives based on activity rates. These issues can be addressed by

adapting a more appropriate logic, namely Larsen and Skou’s PML [56].

Presented here is a modified version of the original Reward language, based on PML.

The syntax of PML formulas is given by
Fu=tt|Vy | ~F|FiAFy | (a),F (3.2.4)

The models described in [56] are probabilistic, in that for any state P and any action «,
there is a (discrete) probability distribution over the a-successors of P. Informally, the
semantics of a formula V, is the set of states unable to perform an « activity; and the
semantics of (a),F is the set of states such that each can make an o-transition with
probability at least p to a set of successors each of which satisfies F'. In this chapter, the
interpretation of these formulas is modified slightly for use with PEPA models. First,

two simple definitions:
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(e,7)

Definition 3.2.2. upo(Q) => {r:P——Q}}

Definition 3.2.3. P22 if and only if P -, and 3" preg pipa(P)) = v

In this thesis, a modified interpretation will be given to PML. It makes use of the above
definitions so that the logic is suitable for use in a framework based on rates rather
than probabilities. The modal logic which results will be called PML,,. Now let P be
a model of a PEPA process. The semantics of a PML,, formula is a set of states for
which the formula is satisfied. As is conventional, these semantics are again expressed

by use of a satisfaction relation.

Definition 3.2.4. Let P be a PEPA model. Then \:pMLM 18 a satisfaction relation

defined as the least relation satisfying the following rules:
P Epyv, tt
P =pmy, ~F if P FEpan, F
P =pmr, 1 A By if P l=pyy, F1oand Pl=pa, Fo
P =pu, Va if P /5>
P E=pap, () F if JRGES for some v > p, and for all P' € S, P’ Epy, F (3.2.5)

Henceforth, any use of |= is assumed to refer to =pyr,. The subscript p present in
formulas of the form (a),F is interpreted as a rate rather than, as Larsen and Skou
require, a probability. If a state P is capable of doing activity a quickly enough arriving

at a set of states S each of which satisfies F, then P satisfies (), F.

3.2.2 Relation of PML, to PEPA

By using PML,, to underpin the PEPA Reward language, one of the main criticisms of
the published work ([15]) will be addressed—that the (qualitative) logic employed was
badly suited to the models. PML,, formulas are able to distinguish model states that
differ only in the rate at which they may perform activities. However it is also impor-
tant to establish how this logic relates to PEPA. In [56], Larsen and Skou show that
PML exactly characterises probabilistic bisimulation, in the sense that two probabilistic
processes are bisimilar if and only if they satisfy exactly the same set of PML formulas.

An analogous result holds for PEPA processes and PML,, formulas:

Theorem 3.2.1 (Modal characterisation of strong equivalence). Let P be an

image-finite model of a PEPA process. Then
P=Qiffforall FPEF iff Q F F
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Proof. The first case shows that P = @ implies that for all F', P = F iff Q = F'; the

second case shows the reverse of this implication.

Case 1 Assume P = Q. The proof proceeds by induction on the size of F', as in [56].

Case }' = (a),G: Let P |= F. Then by definition, there exists a set .S such that
PYS where v > p, and for all P € S, P = G.
Since P 22 @, there exists some strong equivalence R, such that for all
a € A, for all S € C/R,q[P,S,a] = ¢q|Q,S,a]. For each P' € S, let Rps
be the equivalence class in C/R which contains P’. Furthermore, let S” =
UpiegRpr. Now, for each P” € S”, P"RP’, and thus P” = P', for some
P’ € S, and so by the hypothesis, for all P” € S”, P" & G.
Since S C 5", P(g;)S”, where v/ > v. Since PRQ, for all T € C/R,
q|P,T,a] = q|Q,T,a]. However, note that for all s,s’ € S, Ry = Ry or
Rs N Ry = (. Therefore, by construction of S”, q[P,S",a] = ¢[Q,S”, a].
Therefore, Q(g—ﬁ;)S”, where v/ > v > p; and for all Q' € S”, Q' E G.

Therefore, Q |= (a), F. By symmetry of =, this case is complete.

Case F = V,: Let P = F. Therefore P /. Since P = Q it is the case that
for some strong equivalence R, for all a € A, for all S € C/R,q[P,S,a] =
q|Q, S, a]. However, for all S’ C 2¢, ¢[P,S’,a] = 0. Since for all S € C/R,
S C 2, it is the case that ¢[Q, S,a] = ¢[P,S,a] = 0 for any S € C/R, for
any R which is a strong equivalence. Therefore there does not exist a C
such that ¢[Q,C,a] > 0 and therefore, Q /. By symmetry of 22, this case

is complete.

All other cases are straightforward.

Case 2 Assume that for all F; P = F if and only if Q = F.

Let R ={(P,Q): for all F', P |= F if and only if Q |= F'}. The result will hold if
‘R can be shown to be a strong equivalence. By simple inspection, R is clearly an
equivalence relation. Thus, it must be shown that for all & € A, for all S € C/R,
aIP,S,a] = q[Q, S, .

Let S € C/R. Assume that for some a € A, P((L:’AQS for some p. Now consider the
a-derivatives of @, labelled Q1,...,Q/,, Q)1 1,... ,Q),, wheren > 0,0 <m < n.
These derivatives are labelled such that Q},...,Q;, € Sand @), ,....,Q), € S.
For each @), let the rate at which @ makes an a-transition to @} be denoted
by pi. Since S is an equivalence class under R, it is the case that for each
Qj,m +1 < j < n, there exists a formula F] such that Q) = Fj, and for
each Q,0 < i < m, Q} & Fj. From a lemma by Larsen and Skou [56], it is
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possible to construct a dual formula to each ij, named here F; such that for
Qpm+1 <j <n Q) Fif and only if Q; |~ F; Now it is the case
that Q = (a), (F;n+1 A...ATF,), where y/ = Yo, pi. However, by the initial
assumption, it is also the case that P |= (a) (F;n+1 Ao A F;L), and therefore,
p' > p. This then gives that ¢[@, S, a] = p' > p. However, R is symmetric, and
so by such an argument, it is the case that p >y, and thus that u = /. Hence
q|P, S, a] = q|Q, S, o], as required.

O

The theorem shows that two PEPA processes are strongly equivalent (in particular, their
underlying Markov chains are lumpably equivalent) if and only if they both satisfy the

same set of PML, formulas.

Some PML,, derived combinators are introduced in Equation (3.2.6). These add no
expressive power to the logic, but will prove more succinct in expressing particular

properties later.

ff = -ttt
o] £ = ~(a)~F
A, ¥ v,
FVE ¥ () AGR)
R—=F Y -R)VE
Rk Y (f = BR)ANF — F) (3.2.6)

From working with this logic, it appears that PML,, does lack an HML combinator that
is often useful in practice. PML, lacks the ability to express HML formulas of the form
(o) F—as it stands, the diamond combinator requires decoration with a rate. Larsen

and Skou [56] define the combinator intuitively as
(@)F =3p > 0.(a), F (3.2.7)

In analogous fashion to [56], for a PEPA model P the minimal rate assumption holds if

there exists some e such that for every P’ € ds(P), there does not exist u < € such that

(on,p1)
P’ ———. This is clearly satisfied for every PEPA model of interest in this thesis, since

each is finite-state (and each is assumed to have a steady-state probability distribution).

In light of this, the following abbreviations are also employed.

(@F < () F

]F % —(a)-F (3.2.8)



The PEPA Reward language, to be explained later in this chapter, will allow the mod-
eller to make use of PML,, formulas, leading to the automatic construction of a reward
structure. Since the Reward language is used at the level of the process algebra, there
are certain algebraic properties which should hold for the performance measures gener-
ated. As discussed in Chapter 2, strong equivalence is the most important of PEPA’s
equivalence relations; it is a congruence at the algebra level, and the application of
strong equivalence aggregation can generate smaller, lumpably equivalent and exactly
aggregated Markov chains. A crucial property for a PEPA modeller is that a perfor-
mance measure generated for a particular model is identical to the measure generated
for an aggregated model—Hillston [44] writes ‘If the integrity of these measures is to
be maintained by the strong equivalence relation, it must be possible to derive the
same reward from the lumped derivation graph’. This property allows a separation of
concerns; strong equivalence aggregation can be applied without knowledge of perfor-
mance measures. Nicola [60] formalises this property by extending strong lumpability

to Markov reward models:

Definition 3.2.5. A Markov reward model is strongly lumpable with respect to a re-
ward © in the context of a partition x, if, for every starting distribution, the aggregated

process is a Markov reward model which results in the same reward.

Intuitively, a MRM is strongly lumpable with respect to a reward function if the un-
derlying stochastic process of the MRM is strongly lumpable, and by using the reward

function, the steady-state performance measures calculated for both processes are equal.

Let P, @ be PEPA models, and let ds(P)/ = give the state space of the lumped Markov
chain of a model P. Let F' be a PML, formula, and consider any function R(-) with
the following property:

P2~Q — R(P)=R(Q) (3.2.9)

Now let p(-) be a reward function such that

p(P) = {R(P) ifPEF (3.2.10)

0 otherwise

The following proposition shows that any Markov process built from the derivation

graph of a PEPA model is strongly lumpable with respect to such a reward function
p(-)-

Lemma 3.2.1. The Markov reward model based on ds(P)/ = is strongly lumpable
with respect to any reward function p(-) satisfying Equation (3.2.10) for R(-) satisfying
Equation (3.2.9).
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Proof. The proof is straightforward, by the method of calculation of a steady-state

measure given in Equation (2.4.1). The total reward is given by
0= 3 AP)w(P= 30 (3 elP) (P
P’eds(P) Seds(P)/= P'eS

However, by Equation (3.2.9), for any PML,, formula F, and any P’, P" € S,
Pep — P EFif P e F

Therefore,

> (X e me)

Seds(P)/~ P'eS
Y seasry= (X pres R(P) - ) Yscaspy~ R-1s i P EF

ZS’Eds(P)/ > pres0- W(P)) 0 otherwise

O
Proposition 3.2.1 illustrates that any such reward assignment function R(-) induces a
reward-preserving equivalence relation that coincides with strong equivalence.

Corollary 1. Let =, be an equivalence relation such that P =2, Q) if and only if function

R(-) generates equivalent reward structures for P and Q. Then =,=%

Proof. Immediate.

Therefore unlike the ‘finer-grained’ ~gp;rp relation for EMPA,., any such reward pre-

serving equivalence relation for PEPA will not discriminate between more processes.

3.2.3 Working with Subcomponents

The PEPA Reward language allows a modeller to work with subcomponents of a PEPA
model, specifying a reward structure for the whole model dependent on behaviour local
to a subcomponent working within the context of the rest of the model. In order to make
this notion precise, a theory of contexts is employed. In this section, some definitions
are borrowed from the work of Larsen [55, 54], who made use of contexts in work on

context-dependent bisimulation. The following definitions and results are presented.

Definition 3.2.6 (Context). Let A be a set of process constants. A PEPA context
is a set of place-holders (holes) [.] in a PEPA process. The syntaz of contexts is given

below.

cu=[] [ A] (a,r)c | cte| /L | cPc
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The variables ¢, d and e will be used to

syntax is unfortunate for these purposes

range over contexts. This commonly used

due to its clash with the syntax of PML,,.

A place-holder in a context, [.], should not be confused with the derived logical box

operator [a]. An arbitrary context has a fi

by the following function.

xed number of holes, as determined formally

Definition 3.2.7 (Number of holes). Given a context c, holes(.) is a function giving

the number of holes in ¢ as

1
0

holes(c

(
holes(c) + holes(c’)
(
(

holes(c

)
)
)
)

holes(c) + holes(c’) (3.2.11)

A method is required for placing processes (or more generally contexts) within a context;

this is given by the following definition.

Definition 3.2.8 (Populating a context). c[cy, ...

,Cn] specifies a context with at

most n holes populated, according to the following inductive definition:

B c1 ifn>0
O {H otherwise
((a,r).0)ery .. yen] = (a,r).(clery. .. yen))
, —J(cler, . a@]) + (i, - s enl), i = holes(c) if n > holes(c)
(et lers-enl = {(c[cl,... en)) + ¢ otherwise
(c/L)[cry... en] = (clery...,en])/L
5 ens... 0] = {(c[cl,... ,¢i]) B (¢/[eig1, . s cnl)si = holes(c) if n > holes(c)
L o (cler, .. sen]) B otherwise
(3.2.12)
Example 1. Let ¢ = (S + [.]) BI([] [| []). Then
[T, P} = ((S+[DITD) BT LDIPD)
= (S + ([IDIT) BAADIPTILD
=5+ 1) B(([DIPTIILD)
=+ T) (P[]

Of course, c[[.]] = ¢ for any context c. If

If every subcontext of a context is not ful

a context has no holes, it is said to be full.

1, it is said to be empty. A context is called
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dynamic if it is an instance of ¢ 4+ ¢ or (o, r).c; it is called static if it is an instance
of ¢/L or ¢ BIc/. A context c is called non dynamic (respectively non static) if every
non-full subcontext of ¢ is not dynamic (respectively not static). Notice that the empty

context, [.], is neither non dynamic, nor non static.

Lemma 3.2.2. Let c,c be contexts with 1 and n holes respectively. Let c; be a context,
for1 <i<mn. Then

(c[dD]ery--- sen] = c[d ety - -+, enl]

Proof. Proof is by induction over the structure of c. Most cases are straightforward

and omitted for brevity.

Case c=d +d': But
(d+d)[][cty--- en] = (d[]+d)]er,--. ,cp] if holes(d) = 1 by Definition 3.2.8
= (d[d][e1,... ,cn] +d') since holes(c') = n
= (d[d[e1,...,c,)] +d') by inductive hypothesis
= c[d[e1,-.-.,cn] (3.2.13)
or alternatively
(d+d)[)[cr,---,en] = (d+d[d))]ecr,--- ,en] if holes(d) = 0 by Definition 3.2.8
= (d+d'[][e1,--- ,cp)) since holes(c’) = n, holes(d) = 0
= (d+d|[d][ec1,...,cy]]) by inductive hypothesis
= c[d[e1,... ] (3.2.14)

O

With the simple result above, the following lemma, illustrates when two occupied con-

texts are strongly equivalent.

Lemma 3.2.3. Let ¢,c,c” be contexts such that ¢ has one hole, ¢’ has n holes, and

cld'l=¢. Let P,Py,...,P, be PEPA processes such that P = ¢"[Py,... ,P,]. Then

c[Pl=d[Py,...,P,]

Proof.

By assumption, c[Py,...,P,] = c["][Ps,...,P,], and following by Lemma 3.2.2,
cldN[P1y...,Pp] =c[d'[Py,...,Py]]. Now, strong equivalence guarantees that if
Q = R, then ¢[Q] = ¢[R] for all contexts c. Therefore, since P = ¢'[Py,... , Py], then
c[P) = d[Py,..., Pyl O
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The motivation for these results is to allow the PEPA modeller to implicitly work with
processes in context. Of course a context is simply a PEPA process skeleton, and a
fully specified model will always be represented by a full context. If ¢ is a context, and
P = P;,..., P, are subcomponents such that ¢[P] is full, then the pair (P, ¢) is called a
view of the process ¢[P], and each subcomponent P; is within the view of c. Lemma 3.2.3
shows the relationship between two contexts ¢ and ¢, one with one hole, and the other
with n. It says that for any subcontext ¢” of ¢’ within which the n holes are located, if
both ¢ and ¢’ are equivalent up to the subcontext ¢’, and it is the case that P is strongly
equivalent to a fully populated ¢”, then ¢[P] is strongly equivalent to a fully populated
c. When using the PEPA Reward language, the modeller is able to focus on a set of
subcomponents of a larger model. This lemma will be used later to highlight which of
these subcomponents can be replaced by strongly equivalent aggregated models, while

guaranteeing the same reward structure with the same reward specification.

To generate a reward structure, the modeller begins by specifying a PML,, formula.
The modeller may also restrict attention to a specific set of subcomponents. Therefore,
a meaning must be given to the satisfaction of a PML,, formula over a set of subcom-
ponents in context. From this point, attention is restricted to non dynamic contexts
only. In a real sense, any process within a dynamic context does not represent a single
subcomponent. Consider the process P+ @. Both P and @ are within a dynamic
context, but when this process makes a transition, one side of the partnership will no-
tionally have lost a race, and is eliminated. Therefore, components within a dynamic
context do not generally persist over the evolution of a model (of course the resulting
derivative may be built using a new choice context). Moreover, the dynamic context
does not persist either, in general. In a similar fashion, a prefix context is guaranteed
to vanish from a derivative, if the transition was due to the activity specified by the

prefix.

The following lemma shows that if ¢ is a non dynamic context with n holes, then when
populated, any derivative P’ can also be viewed as a populated non dynamic context

¢ with n holes.

(er,7)
Lemma 3.2.4. Let ¢ be non dynamic with n holes. Then if ¢[Py,... ,P,|——P, it is

possible to express P as d[P},..., Pl], for some non dynamic ¢, and in particular, ¢

has n holes. Moreover, for 1 < i <mn, and some 3 € A, either

(a,r)

e P; did not contribute in the inference tree of ¢[Py,... ,Py]——P; or
Bys) ) . (a,7)
o P;——P] was used in the inference tree of c[Py,... ,Pp,|——P, for some s.

Proof. The proof is by induction over the structure of c.
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(a,r) (a,1)
Case ¢ = [.]: Thenn = 1, and if ¢[P;|——P, then P;—— P. Therefore, ¢ =[] since

P = [P]. P; did contribute in the inference tree, and 3 = .

Case c = ¢’ DI ¢": Without loss of generality, let ¢ have i holes (0 < i < n); then
c’ has m — i holes. Notice that both ¢ and ¢’ must be non dynamic. Since

(1)
¢[Ps,... , Pa]—5P, then by PEPA Rules, either

(a.r)

o c[Py,..., PiJ——P for some P', and P' A "[Piyyq,..., Pyl = P;or
(a,7)
o [Piyysy..., Pp]——P" for some P", and ¢'[Py,... ,i] BAP" = P;or
(a,) (a,t)
e J[Py,... ,P;]——P for some P" and s, ¢"[P;y4,..., Py]——P" for some

P"and t, and P' BIP" = P.

The third case is the most interesting, and the others follow by similar arguments.

By the inductive hypothesis,

e it is possible to express P’ as '[P}, ..., P}], where ¢ is non dynamic, and

for 1 < j <, and some k € A, either P; was not used in the inference tree,

(k)

or Pj—>P]’- for some u; and

/111

e it is possible to express P" as ¢"'[P; ;,..., P,], where ¢"" is non dynamic,

and for i +1 < j < n, and some y € A, either P; was not used in the infer-

()
ence tree, or Pj—— P} for some v.

This leads to the following:

P

NPy P Py Py

(" B d"MPy, ... P, Piiq,...,P,] by Lemma 3.2.2
(3.2.15)

It must now be shown that k = . But since this case is due to a cooperation,
a # 7. Therefore by the rules of PEPA, k = a =~. Both ¢’ and ¢’ are non
dynamic by assumption, and therefore so is ¢’ BI ™. ¢ BN hasi+n —i=n
holes, and the n arguments are as demonstrated above. If P; was employed in
the inference tree for a subcontext, then by the PEPA rule for cooperation, it is
also employed in the inference tree for the cooperation (and similarly for the case

when P; is not used).

Other cases: Omitted.
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One significant consequence of this lemma is that given a process P = c[Py,..., Py,
every derivative P’ € ds(P) can be expressed as some context ¢/, with n holes, populated

in order with for 1 <i < n, some derivative P] € ds(P;).

The next task is to capture the notion of subcomponents proceeding in context. The
presentation follows Larsen [55], and gives an operational semantics to PEPA contexts.
A context is viewed as an action-transducers, that is it is viewed semantically as an
object which consumes activities produced by its internal processes and in return pro-
duces activities for an external observer. In this way, it acts as an interface between the
two. Larsen uses the notation c ﬁ c to represent that the context ¢ consumes the

inner actions a; to a,, produces the outer action a, and changes into the new context

c.

Consider the cooperation operator of PEPA. The operational semantics of this operator
can be presented contextually, showing how this operator performs as an activity trans-
ducer. From Figure 2.2, transitions may be inferred, for two processes combined with
this operator, in three ways—either side may make a transition individually, or both
may cooperate. Following Larsen, the cooperation may be interpreted in the following
way: ‘whenever the inner processes P; and P, produce activities («, r7) and (o, r2),
the cooperation combinator may combine these to produce the activity (o, R), where
R=(r1/ra(P1))(re/ro(P2)) min(ry(Py),ro(P2)).” Since the combinator is static, it
persists in the process which results from the transition. This means the behaviour of

the combinator (indexed by a set of action types L) can be represented by the following

transduction:
©h L 3.2.16
s
L ((ayry)s(a,rg)) L (3.2.16)

Figure 3.1 gives a transduction semantics to all of the combinators of PEPA. This is
necessary in order to provide the reward language with a contextual semantics. The
rules are presented in the style of Larsen [55]; however, it is assumed that the combi-
nators present in the rules are actually empty contexts. This would mean that the rule

given above in equation (3.2.16) can be equated with the form given below.

[Ba] o (15 (3:2.17)

Notice that all the rules are axioms. It is assumed that the traditional operational

semantics of PEPA processes is extended with a zero transition, such that
P -2 Qifand only if P = Q

and where 0 is a distinguished ‘zero’ activity whose type is not a member of A. The
transduction rule for Prefix states that no internal activities are consumed in gen-

erating an external activity («, ), and the resulting context is the identity context.
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Transition Semantics

Prefix

(1)
(a,7).E——

(@)

Choice

(a,r)
E+ F——FE

(ar)

R

(a;r)
E+ F—>F'

F/

(a,r)
E—SF

Coop ) (ag L)

EXF ——E DXF
L L

(a,r)

N

(o)
E BLQF—>E Ble’

F/

(a¢ L)

(a,r2)
—

(05,7"1) El FI

(€ L)
(a,R)
E D§ F——F DE]F/

Transduction Semantics

(a,r)
(a,r). —5—1

~
2]

- I

8

(a,7) 1
1 1I
+ ((ev,r),0) (x,0)
(a,r) @
2 H2
+ (0,(a,m)) (0,)
—— (¢l
] — ]
L {((er),0) L
(g L)
(a,r)
Xl — X
L (0,(e,r)) L
(€ L)
(a,R)

R —
L {((a,ry)s(evrg)) L

where R = (r1/ro(F))(r2/ro(F)) min(rq (F), 7o (F))

()
—_

Hide

o) (a ¢ L)
E/L—=E'/L
(@,r)

- 5 F

(€ L)
()
E/L— 5B /L

(a,7)
R

(a;r)

—_—

El

Const

(€ L)
(7.7)
/L (a,r) /L
(g 1)
L
A p)
(o)

Hl

2

Figure 3.1: Transduction semantic rules for the combinators of PEPA
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This is the context which simply maps internal consumption directly to external pro-
duction. In Figure 3.1, x is used to range over all activities in Act, along with the
distinguished activity 0. The first transduction rule for Choice states that a choice
prefix consumes an activity produced by its left operand, and a zero activity (i.e. no
activity) from its right operand, produces the left operand’s activity for external con-
sumption, and then becomes the left projection of a pair context. The pair context,
II, is a useful construction that allows the rules given next to be presented simply. A
populated pair context possesses two subcomponents, and does not directly represent
a process. It is never used on its own—instead, either the first or second projection
is used, where 11*(P;, Py) = P; and I1?(P;, Py) = Py. Finally, the rule for Const
transforms a nullary context, that is a PEPA variable, into what may be a compound
context, by simply mirroring the definitional equation for that variable. The variable

context produces only and exactly any activity it consumes.

Larsen shows how the operational semantics of a process algebra are expressible in terms
of the operational semantics of the component processes, together with the transduction
semantics of contexts. Consider ¢[Py, ..., P,], representing a full context (equivalently
a PEPA process), where ¢ is a context with n holes. It is stated, without proof, that
the transitions of combined processes may be completely characterised in terms of the
behaviours of P; to P,, and the transduction semantics of ¢, by a uniform rule:

a

/

Py =5 Pp.. Py =5 P e ¢ (3.2.18)
cPry. e P = [P, , Pl

This rule is generalised in order to describe compositionally the transduction semantics
of a context. Consider the context c|ci,... ,cp], that is the context ¢ populated with

subcontexts ¢ to ¢,. The Generalised Uniform Rule below defines the semantics of

clet, ... ,ep] in terms of the semantics of ¢ and ¢; to ¢;,.
& / an / 2 /
clb—)cl"'chCn C ( g
1 aj...an
— 3.2.19
cle en] ——— [ cl ( )
1;---,Cn by...bn 1+ 3%n

Now, a contextual transition relation is defined which captures the notion of subcom-
ponents proceeding in context. This transition relation will be used implicitly in the

semantics of the Reward language, and so is restricted to non dynamic contexts only.

Definition 3.2.9 (Contextual transition relation). A contextual transition rela-
tion relates two equal-length sequences of PEPA processes and two contexts. Let P be

a length-n vector of PEPA processes, and let ¢ be a non dynamic context with n holes.
(e,r) .
Then P——. P if and only if PR for some B, v#0, and for 1 <i<mn,

r

either
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e v, =0, or

(a,r,-)
o v, = (a, ;) and P;——P] for some r;

The contexts decorating the transition arrow record the context from which the tran-
sition was taken, and the context which results. Of course the resulting context is not
uniquely determined, but by Lemma 3.2.4, the existence of a context ¢’ with n holes
is guaranteed. The intuition behind this definition is that a subsequence of subcom-
ponents may make transitions in context if the context itself may produce a transition
via an activity with the correct rate, by consuming 0 or more activities from its com-
ponent processes, each of which must have the correct action type. The definition uses
the action types of the component processes because the modeller will wish to study
the behaviour of subcomponents in context, and therefore will write any behavioural
specifications in terms of the action types presented by the subcomponents. However
the definition incorporates the rate of the activity produced by the context, because the
context may combine the rates of the subcomponents’ activities to produce its compos-
ite, and the modeller would wish to study the performance of the subcomponents within
the model as a whole. To disregard the rate of the context’s produced activity would
be to disregard, for the most part, the context itself. Notice that a subcomponent may
be defined so as to make a transition to itself, for example P def (o, 7).P. Then, even
though P may appear unchanged on the right hand side of a contextual transition, it
may still have been used in the inference of the transition of the populated context.
The definition also insists that any contextual transition must involve at least one of

(cv,7) (cv,7)
the subcomponents. P——. implies that P—— P’ for some P, .

Example 2. Let L ={a,B} and c= (P B[]) |[ Q. Next, some simple PEPA pro-

cesses: P& (B,7).P, Q def (a,8).Q, and R def (B, T).R+ (a,s).R. Then

B,T)

—_—

(Oc,s)

—_—

(B,r)

( ——ce (R)

B 9. (R) foranyt

arl (3.2.20)

Notice that the action type decorating a contextual transition is the same as the type
decorating the transitions of the subcomponents, but not necessarily the same as the
type of the activity produced by the process represented by the populated context.
However, if the types are not equal, the type produced by the process represented by the
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populated context must be the hidden type, 7. This simple fact is stated without proof,
and is because PEPA possesses no ‘relabelling’ combinator. Notice that the same type
decorates every subcomponent transition. This is because if several subcomponents
proceed in context, the only possibility is due to cooperation. If a PEPA cooperation
enables an activity of type a present in its cooperation set, then both subcomponents
must also enable an activity of type «. For a PEPA process within a context, the only
way in which the witnessed activity may not be of type « is if the cooperation context
which produces the activity is within the scope of a hiding context, where the hiding set
contains the type a. This may not be true for more ornate Markovian process algebras,

but the theory presented here should nevertheless be broadly applicable.

As described, the rate decorating a contextual transition is different from the rates of
the subcomponent transitions, in general. It reflects the capacity of the whole model
to perform the transition, and not the capacity of any particular subcomponent. The
motivation is again reflected in the needs of the PEPA modeller, who may wish to
study the behavioural properties of a subcomponent within a context, ‘ignoring’ the
activities of other subcomponents. Within a context, a subcomponent may be required
to perform activities at rates mandated by the cooperation rule. Therefore, it makes no
sense to examine the subcomponent’s individual transition rates, otherwise the context

serves little purpose.

The following lemma is useful to the results which follow. It investigates a subcontext
¢ of ¢ where ¢ is empty (intuitively, all ‘leaves’ of ¢ are holes) and non dynamic. The
result states that if ¢’ is fully populated such that it is strongly equivalent to P, then
the contextual transitions of a fully populated ¢ are identical to those of a similarly

populated ¢ except where ¢ is replaced by P.

Lemma 3.2.5. Let P, Py,...,P, be PEPA processes, and c,c,c” be contexts such ¢
is empty and non dynamic, P = ' [Py,..., P,], and c[d] = ".

(a,r) (a,7)
Then <P>—>c’d<Pl> Zf and only Zf <P1 seeey Pn>—>c”,d”<P3 5 ...,Pl

') where d|c'] = d”
and P' = d[P},... ,P}].

CXY) , (8.7) (wr)
Proof. Assume that (P)——.4(P’). Then c(4>d for some 3, and P——P

a,r)
by Definition 3.2.9. But by the definition of strong equivalence, it is then the case
(ev,7)

that ¢'[Py,..., Pp]——c[P,...,P}], since ¢ is empty and non dynamic. Now by

the uniform rule (3.2.18), it is the case that ¢ (av—’T)w’, and for 1 <i <n, P; =% P

. ) . (a,r) . .
Further, since cfd by assumption, and ¢ ——" ¢, then the generalised uni-

a,r) ]
(8,7)

)

form rule (3.2.19) may be applied leading to c[c| d|c']. However c[c’] = ¢” and

(a,m)
d[d] =d", and so by definition, (Py,..., Pp)——cr g/(P,.... P;). The reverse direc-
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tion may be proved by similar reasoning. O

Now that a contextual transition relation has been defined, Definition 3.2.12 makes
concrete what is meant by the satisfaction of a PML, formula in a context. First

extensions of two earlier definitions are given.

(e,7)
Definition 3.2.10. pp oL, )= {r:P——.P'}
Definition 3.2.11. Let P be a length-n vector of PEPA models and ¢ be a context
with n holes. Let S be a set of pairs, each of which is a length-n vectors of processes,

(a,v) (a,1)

and a context with n holes. Then P==_.S if and only if P——. for some r, and

Z(E,C’)ES pp el d)=v

Set S consists of pairs of sequences of subcomponents and contexts. If a subcomponent
sequence and its context are present in S, it is because this context can be reached
via a contextual transition from P. Notice that this is still a one-step relation—the
context emits one activity in response to a set of activities produced by its component
processes. This condition is important otherwise the result would be misleading. To

see this, consider the following definitions:

P (a1

Q= (0r1).Q +(8,5)-Qs

Q Y (a,m).Q

cg = [-]{DﬁQz

o = [1PQ

d = []X¢Q (3.2.21)

The context ¢; populated by P may make a transition via activity («, ;) to a process
represented by the context d populated by P’. Alternatively, ¢c; may make a transition
via (3, s) to context ¢y without involving P, and then the first transition may be made
but instead from cy to d. However this does not mean that P has the capacity to

perform « at rate r1 + ro. The one-step definition ensures there is no confusion.

Definition 3.2.12 (PML, satisfaction in context). Let P; be a PEPA model, for
1 <i<mn,and P = (Py,...,P,). Let c be a context with n holes. Then =, is a
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satisfaction relation defined as the least relation satisfying the following rules:
P = tt
Plc—Fif P F
PE=.FIANFy if Pl Py and P = F

(a,r)
P .V if P—F—co for any ¢ orr
P = (o), Fif In € N such that P =, (o), F'

(a:’chS for some v > p, and for all (P',d) € S, P’ |Fq F

~— ¢ for some a,n >0, and P =y <04>Z_1F

P
P = () F if either ¢
c

0

A new formula, <a)ZF , has been introduced here, for the purposes of presentation, and
not for use by the PEPA modeller. It is satisfied by a vector of processes in context
if the context makes no more than n transitions without involving its subcomponents,
before a context is reached in which the subcomponents may make a number of different
a-transitions such that the aggregate rate of departure from the context is at least pu.
This prevents problems where the context may cycle infinitely often. In practise, this
is not a restriction, since the modeller will be working with finite-state models; there
will never be a situation where the modeller would expect a formula of the form (@), F

to be true, but only after an infinite number of contextual transitions which do not

involve the subcomponents.

Example 3. Consider the following PEPA model:

Client % (conn, \).(disc, u).Client
Server & (conn, T).(serve, s).Server + (disc, T).Server
Network (Client || Client) B Server (3.2.22)

{conn,disc}

The PEPA modeller may only be interested in the behaviour of the Client subcompo-
nents. Thus, letc= ([] || [.]) , BX Server, andd = ([.] || [.]) , Bd (serve,s).Server.

{conn,disc} {conn,disc}
Now, for a particular derivative of the model, the modeller may wish to determine if
neither client has currently established a connection to the server. By inspection of
Client only, no connection is currently established if Client ==. Therefore, neither

client has a connection if
(Client, Client) =, (conn))(conn) tt

This formula is satisfied despite the fact that Server must perform some observable

work between connections. The above claim is proved with the following steps:

1. ((disc, p).Client, (disc, p).Client) =, tt is true trivially.
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(serve,s)

¢, and

((disc, p). Client, Clzent) C{(((disc, w).Client, (disc, ). Client), c)},

therefore,

e ((disc, u).Client, Client) =4 (conn)\tt by definition, and so

((disc, p).Client, Client) =4 (conn) tt by definition.

(conn,\)

(Client, Client) = c{(<(disc,,u).Clz'ent, Client),d)}, therefore,

~o
°

(Client, Client) |=. (conn)$(conn),tt by definition, and so

(Client, Client) =, (conn)y(conn) tt by definition.

Finally in this section, a result is presented which highlights the extent to which the
PEPA modeller may employ aggregation while focusing on subcomponents of a model.
Intuitively, it states that it is safe to aggregate subcomponents which are within the
view of an empty context. That is, the truth of a PML,, formula in context is preserved

if subcomponents in an empty context are aggregated.

Theorem 3.2.2 (Aggregation preserved formulas). Let P, Py, ..., P, be PEPA pro-
cesses, and c,c,c’ be contexts such that ¢ is empty, non dynamic, and contains no
subcontext d/L, P = '[Py, ..., Py, and c[c'] = ¢" Then for any PML,, formula F,

(P) = F if and only if (Py,..., Py) Eer F
Proof. The proof is by induction over the structure of F.

Cases I'=tt,F=GAH,F =G, F = V,: Straightforward.

Case I' = (), G: Assume that (P) = (o), G. Then (P) . (a);;G for some n > 0.

This implies that at least one of the following two sub-cases is true.

d, (P) f=q (@) ~'G. Then by induction, (P4, ..., Pp) Far ()7 1G
where d[¢'] = d”. Now, by the generalised uniform rule (3.2.19), the following

can be shown:

cl'] ——d[c]

Therefore, ¢’ ; d’. Now, by definition, it is the case that
(P1y..., Pp) Fa ()G, and therefore, (Py, ..., Pp) Fa (@) G
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3 (P>(a:’1j>)05, v>u, and for all ((P'),d) € S,(P') =4 G. Then for all

(P).d) € S, by definition, (P)-""5.4(P"):; and therefore ¢,
and PﬂP’ . But then by the definition of strong equivalence,
c[Py,... ,Pn]ﬂc’[Pg,... ,P!] (the existence of suitable P},... P is
guaranteed by Lemma 3.2.4), and [P,...,P,] = P'. By examination of
the inference tree for [Py, ... ,Pn]ﬂc’[Pé ,..., Pl and since ¢ is empty

and contains no subcontext of the form d/L, it can be seen that for 1 <17 <mn,
(avyi)
either P;—— P for some v;, or P; does not contribute, and )", v; = v. Let

)¢/, Now by

v

the generalised uniform rule (3.2.19), the following can be shown:

(a

v; = (a, v;) if P; contributes, and 0 if it does not; then ¢/

a,v (B.v)
old] =22 i
(B.w) o ()

Therefore, ¢ ————d". Now, by definition, (Py,... , Pn)——w g (P}, ... . Pp),
where P; = P} ifivi = 0. However, since d[d| =d", and ¢[P},... ,P,| = P/,
by induction it is the case that (P’,..., P}) =4+ G. Since the above deriva-
tion was worked out for all ((P’),d) € S, then it is simple to construct an
appropriate S” such that (Py,... ,P,L>m:’l/>)C//S” and for all (P',d") e S",

(P),...,P) =g G

This provides a proof of the forward direction of the implication; the reverse

direction can be proved by similar reasoning. O

On the other hand, it is simple to demonstrate that PML, formulas in context are not

necessarily preserved when the aggregated subcontext is not empty.

Example 4. Consider the following definitions:

P (a, 2r).P Q= (a,1).Q'
P (3, 5).P+ (a,r).P" Q= (8,5).Q
P (3, 05).P d=d=[]||@Q
c=1] d=1[]Q
F = (g st (3.2.23)

Each context presented is non dynamic, and ¢’ is not empty. The following derivations
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show that despite the fact that P = [Q], the satisfaction of F depends on the context.

(e, 2r)
—

/

(e, 27) ,
— ¢[P]——¢|[P’]

— (P) =, F (3.2.24)

However, in order that {(Q) . F, it must be the case that <Q>(a:’V>)CuS for some set S.

However it is only possible to deduce

(Q)Y . {((Q"), )}
Q)22 (@), d)} (3.2.25)

and ' #+ d.

This is consistent with our intuition—the context ¢ restricts the modeller’s view of the
subcomponent’s partner. In this example, the satisfaction of F' depends crucially on the
particular rate chosen. In practice, it is often the case that a modeller wishes to study
only the qualitative behaviour of a component. This can be done by restricting all rates
in a PML,, formula to be less than e, the rate due to the minimal rate assumption. Such

a PML,, formula is called rate-reduced.

Definition 3.2.13. Let F' be a PML,, formula. Then F' is rate-reduced if every sub-
formula of F of the form (a),G is such that p < e.

This section ends with the following conjecture on the satisfaction of a rate-reduced

PML,, formula in a context that need not be empty.

Conjecture 1. Let P, Py,..., P, be PEPA processes, and c,c,c” be contexts such that
d is non dynamic and contains no subcontext d/L, P = c/[Py,..., Py], and c[c] = ".

Then for any rate-reduced PML,, formula F,

(P) = F if and only if (Py,..., Py) Eer F

This result would imply that a modeller may aggregate a model arbitrarily, and guar-

antee that the satisfaction of any such formula is unaffected.
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3.3 Description of the PEPA Reward Language

In this section, a formal description of the PEPA Reward language is given, including a
simple syntax and semantics. Using the Reward language described here, the method

of specifying performance measures is split into two stages:

e Defining a reward specification, which associates a value with a particular process

derivative, if it is capable of behaving as required.

e Defining an attachment which determines with which process derivatives a par-

ticular reward specification is associated.

The meaning of the reward specification will depend on how it is ‘attached’ to a PEPA
model; this is because the associated value may depend on information local to the
derivative under consideration. This will be explained when the semantics of the Reward

language is described in Section 3.3.1.

Formally, each reward specification can be considered as a pair consisting of a logical
formula and a reward expression. The formula is checked against a set of subcomponents
in a particular chosen context. If satisfied, the derivative equivalent to that given by
placing each subcomponent in context is assigned a reward. The value of the reward

corresponds to the evaluation of a simple arithmetic-like expression.

3.3.1 Syntax and Semantics of Reward Expressions

The syntax of reward expressions is very simple, indeed it captures little more than
a straightforward syntax for arithmetic. The only additions to this are two bound

variables; the syntax is given below.

e u= (e) | eg+es | e1—ea | exxea | e1/ex | atom

atom = 71 €ER | cur | rate(a € A)

The bound variables cur and rate() will be used to denote real numbers. The meaning
will be dependent on the reward structure being built, and the particular labelled multi-
transition system which results from the PEPA model under consideration. They exist
for pragmatic reasons—they are useful in specifying performance measures. These
simple expressions are given a semantics below. Because the meaning of one of the
bound variables depends on activity rates, the semantic function is decorated with

information from the transition system.

First, a reward function is defined. If P is the PEPA model under consideration, then

let p(-) : ds(P) — R. Therefore, given a derivative (in fact a state of the transition
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system) p(-) gives the reward assigned to that derivative. Given this reward assignment

function, the semantic function relies on a view of a PEPA process P to define the

meaning of reward expressions; the semantics are given in Figure 3.2. The variable cur is
) lee = lelre

le1 opea|ip,e letlp.e) o le2lip.e
leur|pey = p(c[P])
(a,r)

[rate(e)|p,c) = 2Ar:cll]l——}

Figure 3.2: Semantics of reward expressions

intended to give the reward expression access to a ‘currently’ assigned reward, allowing
reward expressions to make use of previous assignments. The function rate() allows
activity rates to be used in expressions—specifically, reward values can be assigned to
a derivative P which make use of the transition rate from P to successor derivatives via
an activity of type a. This is the way in which timing information may be incorporated
into reward specifications. Notice that the semantics insist the rate is that of a as
performed by the model, not by a subcomponent in context. This is because for any
given view of a context, it may be possible to witness a contextual transition via an «
at a number of different rates. It is not clear that it is correct to choose any one of these
rates, and the current semantics is unambiguous. The binary operator op is intended
to capture the obvious binary operators defined in the syntax above. The following

definition completes the definition of a reward specification.

Definition 3.3.1. A reward specification is a pair (F,e), where F is a PML,, formula

and e is a reward erpression.

Notice that the semantics of a reward expression is a function which satisfies Equa-
tion (3.2.10), assuming use of a ‘prior’ reward function p(-) which satisfies Equa-

tion (3.2.10).

Lemma 3.3.1. Let (P, c) be a view of a PEPA process, d[P'],d'[P"] € ds(c[P]) such
that ¢/ [P'] = "[P"], and p(-) be a reward function such that p(¢'[P']) = p(¢'[P"]). Then

for any reward expression e, | e pr =|e|pr cr)-

Proof. The proof is by induction over the structure of e, and is straightforward—the

interesting cases are shown.

Case e = cur : Then [e|pr = p(c'[P]) = p("[P"]) =|e]pr e

(aur)
Case e = rate(a) : Then |e|pr )= Y {r:c/[P'|——}. By the definition of strong

(o)
equivalence, this is equal to > {r:c"[P"|——} =|e|pr ).
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Other cases : Trivial.

3.3.2 Creating a Reward Structure with Attachments

The next task is to use a reward specification to build a reward structure for a given

PEPA process. This section defines the semantics of the PEPA Reward language.

The semantics depends on some further definitions. These help capture the idea that
rewards can be attached to subcomponents of PEPA processes, thus allowing the com-
positional structure of the process algebra model to be exploited. For instance, given a
large PEPA model, it may be interesting to only examine the performance of a single
component queue. It should be possible to disregard the behaviour of the rest of the
model, at least up to its interaction with the queue under examination. To achieve this,

contexts are employed.

Definition 3.3.2. An attachment is a triple (o,c, (Py,... , Py)), where o is a reward
specification, ¢ is a non dynamic context with n holes, and P; are PEPA processes, for

1<i<n.

The attachment allows the modeller to choose which subcomponents are of interest

the subcomponents are the processes P;.

Now let p : ds(P) — R represent a function constructing a reward structure, and let
P be a PEPA process. Assume an initial value of p(P’) = 0, for all P’ € ds(P). This
is chosen arbitrarily—however it is a reasonable and useful choice in practice [66]. The
semantic function takes as an argument a reward assignment function p and evaluates
to a new function, say p’. This possibly modified assignment function will reflect
any new rewards that have been assigned to the PEPA model. Its argument is a
sequence of attachments. A sequence is chosen so a reward structure can be built
sequentially, allowing one reward expression to make use of the values present in the
partially constructed reward structure. Evaluating such a sequence of attachments is

trivial—each is evaluated individually, in order. This is shown below.

10, = »

I{aisaiv1s---sam)l, = |{@it1,0i42..-. ;am) |, where o =|a; l,  (3.3.1)
The meaning of an attachment is now required.

Definition 3.3.3 (Semantics of an attachment). Let a; = ((F,e),c,(P1,...,Py))
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be an attachment. Then the meaning of an attachment is a value determined as follows:

if (Py,..., P F
H a; H: {||e||<P1,...,Pn>c Zf< 1 ; n> ):c (332)

0 otherwise.

p' is created by ordinary function perturbation and the end result is a function which

constructs a reward structure over the derivative space of a PEPA process.

3.4 Examples of Reward Specification

In this section, the PEPA Reward language is used to express some conventional per-
formance measures. Two different models are used as vehicles for these examples; each

is explained in turn.

3.4.1 Abstract Multi-processor Multi-memory Example

A model that occurs frequently in the literature is the multi-processor multi-memory
system. Such systems have become affordable and even commonplace in recent years,
and for these purposes, have the advantage that the process algebra style is a partic-
ularly suitable way to represent them. Consider an abstraction of a modern computer
system, containing several processors and several memory chips. Each processor per-
forms some work, then attempts to access memory. The individual components of this

system can be modelled in the following way:

Mem; Lot (getyi, T).(relus, T).(refresh, r). Mem,
Proc; = (work, wj). (Z (getme, g - pi)-(relme, ). Proc;
k

+ (interrupt, i;).(rti, rj).Procj>

where Zpk =1 (3.4.1)
k

Each memory chip can be claimed and released (like a semaphore), but after being
released, it performs a ‘refresh’ to ensure the contents of the memory are maintained
correctly. Each processor will perform some work, and will then choose which memory
chip to access. Once finished, it will release it again. Alternatively, at this point the
processor can be interrupted by a peripheral device which it then has to service. To
make things more illustrative, this particular multi-processor system will be extended
with an ‘IO Controller’ chip. This processor is only capable of accessing memory chip

Meml:

100« (work, w).(getws, g).(rely, ). 10C
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This can be combined with two processors and two memories to make a composite

System:

System dof (Procy || Procg || 10C) B (Memy || Mems)
where L = {gety;, rely; |i=1,2} (3.4.2)

Now it is possible to specify formally some interesting performance measures.

A Utilisation Measure

In order to determine how many memory chips are needed for reasonable performance,
it may be useful to determine what percentage of the time a particular memory chip is
in use. In order to specify this, the behaviour that characterises the fact that the chip
is in use is needed. This is easily seen—the chip is in use if it is capable of performing
an activity of type rely;; if so, it previously performed a gety; in synchrony with a
processor which required access. The required reward specification and attachment are

then given by

spec = (Are1y s 1)
attachment = (spec, ¢, (Procy, Proce, IOC, Memy, Memy))
where ¢ = ([ [[ [] [| []) B (] []) (3.4.3)

It is worth explaining in a little detail why this will achieve the desired result. The
first thing to note is that the attachment is very simple—rather than examining any
particular subcomponent of the model, the whole system is analysed. Nothing more
focused is required in this instance. The reward assignment procedure will begin with
the process System, and will determine whether it is capable of satisfying the logical
formula Aye1,, - Clearly none of the memory chips are in use at this point, so it will not
be possible to release any, and specifically not Mem;. Thus the formula is false here,
and the reward of 1 is not assigned. The next stage is to take the one-step derivatives
of System and examine them in similar fashion to System. This is done exhaustively
until no further derivatives exist that have not been tested for a reward. At this point
the procedure will terminate. Therefore any derivative of System that could perform
an activity of type rely; will be given the reward 1. With the assumption that other
derivatives have a reward of 0, this procedure will produce an appropriate vector, which
when combined with the steady-state probability vector, will produce a value between
0 and 1. This of course can be interpreted as the percentage of time that Mem; is in

use.

The above example would become slightly more complicated if the percentage of time

a true processor was waiting to access memory was required (thus ruling out the 10

71



Controller chip). However this is still simply achieved. Behaviourally, a processor is
waiting for access to memory if it is waiting for access to any of the memory chips
(unlike JOC which may only be waiting to access Mem;). Therefore, an appropriate

reward specification and attachment would be:

spec = (Arelm A Arelnga 1)
attachment = (spec, ¢, (Procy , Procg, IOC, Memy, Memy)) (3.4.4)

since it should be able to use Mem; or Memgy, whichever should become available.

A Performability Measure

While the multi-processor system may give adequate performance for the most part,
the modeller may wish to study the effect on the performance if the rate of peripheral
interrupts is changed. For example, the modeller may wish to ensure that the rate
of access to memory remains above a particular level. To achieve this, the following

reward specification may be used:
spec = (Areryy, = (relm1)utt A Arer,, = (relwo),tt, 1) (3.4.5)

Here the modeller insists that the rate of access to shared memory is at least p, for
both processors. Using the same attachment, a reward structure will be built which
will evaluate to 1 if the condition is always true, and a value less than 1 if the model

can reach a state where the rate of access to shared memory drops below the required
threshold.

Instead, the modeller may wish to calculate a value corresponding to the throughput

of accesses to shared memory. The next specification achieves this.

A Throughput Measure

A useful performance measure may be the throughput of 10 Controller accesses to
memory. Here it is possible to take advantage of the Forced Flow law again. Since
the 10O controller is a sequential process, its throughput is determined by either of its

possible activities. Arbitrarily choosing one leads to the following;:

spec = (Ayork, rate(work))
attachment = (spec, ¢, (I0C))
where ¢ = (Proc; || Procs || [.]) B (Memy || Memyg) (3.4.6)

If the derivative can perform an activity of type work, then it will be assigned the value

of rate(work). This will evaluate to the sum of the rates at which the derivative can
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evolve via an activity of type work. Therefore the value will give a measure of the
throughput of the work activity, and, by the Forced Flow law, of the whole system.
However this time, attention is restricted to the IO controller subcomponent, I0C.
The difference in the assignment procedure is that the logical formula is only checked
against activities of type work that can be performed by IOC in the context of System.
This means that if the IO Controller is in a position to perform a work activity, but
its context does not allow it (for example it must cooperate but no other process is
willing), then the activity is impossible. Restricting attention to the subcomponent
in this way ensures that if by chance any other processes may perform an activity of
type work, it will not influence the reward assigned. This time the reward vector will
contain activity rates, and when combined with the steady-state vector will give the

throughput as required.

Illustrating the Logic

In order to illustrate the discriminatory power of the modal logic, a more intricate
specification is given next. Suppose it was useful to know the percentage of time only
one memory chip was in use (and thus not both). First note that both memories are
in use if a particular derivative enables a rely; activity, and its one-step derivative via
rely; enables a rely; activity. Combining this with the example above, the following

reward specification is obtained:
spec = ((Areny V Aren) AN [Telui|Viely A [T€lMo]Viely s 1) (3.4.7)

This can be attached to the whole system in the naive manner of the first example, and
will only assign a reward to those derivatives that allow the release of either memory
chip, but not both. Therefore these derivatives correspond to states in which one memory

chip is in use only.

3.4.2 A Problematic Example

The PEPA Reward language seems less well-suited to the specification of ‘counting’

rewards, such as expected queue length. To highlight this, a new model is introduced.

Queuey = (arrive,\).Queue;
Queue; def (arrive, \). Queue; 4 g
+ (serve,u).Queue;_;
Queue, def (serve, ). Queue,_; (3.4.8)

This models a simple n-place queue which accepts customers while not full, and serves

customers while not empty. Frequently it is useful to know a measure such as the average
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number of customers in the queue. Thinking behaviourally, there are m customers in
the queue if it is possible for the queue to perform m serve activities, but not more
(alternatively, if it is possible for the queue to perform n — m arrive activities but not
more). Using the Reward language, it is possible to assign a reward of m to derivatives

representing the case where m customers are in the queue:

m times m+1 times

A

-

spec = ((serve) ... (serve) tt A [serve]...[serve|ff,m)
However what is required is to assign a varying reward of m to a derivative depen-
dent on the number of serve activities possible in a row. The Reward language is

able to support such reasoning with the same reward expression, by using multiple

specifications and attachments, as illustrated below.

spec; = ((serve)tt,cur + 1)
n times
spec,, = ((serve)... <serve;tt, cur + 1)
attachment; = (spec;, Queuep, 1)
attachment,, = (spec,, Queuey, 1) (3.4.9)

where attachment,; is to be evaluated before attachment; if 7 < j. For each attachment;,
every derivative of Queuey is checked against the formula contained in spec;. The for-
mula is true for a derivative if it represents a state where there are at least i customers.
The reward expression adds 1 to the reward previously assigned to the derivative—this
would be assigned by the previous attachment, if the state represented the presence
of at least ¢ — 1 customers. By an inductive argument, this would correctly reward
a state with the number of customers it represented. However, a naive look at the
calculation of this reward suggests that for each derivative of Queuey, the satisfaction

of n formulas, each of length O(n), must be checked. This approach is unsatisfactory.

An alternative may be to allow reward expressions to refer to other derivatives, for
example those to which it can make, or be reached by, a single transition. An example

reward expression could look like:
newspec = ((arrive)tt, prev + 1)

The idea is that if the ‘previous’ derivative represented a state in which ¢ customers
were present, and the current derivative is capable of a further arrive activity, then

the current derivative represents a state where ¢ + 1 customers are queueing. This
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assumes that the current derivative was reached by a transition signifying the arrival of
a customer, and such a notion would need to be made precise. Moreover, any extension
to reward expressions would need to satisfy Lemma 3.3.1, and it is not clear that this

technique would.

3.5 A Partial Implementation of the PEPA Reward Lan-
guage

The PEPA Workbench has been extended to allow the use of a subset of the PEPA Re-
ward language. This gives the modeller the capability to express behavioural properties
using PML,,, though currently the use of contexts is not implemented. The implemen-
tation automatically generates a reward structure which provably generates the same
performance measures for any two strongly equivalent models. This means the modeller
may apply aggregation to a PEPA model without having to alter the description of any

performance measures.

Given a PEPA model, the Workbench currently generates a representation of the
model’s generator matrix. This matrix is then solved by a small program implementing
the biconjugate gradient algorithm. In order to generate the matrix, it is necessary
for the Workbench to traverse the entire state space of the PEPA model. After this
traversal, for each state of the model, a reward specification can be checked, and if

satisfied, a reward assigned.

The syntax is demonstrated in Figure 3.3 with a simple throughput analysis presented
in [18]. Dev attempts to transmit a packet consisting of a connection header and some
data. However it may fail to connect, in which case it immediately retries. The modeller
may wish to consider only the throughput of legitimate data, and not failed connection
attempts. The logical expression, named rate-trans, is only satisfied in states which
enable an activity of type trans, but not those states from which two trans activities
are possible consecutively. Therefore the logical expression selects only those states in
which Dev has made a connection, and is about to transmit data. These states are
assigned the data transmission rate as a reward. The six-state model has a reward

assigned to states 3 and 6 only.

The algorithm used to implement this subset of the Reward language employs a sim-
ple model checking procedure for PML,. The implementation language is Standard
ML, and a (sanitised) representative excerpt is given in Figure 3.4. The algorithm is
parameterised by a PML, formula F. and a derivative of a PEPA process, P. The
propositional cases are simply dealt with recursively. The most interesting case is for

F of the form (a),G, that is Dia(a,mu,F). In order to test the satisfaction of such a
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% L = { check } ;

# Dev = (check, rl).Try ;

# Try (trans, fail).Try + (trans, succeed).Con ;
# Con = (tramns, data).Dev ;

# Bus (check, top).(reset, r2).Bus ;

% reward rate-trans = /\{trans} & [trans,0.01]\/{trans} => rate(trans) ;

Dev <L> Bus

[The PEPA Workbench generates:|

rate-trans := 0
+P[3] * data Y Con <L> (reset, r2).Bus
+P[6] * data % Con <L> Bus

b

Figure 3.3: Using the Reward language in the PEPA Workbench

formula, the algorithm begins with the set of derivatives of P; then restricts to those
which were reached by activities of type «; then further restricts to those which re-
cursively satisfy formula G. The rate from P to this subset is then generated, and

compared against u.

The algorithm as it stands is a naive implementation in order to demonstrate proof of
principle. For example speed increases may be possible by checking the satisfaction of

all subformulas of a formula F' while working with any given derivative.

fun modelCheck (And(f1,f2)) P = (modelCheck f1 P) andalso
(modelCheck f2 P)
| modelCheck (Mtt) P = true
| modelCheck (Dia(a,mu,G)) P =
let
val dP = derivatives P
val dPa = chooseByType a dP
val dPf = chooseBySat G dPa
in
not (lessThan (sumRates dPf, mu))
end
| modelCheck ...

Figure 3.4: Excerpt of the PML,, model checking algorithm
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3.6 Summary

To summarise, this chapter presents a language which can be used to automatically
generate a reward structure over the stochastic process of a PEPA model. The lan-
guage is based on a modal logic, PML, and allows the modeller to ‘focus’ on model
subcomponents, by the use of contexts. It is shown that PML, characterises PEPA’s
strong equivalence. Moreover, conditions are given describing which parts of a PEPA
model may be aggregated without affecting the reward structure obtained. Finally it is
conjectured that these aggregation conditions can be made more liberal if a restricted

form of PML,, formula is employed.

There is scope to improve upon these results. For example, the current definitions
do not allow a subcomponent to be aggregated if it contains a hiding operator. This
restriction ensures that if any action type can be witnessed at a contextual level, then
it may always be witnessed. This is unnecessarily strict, since the modeller may wish
to study the ability of a model to perform an activity in context which is completely
unaffected by a particular hiding operator. Refining this definition would increase the
usefulness of the PEPA Reward language. A criticism which has been aimed at the
current approach is that the modal operator specifies rate-based properties of a PEPA
process for a given action type, but does not take into account the total rate of exit from
a given state of the process. The motivation is that a modeller specifying properties
of a PEPA process may be misled by a negative result on the departure rate from a
state via a particular action type, when in fact the total exit rate from a given state is
sufficient for the required property. This opinion seems to depend on the application
of the modal logic. It is shown in Section 3.4 that the current intepretation may be
used successfully for calculating simple rate-based performance measures. Whatever
becomes the prevailing view, Conjecture 1 hints that rate-free formulae can be useful
for specifying types of rewards, and may also lead to more general aggregations while

still preserving specified performance measures.
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Chapter 4

A Stochastic Process Algebra
Structure for Insensitivity

4.1 Introduction

The following two chapters use insensitivity results to examine cases where generally
distributed activities may be introduced into PEPA models. This chapter gives details
of a derived algebraic combinator which guarantees insensitivity for some model activ-
ities. The following chapter provides a general study, in terms of balance equations
only.

The exponential assumption inherent in Markovian analysis is regarded by some as a
restriction in the application of SPA modelling. For example, deterministic random
variables may be more appropriate in modelling time-outs in communication protocols.
It would therefore be of great utility to be able to incorporate more general distribu-
tions into SPA performance models. Indeed several attempts to do this are underway,
as discussed in Section 2.5.2. However, unlike previously published work, the aim of
this chapter is to introduce this increased modelling expressiveness only when it does
not seriously impinge on model tractability. To justify the approach, the concept of
insensitivity is used. A stochastic process is said to be insensitive if its steady-state
distribution depends on the distribution of one or more of its state lifetime random
variables only through the mean. In this thesis, insensitivity is considered with respect
to the activities of an SPA model when possible. The consequence of an SPA model
being insensitive to a particular activity is that the activity may provably be arbitrarily
distributed (with the same mean) without affecting the steady-state probability distri-
bution of the model. Therefore conditions under which activities can be shown to be
insensitive are conditions under which more flexible modelling features, such as realistic

time-outs and repair times, may be introduced.
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This chapter studies a structure of SPA model from which it is possible to infer the
insensitivity of particular activities. This class of PEPA models may be constructed
using a new derived combinator, and consists of a collection of simple subcomponents
which interact in a weak fashion. Despite this interaction, it is shown that insensitivity
of residence time in particular sub-states (states of each subcomponent) is retained, and
thus in this approach, insensitivity of particular SPA activities too. Therefore, in many
cases, generally distributed activities may be used to build the subcomponents without
affecting the equilibrium distribution of the model as a whole. Models built using this
derived combinator are guaranteed to have the insensitivity properties defined in this
chapter. Models which are insensitive to some of their distributions but not to others

are not considered in this chapter.

In Section 4.2 insensitivity is introduced, and the basic results from the literature are
presented. Section 4.3 describes the structure of PEPA models which then exhibit
the insensitivity property, and this class is demonstrated with a simple example in
Section 4.3.4. Since it is found that in fact the solutions to models in this class exhibit
product form, Section 4.4 looks at existing product form solutions for process algebra,

and compares them to this new approach.

4.2 Insensitivity

This section begins with an explanation of insensitivity, and the stochastic model which
is used as a vehicle for the insensitivity property is formally introduced. The conditions
on the stochastic process that guarantee insensitivity are then described, leading to a

discussion of insensitivity in stochastic Petri net models.

A stochastic process is said to be insensitive if its steady-state distribution depends on
the distribution of one or more of the random variables representing residence time in
a state only through their mean. Intuitively, this means that a random variable may be
replaced with another with an identical mean, while preserving the steady-state solution
of the process. Just as steady-state is characterised by a set of global balance equations,
insensitivity of residence time in a state is characterised by a set of insensitivity balance
equations. These are interpreted with respect to a particular model, which is introduced

next.

4.2.1 The Generalised Semi-Markov Process

A Generalised Semi-Markov Process (GSMP) is defined on a set of states {g | g € G}.

Within each of these states are active elements, s € S. The current state g will contain
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a set of active elements, each element s with a lifetime which decays at the state
dependent rate c(s, g). Let S’, S* be disjoint, and such that S"US* = S. If s € S’ then
the lifetime of s is exponentially distributed; if s € S*, s has a generally distributed
lifetime. When the lifetime of an active element s expires, the process moves to another
state ¢’ € G with probability p(¢’;g,s). When the process changes from state g due
to the death of an active element the remaining elements from g N S* retain their
spent lifetimes. Active elements new to the current state are given new lifetimes,
as samples drawn from their governing distribution functions. A restriction on the
process’s behaviour is that no two active elements from S* may be activated or die
simultaneously. An excellent operational view of the execution of a GSMP is given by
Shedler [69].

Insensitivity was first studied as an end in itself in the early 1960s. Results were origi-
nally presented with respect to the Generalised Semi-Markov Scheme, which generates

a stochastic process which is a GSMP. Working with this model, Matthes [58] showed:

Theorem 4.2.1. (Matthes) The following two statements are equivalent:

1. The process is insensitive to the elements of S*. That is, the distributions of the
lifetimes of the elements of S* may be replaced by any other distribution with the

same mean, while still retaining the same equilibrium distribution.

2. When all elements of S* are assumed to be exponentially distributed, the flur out
of each state due to the death of an element of S* is equivalent to the flux into

that state due to the birth of that element.

The second statement describes the insensitivity balance equations for the GSMP. A
GSMP state contains a set of active elements, and the state may be left due to the death
of any of them. The flux out of a state due to the death of an element contributes to
the total flux out of a state, and is given by the probability of being in that state
multiplied by the rate at which that state is left due to the fact that the lifetime of a
given active element has expired (cf. Section 2.2.4.1). The birth of an element refers to
the point at which an active element becomes enabled and is given a new lifetime. The
flux into a state due to the birth of an element is given by, for all predecessor states, the
probability of being in such a state multiplied by the rate of departure into the current
state such that the active element is given a new lifetime in the current state. Notice
that the theorem gives conditions for insensitivity of all generally distributed active
elements. In this chapter, the only models considered are those which are insensitive

to all their generally distributed active elements.
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4.2.2 Conditions for Insensitivity

High-level performance modelling paradigms provide features which are ‘active’, in some
sense, for a randomly distributed length of time. For example, SPNs have transitions,
and SPAs typically provide activities. It is these features for which it would be useful
to relax the exponential assumption. However exploiting insensitivity is not straight-
forward, and this is because a feature which appears once in a high-level model may be

represented in many states of the underlying stochastic process.

Henderson and Lucic [37] consider the conditions under which a GSMP may instead be
produced from an SPN. In their translation, SPN transitions are represented by active
elements; in this setting, all concurrently enabled generally distributed transitions carry
over their spent lifetimes to successor markings. The authors give a translation of

Matthes’ theorem for use with stochastic Petri nets:

Corollary 2 (Henderson and Lucic). The following two statements are equivalent:

1. The SPN model is insensitive to each generally distributed transition t.

2. The purely Markov process, i.e. when S = S’, has the property that for all mark-
ings j that enable transition t, the flux into j enabling t is balanced by the flux

out of j due to the death of t.

In general, the choice of successor state is time-dependent; consider two enabled transi-
tions, one of which, ¢, is uniformly distributed between m and n. If n time units elapse,
then t must definitely have fired. If a transition fires before m time units pass, it must
not have been t. This property is called age dependent routing. Fortunately, a result
due to Rumsiewicz and Henderson [65] states that the time-averaged stochastic process,
with age independent transition probabilities, gives the same equilibrium distribution
as the original process, under the condition that the time-averaged process is insensitive
to its generally distributed transitions. The technical difficulty is constructing the time-
averaged mean sojourn time, given a set of transitions with arbitrary distributions, and
then the next state probabilities. Although our approach will focus on insensitivity of
SPA activities, it also encounters this difficulty. Matthes theorem is used in an SPA
setting in Section 4.3.2, where a GSMP semantics is given to a particular structure of

PEPA models; this makes precise what is meant by the insensitivity of PEPA activities.
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4.3 A Structure for Generally Distributed Concurrently
Enabled Non-Conflicting Activities

In this section, a derived combinator is presented which allows the construction of
models containing concurrently enabled activities and which are insensitive. Therefore,
these activities may be generally distributed. Sequential components directly generate
an SMP and are insensitive to all activities; however the models constructed here are
not sequential components in general. In essence, the models consist of a set of con-
current sequential components, with a synchronisation discipline. This takes the form
of an arbiter process which synchronises with two or more sequential components. The
synchronisation enforces a queueing discipline and causes each sequential component
to wait in a queue at a particular point in its lifecycle. When a process leaves a par-
ticular queue, it does so with a fixed rate particular to that queue. However, despite
such interaction, all activities not enabled while in the queue are insensitive to their

distributions.

In this section, the notion of the insensitivity of a PEPA activity is made precise.
Section 4.3.1 proceeds to define a new combinator, Qa¢(-), leading to two results.
Theorem 4.3.1 demonstrates the general solution form of queueing discipline models;
and Theorem 4.3.2 proves the insensitivity of a particular set of activities used in

queueing discipline models.

4.3.1 A Derived Combinator for the Queueing Discipline

In this section, the new combinator, Q¢(:), is introduced. It can be used to build
PEPA models insensitive to the distributions associated with particular activities. As-
sume an arbitrary PEPA model [, S;, therefore with no cooperations, upon which a
queueing discipline is to be enforced. Now a derived combinator is given, which defines

a cooperating process R4 and a cooperation set My, dependent on a set of action types
A.

Definition 4.3.1 (Simple Queueing Combinator).

n

def
Qa(S1.--. . 8a) = (J] 50 BT Ra (4.3.1)
i=1
An intuitive meaning for this notation is that Q 4(S7,... ,S,) allows each S;,1 < ¢ <n,

to proceed in parallel, independent of each other, and only enforces synchronisation of
each S; with a distinguished process, on action types determined by each S; and the set

A. If each S; of a subset of processes currently enables an activity whose action type
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is in A, each S; must ‘queue’ to perform its activity. Therefore, at any one time, only

one of the queueing S; processes is allowed to proceed.

Let A be such that for each a € A, there exists a unique S; such that (o, r) € Et(Si)
for some r; and for each S, there exists a unique a € A such that (a,r) € ﬁt(Si) for
some r. Next some definitions are given which allow the specification of a cooperation
set M4 called the arbiter synchronisation set. This procedure is mechanical, and could

be simply automated.

Definition 4.3.2 (Enabling action type). Let P be a process, and a an activity.

Then ( is an enabling action type for a in P if

e for all derivatives P’ of P such that P' =, there exists a derivative P" # P’
(B,r)

such that P"——P’ for some r,

B,m)
e for every derivative P" of P such that for some r, P"——P’, it is the case that

) 2N
An enabling action type for a can be viewed as the type of an activity which may
only be performed immediately prior to the model enabling a, and which if performed,
always leads to a being enabled. The set e4(P) is a set of enabling action types for those
activities of P with types present in A. An assumption is made that for 4, j, the enabling
action types of process S; are distinct from those of .S;, that is that e4(S;) Nea(S;) =0,
for ¢ # j. This ensures there is no confusion over which component is about to enter
a particular queue. Furthermore, for the models studied in this chapter, it is assumed
that for every queue activity a that may be enabled by a process P, there exists an

enabling action type for a in P.

Definition 4.3.3 (Arbiter synchronisation set). Let P = Q4(S;,...,Sy,) be a pro-
cess with a queueing discipline. The arbiter synchronisation set M4 of P is given by
AUey (P)

From here, a process R4 is defined which enforces the required queueing discipline. R4

is called an arbiter process.

Definition 4.3.4 (Arbiter process). Let P = Q4(S;,...,S,) be a process with a
queueing discipline. Let Acta(P) =4 {(a, 1) € Act(P):a € A} denote the set of queue

activities belonging to process P.

The arbiter process for P is given by Ry (y, defined as
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def
= Zlgign ZaeA ZﬁECa(S',‘) (6’ T)'RA’<Si>

def
RA,<sj,sm,...,sn> = Z.g{l.sién }ZQGA Zﬁeea(si) (/67T)'RA’<Sj’Sm:---:Sn7Si>
iZ{j,m,...,n
+ (Oé, T)'RA,<Sm,...,Sn>v |{Sjava"' 7Sn}|< n

def
Ras; 8m0 S0 = 2o (O T)Ra(S Sn)s Sy Smsevv s Sntl=n

(a,r)e;laA(Sj)
(o, r)EACtA(S;)

This arbiter process can be viewed as a PEPA definition of a queue, which enforces an
ordering on the processes it controls. The size of the queue specified by the combinator

is equal to the number of processes given as the combinator’s arguments.

4.3.1.1 A Restriction on Activity Rates

The arbiter process given in Definition 4.3.4 only performs activities which are passive
with respect to the model with which it interacts. This simplifies the definition, and
ensures that the arbiter does not affect the rate at which any activities are performed.

However, in order to gain insensitivity results, an extra restriction is required:

All queued processes must perform their queue activities with a rate
fixed for the particular arbiter process and number of customers in
the queue (that is, the mean of the distribution with which a queued
process performs its queue activity is common to all queued pro-
cesses, and may vary only with queue length).

It is a mechanical task to alter a PEPA model with a queueing discipline such that
it conforms to this restriction. Recall that the PEPA definition of a model with a
queueing discipline over the action set A is given by

n

Qa(S1.- . 52) = (J] 80 B2 Ra

i=1
where R4 is an arbiter process and M4 is an arbiter synchronisation set. Now a simple
translation of the current queueing discipline model is defined such that it conforms
with the required rate restriction. Crucial to this translation is the use of PEPA’s
passive activities. Currently, the arbiter restricts the behaviour of processes, but does
not affect the rate at which they perform activities. The idea behind the translation is
that each process’s right to individual behaviour in the queue is removed, by making
the queue activity passive, so that the queue defines at what rate processes may pass

through.

Definition 4.3.5 (Rate replacement). Let P be a PEPA process and A a set of
action types. Then Py__,1 is the PEPA process where each occurrence of a mnon-
passive activity (o, 1) such that o € A is modified such that it becomes passive, that is

it is changed to (o, T). Pa—_ 7 is defined on the structure of P as
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PEQ[}LQR QA—)TBSRA—>T
PEQ+R : QA—)T_'_RA—»T
P = Q/L : QA—)T/L

P=(a,r).Q : (a,T).Qa—T1ifae A
P=(a,r).Q : (a,r).Qa—71ifadA

. def
otherwise : Qa1 where P = Q

Now, given a queueing discipline model Q4(Sy,...,S,), let r; represent the rate at
which S; performs its queue activity. The following modification to the arbiter process

is made.

Definition 4.3.6 (Rate restricted arbiter process). Let P = Qa(S7,...,S,) be
a process with a queueing discipline. Let & be a sequence of rates (£1,... ,&,), which
defines the rate at which any S; will perform its queue activity dependent on the current

queue length. Then the arbiter process rate restricted by &, Ri, is defined as

def
Ri,() = ZlSiSn ZaeA ZﬁEea(Si) (/Ba T)RE (

A, (S:)
¢ def 3
R (8, S sS) = Zig{isnignn DA 2peea(s) (B T By s s s
+ X &) R s sy 1S5 S Sl <n
def
RﬁMSj,Sm,m,M = % (&) R 5 syr (S5 Smseee s Su)l=n

(a,7) E@A(S’j
(o, r)EAct A(S))

Now it is a simple task to write out the definition of the rate restricted queueing

discipline model.

def -
Qag(St 80 = ([ Sia—r) BARS (4.3.2)
i=1

4.3.1.2 Multiple Queues

Now a definition is given for a model with several queueing disciplines. This is a
straightforward extension of the model structure used to build models with one queueing
discipline. For 1 <i < N, let A; be a set of action types such that for 1 <i < j <N,

AiNA; =0, A = Uf\;lAi; and &; a finite sequence of rates, as before.

Definition 4.3.7 (Extended Queueing Combinator).

N

def é
Quarr Anien) (5153 80) = (o (] ] Siae—) Efl RS)... o RY) (4.3.3)
i=1

This notation is cumbersome, and so the shorthand @, (S, ... ,S,) is used to represent
Q<A1,£1,... 7AN5§N> (SZ geeey Sn)

Now, an important property of these models is exhibited with a simple lemma.
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Lemma 4.3.1. Q,(5;) ‘" Q.(8!) if and only if

Ou(Stvee Siveee s 82) YO (S0hn S0 S

Proof. Both directions are proven.
Case = : By Definition 4.3.7, Q,(.5;) is of the form
(oo ((Sia, 7 152 Ra,) 152 Ry,)... MDEN Ra,)

for particular R4, and M,,. Consider any inference tree for Q,(S5;) =5 Q,(8)).
Since each Ry, is restricted such that it can only evolve in cooperation, then

necessarily any a-transition made by @, (S;) must derive from a transition of the

(a9)

form S;a, .7——8;4 __ 1 for some s. Now by the operational semantics of

PEPA, it is possible to infer

N (9)

IS4 —v——Sa—7 I || Sia, Il .- || Sna,—7 for some 1 <i < N
j=1

and therefore that

Q\(S1,...,Si, ... ,Sn)(a—’TQQX(S},... ,S!. ..., Sy) for some rate r

1

Case <=: By a reverse argument, any inference tree leading to
(1)
Qy(Styee s Sivee s 8n) == Qy(S1s... .8, ..., )

can also be used to infer
Al (@) ,
HSJ'A*—W—)SJA*—W 1 iAs—T [ ... [ Sva,—T
=1

and since every cooperation set is empty, this can lead to

(- (St B Ray) B Ra,)o P Ray)

(a,r)

e (St B9 Ray) B9 Ras)o B0 Ray)  (434)

and thus Q,(5;) (a_,r)) Qy(5)).
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4.3.2 Mapping a PEPA Queueing Discipline Model to a GSMP

To study the insensitivity of activities in queueing discipline models, this section pro-
vides a translation to a GSMP. Such a mapping was given by Hillston [43] for earlier
work on examining insensitivity of PEPA models. In this setting, a mapping is given
for a PEPA model as a configuration of top-level components, for example for a coop-
eration of two sequential components. The active elements of the GSMP are multisets
of enabled activities. Such a cooperation which would in general enable three active
elements one for the multiset of individual activities that each component could per-
form individually, and one for the activities on which each component must cooperate.
For example, consider the PEPA component

((a,r1).P1+ (v, 72).P2) B (e, 51). Q1 + (B, 52)- Q2 + (7, 83). Cs) (4.3.5)

Under Hillston’s mapping, this component is represented by the GSMP state

{(r,r2)} A, 89)} {(e 11)})

where t; = min(rq, s1)

(4.3.6)

The active elements present represent the individual abilities of both sides of the coop-
eration to proceed, and one element to represent the shared ability of the component
to proceed via cooperation. The PEPA model structure studied in this chapter is of a
restricted form, and so the GSMP mapping provided is more limited, and in particular

does not need to take account of arbitrary cooperation in PEPA models.

The approach used in this chapter is based on the consideration of PEPA models
of the form described in Section 4.3.1.2, that is, a collection of concurrent sequential
components with queueing disciplines. In this approach, an active element of the GSMP
is constructed from a sequential component as a multiset of pairs, where each pair is an
enabled activity and the PEPA derivative that results. Without a queueing discipline,
only simple models need be considered; these consist of the unrestricted cooperation of

sequential PEPA components. For example, consider the component given below.

((a, T]).P] —I—(’)/, T‘Q)Pg) H (ﬂ, 81).Q1 (437)

Under the new mapping, this component would be represented by the GSMP state

({((a,71), P1), (v, 72), P2l (B, 51), Q1)) (4.3.8)

The queueing discipline consists of a component, the arbiter process, with the potential
to interact with each of the sequential components; however the component has no
individual ability, and must cooperate in order to evolve. In this respect, the queueing

discipline provides a similar restriction to that described by Hillston in [46]. Its effect
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on the GSMP state is not to add active elements, but rather to reduce the number of

activities which constitute existing active elements.

Now a more formal definition is presented. Assume a PEPA queueing discipline model
P =Qy(S1,...,5,). Each state g € G is such that g € [[I"; S;, that is each state con-
sists of a size n cartesian product of active elements. For the form of model considered

here, there is a one-to-one mapping between GSMP states and derivatives P’ € ds(P).

Definition 4.3.8 (GSMP state). The GSMP state for derivative P = Q,(Sy,... ,Sn)
s given by

n

[TH(2,Qx(5)): Qx(S:) == @ (D (4.3.9)

i=1
(Note that this is a conventional cartesian product over sets.) The GSMP state rep-
resentation of a component P is denoted P. This definition gives a GSMP with some
simple properties. The completion of an activity results in the death of an active
element; Lemma 4.3.1 shows that with the particular restrictions that our queueing
discipline places on the sequential components that the death of an active element
corresponding to S; for some ¢ will not cause the death of any active elements for com-
ponents Sj, j # t. Since interest will be limited to studying when activities, and thus
active elements, can be generally distributed, this property is important it ensures
that the remaining lifetime of an active element representing an activity will persist
over a state change, unless the state change corresponds to the completion or disabling
of that activity. Since this is an alternative model for a PEPA process, it is important
that it preserves the performance properties of the original model too. The lifetime of

an active element is defined next.

Definition 4.3.9 (Active Element Lifetime). Let s be an active element present in

state P. The lifetime of s is exponentially distributed with mean

-1

3 r) (4.3.10)

{((a,r),Qx(5")esh

The instantaneous rate of departure from state P is denoted by Q(P), and given by

PSS

r
(a,r)eAct(Qx(Ss))

Since an active element is a multiset of activities, then the death of an active element
also corresponds to the disabling of more than one activity in general. This interpre-
tation is correct, since the multiset will represent competing, and therefore mutually
disabling, activities, as the result of a sequential component offering a choice. When
an active element s of a state P dies, the probability that the next state is P is given

by a probability distribution p(lf” P, s). This is defined as follows.
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Definition 4.3.10 (GSMP next-state probabilities). Let P =Q,(S7,....5),

and P' = Qy(S1,... ,S’;,...

element that dies in state P, the probability that the next state is P s given by

,Sn) such that P —— P’. Given that s; is the active

p(P P, si) = 1(j :i)(Zr/Zr> (4.3.11)

w 14

where W = { (1), Q(S)) € 5i:Qy(5) ™ Qu(SDI} and V = {((. 1), Q4(S))) € sl

The probability that the next state is P’ is denoted by ﬁ(ﬁ’,p’), and s given by
Yy p(P Pysi).

Although not concise, these definitions are intuitive. An active element s of a state p
is a multiset of pairs of activities and derivatives. The activities constitute a particular
subset of the enabled activites of P. These are used to specify the mean lifetime of s.
The derivatives capture how the GSMP can evolve on the death of s, and are used to

define the successor state probability distribution.

Now some simple results about the GSMP model are proved. First it is shown that
the GSMP model is a faithful representation of the original PEPA model; in particular

that performance properties are preserved.

Lemma 4.3.2. Let P = Q,(Sy,...,S,). Then q(P) = 4(P).

Proof. By definition (see [44]), q(P) = Z(a,r)e;la(P) r. Now,
arn=> 3 (by Definition 4.3.9)
T (@meActQy(s))
= Z T (by Lemma 4.3.1)

(a,r)EAH(Qx (1 evr,Sm))

= Z T
(a,r)e.;\gf(P)
=q(P)

O

Lemma 4.3.3. Let P = Q,(S;,...,Sn), and P (eur) P’ (therefore P = Q\ (S, ..., ]{,...,

for some j). Then p(P,P') = p(P, P").
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Proof.

p(P, P = Zp(ﬁ’; P, s;) - Pr(s; dies first)
i=1

. zn: 1G=0)(>r/3r)-(3r/ X 7)) (by Definition 4.3.10)
i=1 W v Vo e Ac(P)

= Zr/ Z r
w

(a,r)EAct(P)
= Z r/ Z T
U (ar)eda(P)
=p(P, P')

where

U = (@) :Qu(Stveee s S 82) Z2 Qu(Stseen S, S}

= (07, Qu(S)) € e Qy(Si) X2 Qu(SH]

Vo= {l((a.r), Qx(5) € eily

O

These results are almost self-evident by deliberate construction of the GSMP model, but
they illustrate that the GSMP performance model will faithfully represent the PEPA

model.

For a PEPA model, this GSMP mapping would result in active elements with expo-
nential lifetimes. However, in particular circumstances, generally distributed active
elements will be allowed, and it is shown that these do not affect the steady-state solu-
tion. At the process algebra level, the modeller would wish to use general distributions
when describing the duration of an activity. A generally distributed active element
representing a set of (albeit mutually disabling) activities results in a next state prob-
ability which is well-defined, but which is in general difficult to calculate. However,
note that where a sequential component does not currently enable a choice, then the
active element is represented by a single activity. In such circumstances, the next state
probability is trivial. Furthermore, despite the loss of behavioural independence of each
sequential component due to the restrictions of the queueing discipline, it is still the
case that such activities are provably insensitive. With this mapping, an analogous
form of Matthes’ theorem (4.2.1) can be used for PEPA models.

Corollary 3. The following two statements are equivalent:

1. The PEPA model is insensitive to each generally distributed activity a.

90



2. The purely Markov process, i.e. when S = S’, has the property that for all states
P that enable activity a, the flux into P enabling a is balanced by the flux out of

P due to the completion or disabling of a.

Comparing this with Corollary 2, it can be seen that the condition for the flux out of a
state looks to be different. The explanation for this is that each state of the GSMP for
a queueing discipline model is constructed as a multiset of pairs of activities and PEPA
terms, and the theory of insensitivity deals with the death of active elements of the
GSMP. If an active element of a queueing discipline model ‘dies’, one of the activities

that makes up the active element completes, and all the others are disabled.

4.3.3 Queueing Discipline Structure and Insensitivity

Given the process algebra definitions of the queueing discipline framework above, it
is now possible to formally analyse the structure of the models it produces. The aim
of the work in this chapter is to examine conditions for insensitivity of activities in
process algebra models. The first result gives insight into why the structure of models
built with the new combinator is related to insensitivity; it is shown that the solution
of such models is a product form over both the solutions to the individual sequential

components, and the current queue lengths.

Let there be a size-n set of sequential PEPA components S;, that is a set of components
each without the syntactic cooperation or hiding operators. Recall from Chapter 2 that

if P is a PEPA process, then °P is a process such that °P —— P.

Now assume a model of the form Q,(S;,...,5,) where x = (A1,&1,... . AN, EN)-
Therefore, A; defines the set of activities by which components S; may leave the jth
queue, and also implicitly defines which components S; may enter the queue in the first
place. It is assumed that for any 0 < ¢ < j < N, the sets of enabling action types
ea; and ey, are pairwise disjoint; this ensures that at each point in the evolution of
each S;, it may enter either one queue only, or none at all. Furthermore, it is assumed
that if a sequential process, S;, enables a queue activity, then it has no potential to
perform another activity (effectively, it must wait its turn in the queue); and that for
every queue activity of 5, there exists an enabling action type for that activity in S;.
Currently, processes may not leave a queue such that they move directly into another
queue, that is for any 0 <i < j < N, e4q, N A; = 0. This restriction is only in place for
simplicity, and indeed it is conjectured that the restriction is unnecessary. However the

extension remains as work to be done.

At any point, a number of processes may be queued due to the jth queue. Let g;

represent the current queue length and d; the maximum length (i.e. d; =[&;|), such
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that 0 < g; < dj. Let O represent the set of processes currently queueing; ©; those
currently queueing in the jth queue. If S; is currently at the front of the jth queue,
it may perform its queue activity a with action type in A; at a rate {j;;. Further,
Hj denotes the index of the process at the head of the jth queue, and T} denotes the
index of the process at the tail. If the jth queue is empty, both of these variables are
undefined. The notation is with respect to the state currently being considered, where

there is no ambiguity. For convenience, ;o is defined to be 0, for each j.

Finally, each sequential component is a PEPA process in its own right, and as such,
its underlying stochastic process has a steady-state probability distribution. Let m;(-)
denote the steady-state probability distribution of S;; then if S;' € ds(.S;), the long-run
probability of being present in S;" is given by m;(.S;). With all notation in place, the

theorem can now be stated:

Theorem 4.3.1. Let P = Q,(S1,...,S,). The steady-state solution of P is given by

n N dj n
W(P)ZéHWi(Si)'H H §ij - H Z "
i=1 i=1j=q;+1 Sg'i:eé(a,r)EAct(Si)

where 1/G is a normalising constant.

Proof

The proof proceeds by considering sets of global balance equations, and showing that
the proposed solution does in fact satisfy them. Each state of an underlying process is
identified with a process algebra term; this is legitimate since each model is a continuous
time Markov chain, and a one-to-one correspondence exists between model states and

process algebra terms.
First, consider the global balance equations for a sequential process S; in isolation.

There is no queueing discipline to restrict its behaviour, and so

e the flow out of the current state is due to individual activities enabled by S;; and

e the flow into the current state is due to all activities enabled by predecessors of

S; which may lead to S;.

The global balance equations are given by

flux out of S; = m;(.S;) - Z T
(a,r)EACt(S;)

flux into S; = Z i (°S;) - Z r

{°Si} {(a,r):°8;i—S;}

(4.3.12)
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Now consider the general case of global balance for P. For 0 < ¢ < N, the ith queue
will contain 0 < ¢; < d; processes (subject to the restriction that Zf\i 0% < n). The
flow out of P is given by

e activities enabled by each §; ¢ ©, that is individual activities enabled by compo-

nents which are not currently queueing; and

e for each queue j, the flow out due to the process currently at the head of the

queue (if ¢; # 0).
The flow into P is due to flow from predecessors ®P; it consists of

e individual activities enabled by a predecessor of S;, °S; € ©, where °P differs
from P at the i¢th sequential component only; this flow does not involve any of

the queueing disciplines;

e for each queue j, the flow from P which represents a system identical to P except
that the jth queue contains one more process, and where °P —— P is due to
the extra process leaving the queue; note that in this case, the extra process .S;
must not be queueing in the current state P—recall a process cannot enter one

queue by leaving another;

e for each queue j, the flow from °P which represents a system identical to P
except that the jth queue contains one less process, and where °P —— P is due
to a sequential process S; joining the jth queue; note that in this case, the extra
process S; must not be queueing in the predecessor state © P, by the same rule as

in the point above.

Notice that by construction of P = Qy(S1,...,Sy,), there is no direct cooperation
between any of the S;, and thus such terms do not contribute to the global balance
equations. Using the notation introduced earlier, the equations can be stated formally

as follows:

n N
flux out of P = m(Q, (57, ... ’S”))<Z Z r—I—Z&qi) (4.3.13)
i=1

(a,r)EACt(S;)

1
S;¢0
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flux into P = z”: Z T(Qx(S1,...,%Si...,8n)). Z r

dze(°8i: 050} (o) 05,725,

+ Z Z (QX(‘SJV'WOSZ':""SH))'ngj+1

? {08;:35:i=H;}
N
+ > > m(@Q(Sh. . %Sty Sh)) > r
Tjisjd:e%ned{OSTj} {(a,r): <>S'r (S)ST }

In order to prove the theorem, the proposed solution is substituted for the steady-state

distribution =(-), and it is shown that for an arbitrary state P of Q,(S7,... ,Sn),
flux out of P = flux into P

First, consider expanding the flux out of P.

n N d; n n N
flux out of P = <éH7ri(Si) . H H &ij - H Z r> . (Z Z r+ Z&%)
=1 1=1j=¢;+1 §i=€1®(a,r)EAct(Si) .5%1 1®(a,r)EAct(Si) i=1

(4.3.14)
This must be matched by the flux into P.

flux into P = Z Z A- Z T+ Z Z B - &jg+1

Ggol"SoBEOL ( yeg@ngy  dgel®Si A=}

N
+ Y > c. > r (4.3.15)

Jj=1 °Sr.
Tjis deﬁned{ T]} {(a,r): <>ST (%)ST }

where
A = H”J el HHfﬂkH > 7
]#z J=1lk=q;+1 Sq-eé)(a r)eAct(S;)
N dj n
B = GHﬂ'kSk -mi(° HHSM Ime-I11 > - > -
k k=1l=q;+1 I=q;+2 k=1 (a,r)GAct(Sk) (a,m)EACt(®S;)
#1 k#j
C = GH”Z i H H € - Hgﬂ H oo (4.3.16)
z;éT] k#ll ar+1 I=q; Z;’;ﬂ;(a ,r)EACt(Sy)
k€

First, observe that when a process °S; may perform its queue activity (evolving into

Si), it does not possess the potential to perform any other activity, and therefore

ActCS) ={(a,r):°5 5y — Y = Y ¢ (@347)

(a,r)EAct(® S;) (a.r)

{(a,7):°8; Si}
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Now consider the first term of Equation (4.3.15). For each S; not currently queueing,
by the individual balance shown in Equation (4.3.12), it is possible to simplify this term
to the following.

SRS CITIN | 1 OSS | SED SIS TR Sl

S; &@{QS :°5;¢0} ];1 Jj=lk=q;+1 g}zé(a,r)EAct(Sj) (a,r)EAct(S;)
“ (1
- Z <GH7TJ H H g]k H Z ’I"> . Z r
ot =1 1 1 1 (a,r)eAc a,r)EACt(S;
o%iz% ’ e ge@( JEA(S;) T (anr)EAC(S:)
(4.3.18)

Secondly, the second term of Equation (4.3.15) may be simplified. By construction
of the steady-state solution, it can be readily seen that the flow rate, j,,, can be
absorbed into a product term; and once again, by the individual balance given in

Equation (4.3.12), the whole term can be rewritten as follows.

> Y Agu-) X B Yo

1 {°8;:35:i=H;} fg {¢S;:3j:i=H;} (a,m)EAct(S;)

S€®
n (4.3.19)
= Z C- Z T
‘5§Z=1® (a,r)EACt(S;)
{¢S;:3j:i=H;}
where
1 n N dg dj n
A = EHWE(S]C)'TF’L'(OSi).H Lo e 11 > » > -
]fcjé% g;}l:qk-}-l l=q;+2 Slzz_é(a,r)eAct(Sk) (o,m)EACt(®S;)
1 n N dy, d; n
B = cllmso-mCs)-II I & Il 1T X2 -
Ifc?é% %;}l:q;ﬁ—l I=q;+1 Slj;%a(a,r)EAct(S’k)
1 n N dp, n
C = EHﬂ'k(Sk)'H IT &I > - (4.3.20)
k=1 k=1ll=q+1 szzele(a,r)EACt(Sk)

However, note that for ¢ such that 1 < ¢ < n, if the ith component S; is currently not
queueing, then the flow into the current state is given by the flow out of a previous state
due to the ith component being present at the head of a queue, and leaving the queue;
or by the ith component making a transition to §;, involving no queue. Therefore,

Equations (4.3.18) and (4.3.19) can be amalgamated to give the following.

i( [lwso MM e 1T Y ) X 0

k=1l=qy+1 k 1(a r)eAct(Sy) (a,m)EAct(S;)

O
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Next, consider the third term of Equation (4.3.15). First of all, the local balance of
Equation (4.3.12) can again be exploited, this time for each sequential component S;
queueing in the current state, but not queueing in the previous state. Then the sum
of activities giving the flow out can be amalgamated into the main product term; it is

replaced by removing §;,; and factoring it out to the right hand side of the expression.

> YooY

:1 ¢ o, T
Tjisjdeﬁned{ Sk (o) °s57, s}
ol 1
- (G T T H@z I X ) X o
Tjisjdze}ined 1275:’.’;] ﬁ;ﬁ” =gt ' kk;éjl (a,r)€Act(Sk) (Oc,r)e.Act(STj)
SLEO
N 1 n N dk d] n
= Z <5HW1(51)H H &kt - H - H Z r) - Ejo;
j=1 i=1 k=1l= l=q; ke
Tjisjdeﬁned ' k;él' et Gl g (r)EA(Sy)

SEre THall T o)

k=1l=qr+1 k=1
=qk Ske@(a ,7)EAct(Sk)

(4.3.22)
where
1 n N dp, dj n
D=z Hﬂi(si) 7 (CSn) - TT IT & TS IT Y. - (4.3.23)
LZ;%J z;}l:q’ﬁ_l I=q; kk;é:%] (oyr)EACt(Sk)

SLEO

The final step in the simplification is due to the fact that &;,, = 0 if g; = 0 by definition.
From here, it is clear that in both Equations (4.3.21) and (4.3.22), each central bracketed
term does not depend on the index in the outer summation. These terms are added

together to give the following.

S (e Hea Il ¥ ) ¥ o

i=1 k=1l=qr+1 k 1(a r)eAct(Sy) (a,m)EACt(S;)

S fifien £ e

k=1l=qp+1 k=1
QK SkGG(a’T)EACt(Sk)

:(éﬁm(&)-ﬁ ﬁ &ij - ﬁ > r> . <§n: > T+§;Eiqi)

1=1j=¢;+1 gizele(a,T)EAct(Si) S€®(a ,r)EACt(S;)

5’1
O

(4.3.24)

This final term equals the flux out of P presented in Equation (4.3.14), and so the

theorem is proven. O
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Now that the general form of the steady-state solution has been exhibited for models
built with the queueing combinator, it is straightforward to examine further sets of
balance equations. The main interest in this chapter is insensitivity, and the next result
looks at insensitivity balance equations for particular activities present in queueing

combinator models.

Theorem 4.3.2. Given a PEPA model P = Q,(S1,...,Sy), P is insensitive to each
activity in Act(S;), for 1 < i < n, with the exception of those activities in the set
UiL, Ai Uea,(S)).

Proof

This proof ignores consideration of all activities involved in queueing, since the aim
is to show which activities of the original sequential processes may be assumed to be
generally distributed, without modification—the queueing combinator insists that the
queue activities of the original process’s are altered such that their duration depends

on the current lengths of the queues in which the processes reside.

The proof proceeds by constructing the insensitivity balance equations for the required
activities, and using the general form of solution for these models to show the equations
are satisfied. Since it is the case that in the GSMP translation of a queueing model,
active elements are multisets of activities, the proof actually considers the insensitivity
of a collection of mutually disabling activities; the ramifications of this fact are explained

after the presentation of the proof.

As given in Corollary 3, in order for a PEPA process to exhibit insensitivity balance
with respect to an active element s, it is necessary that for every derivative P in which
s is enabled, the flux out of P due to the completion of s is equal to the flux into
P from derivatives in which s is not enabled, that is the flux into P enabling s. Fix
a state P = Qy(S1,...,5,). An active element e will correspond to a multiset of
activities enabled by one of the constituent sequential components; let this component
be S;. Therefore it is implicitly assumed that at least one of the constituent sequential
components is not currently queueing. The insensitivity balance equations are formally

stated as follows.

flux out of P due to death of s = 7(Q(S1,...,Sy)) - Z T (4.3.25)
(a,r)EACt(S;)
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flux into P due to birth of s = Z T(Qy(St,-..,%Si, ..., Sn)) “&jg;+1
{OSZE‘]ZZHJ}

+ ) m(Qy(Styee%Siy e S0)) Y

©g..0Qg. a,r
(°5::%5:¢6} (o) o8 205}

(4.3.26)
Notice that there can be no flux into P leading to the birth of s due to any sequential
components entering a queue; it is assumed that in the current state .S; is not queueing,
and the evolution of every other S;, whether restrained by the queueing discipline or
not, cannot lead to the birth of s. Substituting the solution exhibited in Theorem 4.3.1

results in the following.

flux out of P due to death of s = A- Z T (4.3.27)
(a,r)EAct(S;)

flux into P due to birth of s = Z B - &jg;+1
{°Sz- : aj : ’L:H]}

+ Y c- > r(4.3.28)

{¢8;:°59;¢0} {(a,r):OSi(ﬂ)Si}
where

1 n N d; n
T 1R 1 LT

i=1 1=1j=q;+1 S?ize%_)(a,r)GAct(Si)

N dp

B = clIm@mes) [T e Il e 1T X v X -

;7;; ]zi}l:qk+1 l=q;+2 b{j;%_)(a,r)EAct(Sk) (a,m)EACt(®S;)
1 n N d; n

¢ = gllmesy-mes)- T I e IT X - (4.3.29)
j=1 j=lk=q;+1 J=1 (a,r)€Act(S))
i SjG@

However, immediately the two terms in Equation (4.3.28) can be amalgamated, be-
ginning by absorbing the outer queue dependent rate into the solution term. This

simplification leads to the following.

flux into P due to birth of s

n N dg n
- Y (e THell ) %
{°8;:3j:i=H,} ’i;:e} k=1ll=qr+1 S/i:el@(a,r)eAct(Sk) (a,r)EACt(®S;)
T N dj n
+ > <5H7Tj(3j)'m(°5i)'n I s 11 > 7“)' > r
{°8;:°5,¢0} :7];1 j=1lk=q;+1 %zg(a,r)EAct(Sj) {(ur):°8; (ﬂ))si}
(4.3.30)
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The first term of Equation (4.3.30) accounts for the departure from predecessor states by
¢S; leaving the head of a queue. By assumption, the queue activity is the only activity
enabled by °S; in this position, and so by Equation (4.3.17), the rate of departure can

instead be given by > r. This makes the correspondence between the

{(ayr) 05,05,

two terms clear, and they can be amalgamated to give Equation (4.3.31).

flux into P due to birth of s

:Z( Hﬂ'ksk i (© ﬁHf/cz H > T)' > "

{28} ]Icg;él /’g#}l =qp+1 A5{1E%a(oz,1")6.;4615(5’1”«) {(ayr): 0520 8,3
(4.3.31)

(e;7)

Finally, the local balance given in Equation (4.3.12) can be exploited for component

Si, leading to the following term.

flux into P due to birth of s

(GHWk Sk) - H H &kl - H Z r)- Z r (4.3.32)

k#ll qr+1 Slc 1 (a,r)€Act(Sk) (a,r)EACt(S;)

This is equal to the flux out of P due to the death of s as given in Equation (4.3.25),

and so insensitivity balance holds for all such active elements s. O

4.3.4 An Example Model

A simple example is now given to illustrate the structure of models generated using the

new combinator. Consider the following definition of a simple processor.

cry; (compute, r - §).(claim;, \).(release;, u). CPU;
+ (compute,r- (1 —9)).(sleep,s).CPU; (4.3.33)

Its purpose is to repeatedly perform work, and then either idle with high probability,
or attempt to access a shared memory resource with low probability. Now consider the

following model:

MultiProc ® Q4 ¢(CPU;,... , CPU,)

where A = {release;:1 <i<n} (4.3.34)

This defines a model where n processors compete for access to one shared memory
resource. If a processor is using the memory at the time another attempts to access it,
the latter processor is blocked, and forced to queue. If 7 processors are currently queued,
the rate at which the CPU at the head of the queue performs its release activity is

given by &;. In this example, it may make sense to set & = &; for all 7, 5. Theorem 4.3.2
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then guarantees that all activities except {claim;, release;:1 <i < n} are insensitive
to the form of their distributions. For example, the model will be guaranteed to have the
same steady-state solution if any sleep activity is instead considered to be uniformly

distributed between two positive values, with mean 1/s.

4.4 Discussion

An interesting fact about this insensitivity result is that the given syntactic characteri-
sation is distinct from the known criteria for SPA models which generate product form
solutions (over submodels). A model which exhibits product form over submodels may
be restricted in form, but allows for an efficient solution. The components of a model
can be solved in isolation, and then combined to give a solution for the model as a whole.
This approach avoids the computational burden involved in typical non-compositional

techniques.

Harrison and Hillston [33] explore SPA structures which give rise to quasi-reversible
(QR) models. Consider a stochastic process whose state is represented by a countable
set of elements. An input process causes the stochastic process to change state by
changing the state of one of the elements; or an output process may reverse this state
change by converting the element back. The process is QR if and only if for all times
t, the current state of the process is independent of the input process after ¢, and
the output process before t. The authors show that a PEPA model consisting of a
cooperation of processes has a QR stochastic process if considered pairwise, each of the
cooperations form a channel. This means that a cooperation between two components
leads to a derivative for which a cooperation is available to return the model to the

original state.

Later work, by Hillston and Thomas [46], takes advantage of a generalisation made by
Boucherie [10], where several distinct product form results for SPN are shown to be
special cases of a simple exclusion mechanism for a product process. In their setting,
subcomponents compete over resources, with the restriction that if a subcomponent
possesses a resource which another would like now, or at some point in its lifespan,
then the rival is blocked until the resource is freed. The syntactic form of the PEPA
models which generate such product form solutions look similar to the form presented
in this chapter. Further work is required to determine if the two approaches will easily
combine. However, resources claimed in the Boucherie setting are denied to others,
which if they wish to use the resource now, or at some future point in their behaviours,
must block. Clearly, the arbiter processes present in a queueing discipline model do not

act as resources in this way, since they do not prevent the evolution of other components
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not currently queueing. Moreover, note that our approach differs in that the structure is
described entirely in terms of a new derived combinator, which allows the construction

of models with the stated insensitivity property.

Sereno [68] takes a different approach to finding product form solutions for PEPA
models. He finds conditions on the traffic equations that guarantee the existence of
a product form solution. The traffic equations for a PEPA model are analogous to
those used in queueing theory, and are formed from the routing process generated
by considering activities as states themselves. Again, the approach presented in this
chapter is in a different direction, in that an operator is defined which guarantees a
product form, and with which insensitive models may be constructed. Note that the
existing work on product form for process algebra contains many common ideas, and it
is conjectured that it will be possible to amalgamate thus-far separate ideas under an

encompassing theory.

The product form solution for queueing discipline models strongly suggests a link to
the well-known class of BCMP network queueing models [4]. This similarity is worth
exploring further and formalising. The BCMP theorem states that queueing networks

with nodes which can be classified as

e First come first served (FCFS); or
e Processor sharing (PS); or
e Infinite server (IS); or

e Last come first served—Premptive resume (LCFS-PR)

and which also contain multi-class traffic have a product form solution for the steady-
state probability distribution of the node states. A comparison with the structure of the
models presented in this chapter suggests that it may be possible to view them too as
networks of queues; each bottleneck point may represent a FCFS node, where the service
time for each customer is identically distributed and dependent on the queue length;
and the non-queueing activities could be seen to represent IS nodes, where notionally,
each customer is delayed only by a service time. This comparison has not been made in
any detail, and remains as interesting future work. However it may suggest directions
in which to extend our construction an obvious first step is to consider the PEPA
analogues of PS and LCFS-PR nodes, and investigate whether they may be simply

integrated into the construction as it stands. A tentative first attempt at a processor
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sharing node is given in Equation (4.4.1).

PSp def Z (ap,p/n).PSp\ (P}
PeB
+ > (Bp. T).PSpuqpy
P¢B
where n =|B| (4.4.1)

Processes are captured by cooperation with an activity of type 3; then are forced to
leave the node by cooperation with an activity that guarantees to reduce the rate at
which they leave by a constant dependent on the current number of processes present
at the PS node. This is built in an attempt to be analogous with the BCMP definition.
The next step would be to generalise the definition of the queueing combinator and
the current product form solution term. Although this work remains to be done in its
entirety, it is the author’s hope that this might provide a beginning for a comparison

of process algebra and queueing networks in general.

It is worth noting that the queueing structure presented in this chapter by no means
captures all insensitive process algebra structures. This can be seen via a simple exam-

ple. Consider the following definitions and process.

p (a,7).P'
def
Q = (5).Q
def
= B p B ()X
R prEpEQEQ (4.4.2)

R consists of a four-way cooperation between processes. This ensures that if one of
the subcomponents wishes to perform an « activity, it must wait for all others. A
result of this structure is that the transition system for R contains only one transition
corresponding to this a activity; in effect, the state space becomes a bottleneck at this
point, where one transition represents the cooperative progress of each subcomponent.
Therefore, viewing the model as a CTMC, there is one state in which this transition
is enabled, and in the successor state, the activity is completed and thus disabled. It
is simple to see that global balance must equal insensitivity balance at this point. The

queueing combinator does not capture models with this form of cooperation.

To summarise, this chapter presents a new derived combinator for PEPA. This combi-
nator is used to construct models of sequential processes which synchronise according to
a queueing discipline. It is shown that despite such synchronisation, the insensitivity
of residence time in particular states of the model is guaranteed, and thus insensi-
tivity of PEPA activities is also guaranteed. The modeller may notionally employ a

non-exponential distribution to model the duration of a particular set of activities.

102



Chapter 5

Insensitivity Conditions for
PEPA Models

5.1 Introduction

This chapter studies more general conditions for insensitivity within PEPA models.
The work is independent of the GSMP model, and can be viewed as an extension of
earlier work by Hillston on weak isomorphism [44]. A formal extension to the language
of PEPA is presented, which allows for generally distributed activities, and it is shown
that the models are insensitive to these activities under certain balance conditions. In
this way, it is shown that any structural condition which guarantees the form of balance
exhibited here will guarantee insensitivity of a particular set of activities, or at least
insensitivity of residence time in particular states of the process. An original motivation

for this work was to give a more general performance-preserving equivalence relation

for PEPA.

The chapter is organised as follows. Section 5.2 introduces the language gPEPA, a for-
mal extension to PEPA which allows generally distributed activities in a limited way.
Next, Sections 5.2.1-5.2.3 deal with the construction of faithful models for a gPEPA
process; the performance model is also a continuous time Markov chain. Section 5.3
then describes the sets of balance equations relevant to both global balance, and insen-
sitivity balance. This leads to the main proposition of the chapter, in which it is shown
that particular activities may be generally distributed, if a set of insensitivity balance

equations are satisfied. Section 5.4 discusses the ramifications of this result.

5.2 Extending PEPA with General Distributions

The work presented here extends PEPA to incorporate activities which are generally

distributed. This is done in a restricted way, under conditions which are described in
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this section. The work extends that carried out by Hillston, described in Chapter 6
of [44]. The extension to PEPA is called gPEPA and an example of a gPEPA process

1S
7Y (a,r).(8,X).7

PEPA specifies that all activities are exponentially distributed. The time-to-complete
of such an activity is characterised by one real number, the rate, which is the parameter
of the distribution. gPEPA introduces generally distributed activities. The parameter
X denotes a random variable governing the length of time which will pass before (3, X)
can or will occur (and not the rate at which (8, X) can or will occur). The distribution
function associated with X is denoted by Fx(-) such that Fx(t) = Pr(X <t). The
behaviour of P above is as one might expect; a is performed at rate r followed by 3
after X units of time; then this behaviour repeats. To make sense in this continuous
time context, random variables which may take non-positive values are disallowed. The
set of all such random variables is denoted by PRV. To aid in distinguishing the two, a
gPEPA process name will always appear with an overbar, e.g. P. The restrictions and
assumptions on, and the consequences of, the use of general distributions in gPEPA are

now described.

o A generally distributed activity may not synchronise with any other activity. This
is a strong condition, and means that any synchronisation (cooperation) between
processes must take place on exponential activities. Note, however, that these
processes may still enable generally distributed activities. Consequently, if a
sequential component S; of a process completes a lifetime of a generally distributed
activity, then any difference in the derivative vector of components must only be

in the ith place.

e A synchronisation of sequential components may not lead to a state where more
than one sequential component newly enables a generally distributed activity. This
restriction does not prevent two generally distributed activities being newly en-
abled by the same sequential component, but then analysing transition probabil-

ities is a separate, and of course difficult, issue.

In order to understand the behaviour of gPEPA processes, a semantics is necessary. A
feature of this semantics must be that the remaining lifetimes of generally distributed
activities are retained upon transitions—the memoryless property of the exponential is
not now available in general. The approach taken in this chapter is to use a structured
operational semantics which induces exponential and probabilistic transition relations.

The role of probabilistic transitions will be explained in the next section. Furthermore,
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the relationship between a gPEPA model and a (potentially infinite-state) continuous

time Markov chain will then be detailed.

5.2.1 Representing General Distributions

In this chapter, general distributions are represented by the Erlang mixture, a proba-
bilistic sum over a set of convolutions of exponential distributions. The k-stage Erlang
distribution, consisting of the convolution of k£ consecutive exponential distributions
each with parameter v, is denoted E(k,v). An Erlang mixture distribution is a (gen-

erally infinite) probabilistic sum of Erlang distributions, and is represented by

S p(k)E(k, )
k=1

The function p(-) forms a probability distribution over the event space {i € Z,i > 1},
and therefore the probability an Erlang mixture will begin with k stages is given by
p(k). It has been shown that the Erlang mixture distribution can arbitrarily closely
approximate any general probability distribution [24] (so long as the distribution has a
non-negative support set). Furthermore, it may then be possible to obtain results for
arbitrary general distributions. The following lemma establishes a useful result that

will be employed later.

Lemma 5.2.1. Consider a renewal process with mean renewal time distributed as
S ore i p(k)E(k,v). If the process is observed at an arbitrary time, then the probabil-
ity that there are r stages left to complete is given by

H(r)=— (me) (5:2.1)

k=r
where T is the mean time until the next renewal.

For a proof, see [24]. Notice that as a special case, the probability that there is one

lifetime left to complete is given by 1/v7.

5.2.2 Probabilistic Transitions

A ¢gPEPA model with generally distributed activities can be interpreted as one with

probabilistic transitions, and without general distributions.

Definition 5.2.1. A function p approximates X if and only if for all € > 0,t > 0,
|Fx (t) — 22521 p(1) E(G, v)(t)|< €, for some fized v.
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Therefore, p(-) approximates X, if with a suitable choice of v, p(-) defines a probability
distribution over a set of Erlang-k distributions such that the distribution function of
the mixture is arbitrarily close to Fx. A function with such a property is subscripted
with the random variable, for example px(-). The rules given in Figure 5.1 define the
first stage of a probabilistic semantics for gPEPA. H and J range over multisets of pairs
of gPEPA processes and random variables; A and B range over multisets of random

variables. Collectively, this set of rules is called Pr Rules.

These rules translate a generally distributed behaviour into what will be interpreted as
a set of probabilistic transitions. The intuition is that such transitions will be resolved
instantaneously, and the process will then behave like a linear PEPA process with a
fixed number of lifetimes—the choice of probabilistic transition defines the number of
lifetimes chosen. After the linear process completes each lifetime, another probabilistic

choice is made, this time to determine the successor derivative.

Let the operational rules for PEPA processes be called PEPA Rules. Then the seman-
tics for gPEPA processes are given by insisting that all probabilistic rules be applied
first, if possible; that is, given a gPEPA process, if a probabilistic transition can be
inferred, then for that process, no conventional exponential transitions can be inferred.

This assertion is formalised in Section 5.2.2.1.

_ Ak

Definition 5.2.2. For a gPEPA process P, let G = {{P --» c[(H,k)]:k € N} be
the multiset of probabilistic transitions it is possible to infer by Pr Rules, for some
static context c[.]. Let pg(-) be a function over k € N such that pg(-) approximates

mingx . (r,x)erp- Then pg(-) is the probabilistic choice resolving function for G i.e.

Ay
-—>

Pr(P (H,1) is chosen) = pg(1)

Definition 5.2.3. (H,k) is a multi-stage linear PEPA process such that

(r,r).(H,k—1) if k>0, where r is the fized mean of the Erlang
def . . . .
(H, k) = mixture which approzimates mingx . (r x)em)
(H,0) otherwise (for which see Figure 5.2 later)

Pr Prefix states that when a generally distributed activity is enabled, it is possible to
infer a probabilistic transition to a k-stage compound process. Notice that from one
generally distributed activity, it is possible to infer countably infinitely many probabilis-
tic transitions. This is because the general distribution is modelled by a probabilistic
sum over Erlang-k distributions. In fact, the probabilistic choice resolution function
(Definition 5.2.2) gives a probability space over all such k; this will give the probability
of selecting any particular Erlang-k sequence of activities, so as to accurately mimic

the generally distributed lifetime.
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Pr Prefix

(0, X).F 5 ((m 301 8)

for all k € N
Ak Bii
Pr Choice F -5 (H k) G- (J,7)
AWB,j
F+a™ 5 (Hw,j)

for all j € N

Ak a,r
Pr Mixed Choice  F -5 (H,k) G @7

R G/
- Fx(t) =1—eT"t
Al ,
Fye ™M me e xp.)

O g5 1k
AW{X1},g
Fye™ UM g x5

Fx(t)=1—e"

for all j € N

Ak
Pr Hide F -—s (H,k)
A
FIL S (H k)L

Ak
Pr Coop

Ak
Pr Const

Figure 5.1: Introducing probabilistic transitions
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Pr Choice ensures that meaningful probabilities can be inferred when a choice is
available over generally distributed activities. Competitive choice raises an important

issue. Consider the following gPEPA process:

P € (0,X)Q+(8Y)R

where Fx = Uni(1,3), Fy = Uni(2,4) (5.2.2)

Both enabled activities are generally distributed. However, which activity completes
first (and thus disables the other) is dependent on how much time has elapsed since
both activities were enabled. If strictly between 1 and 2 units of time have passed, the
second activity cannot possibly have completed. Therefore, it should not be possible
to infer this transition, during this time period. In the terminology of Rumsewicz and

Henderson [65], P exhibits age-dependent routing.

The approach taken by rule Pr Choice is to merge the distributions, in the sense
that the random variables associated with the activities enabled by each side of the
choice are pooled together. The probabilistic choice resolution function ensures that
the weighted sum over Erlang-k distributions will give an expected duration equal to the
expectation of the minimum of the pooled random variables. When a branch is chosen,
and each lifetime has run down, the probability that one possible derivative will be the
choice of successor is given by the time-averaged probability that the random variable
of the activity which leads to it is less than every other candidate random variable.
This means the approach taken is time-independent; the probability of one derivative
resulting does not change as time passes. It is certainly not clear that this is consistent
with intuition—for example, consider the intuitive time-dependent behaviour of the
gPEPA process shown in Equation (5.2.2). However in the cases examined in this
thesis, the correctness of this translation can be shown by making use of the following

result due to Rumsewicz and Henderson [65]:

Theorem 5.2.1. (Rumsewicz and Henderson) Let P be a (stochastic) process with
age-dependent routing probabilities. Let Q be process P except with time-averaged age-
independent routing probabilities. If () is insensitive to its generally distributed transi-

tions, then the equilibrium distribution of P is equivalent to that of Q.

This means that when it can be shown that the time-averaged process underlying a
gPEPA model is insensitive to its generally distributed transitions, the distribution
of this process is provably equivalent to that for the original time-dependent process,
and thus there is no loss of accuracy in the solution provided. The result presented
in this chapter will demonstrate partial balance conditions guaranteeing insensitivity

of residence time in particular components, and of the enabled generally distributed
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activities, allowing Theorem 5.2.1 to be applied. Pr Mixed Choice ensures that when
a choice context enables both a generally distributed and an exponentially distributed
lifetime, that the expomnential random variable is subsumed, and the competition is

treated in the same way as for Pr Choice.

Rules Pr Coop and Pr Hide allow probabilistic transitions to be inferred within
static contexts. Notice that there is no rule allowing any kind of synchronisation on a
probabilistic transition—this is consistent with the restriction that processes may not
cooperate on generally distributed activities. Problems arise if both subcomponents of a
PEPA cooperation can perform a probabilistic transition. However this is forbidden by
the assumption that no two generally distributed activities may be enabled by processes
in parallel at the same time. Recall that this is allowed in a choice context, in which
case the outcome is captured by merging the competitors into one generally distributed
lifetime, and considering the expected duration as the minimum of the durations of the

competitors.

The final task is to define the second stage of the probabilistic semantics for gPEPA.
This consists of a set of rules, presented in Figure 5.2, which allows the inference of a
successor derivative once each lifetime has completed. Collectively, these are known as

Successor Rules. These rules induce a new probabilistic transition relation, this time

Successor
(H,O) _16') F;
it H={(F,X1),...,(Fn, Xpn)[}
and PI'(XZ < min{|Xj:(Fj7Xj)eH’j¢i&) =k
Succ Hide (H,0) LA
(H,0)/L %> F/L
k k
Succ Coop (H,0) -——» F (H,0) --» G

(H,0)<G 5 g poa(a0) -5 Fxaqg
L L L L

Figure 5.2: Choosing a successor derivative

where the transition is decorated with a value k € [0, 1]. This value k is to be treated
as the probability this transition will be chosen. That a probabilistic interpretation is

valid is stated in the following lemma.
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Lemma 5.2.2. Let H ={(F;,X1),...,(Fn,Xn)[}. Then Z{\(H,o)—ﬂF,-eH[}

Proof. Omitted. O

Successor chooses a successor from H = {(F1,X1),...,(Fn, Xp)[}, a multiset of pos-
sibilities. This is done on the basis of the random variables originally associated with
activities leading to these successors. Lemma 5.2.2 shows that the sum over the labels
of all possible transitions from a given (H,0) is equal to 1. The expression giving each
transition label k to derivative F; is the probability that X; will complete before any

other X;, 1 < j <mn,j# i, in an n-way race.

Rules Succ Hide and Succ Coop ensure that the probabilistic behaviour of a process
(H,0) can be inferred from within a static context. Note there is no such rule for a
choice context—this is because it is impossible to have a process of the form (H,0) + Q.

The following lemma proves this fact.

Lemma 5.2.3. Let P be a gPEPA process. Then by making transitions from P, it is
not possible to reach a process of the form (H,0) 4+ Q for any H, Q.

Proof. The proof is by induction on the structure of P. Of interest in this proof is that

it is necessary to consider processes built using generally distributed activity prefix.

Case (a,7).P’ :
(o)

By Prefix, (a,r).P’——P’. By the inductive hypothesis, P’ cannot reach
(H,0) + @, and so neither can P.

Case (o, X).P’ :
— xXhE
By Pr Prefix, (o, X).P’ {‘——[t) {(P',X)|},k) for all & € N. By definition,
({(P", X)|}, k) is equivalent to

k times

A

(7,0)e oo (1,0). (P, X)[},0)

By k applications of Prefix, the result is ({{(P’, X)[},0). By application of Suc-
cessor, the result is P’. By the inductive hypothesis, P’ cannot reach (H,0) + Q.

and so neither can P.

Case R+ S :
One of three inference rules may be used in this case—Choice, Pr Choice or
Pr Mixed Choice.

Case Choice :

This rule is only applicable if neither R nor S enable probabilistic transitions.
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_ (a,r) __ _ (a,r) __ _ (ayr)
By Choice, P——P’ if either R—— P’ or S——P’. Assume the former

(the latter case is completely analogous). By the inductive hypothesis, R

cannot reach (H,0) + @ and so P’ cannot. Since Fmﬁ, P cannot reach
(H,0) + Q.

Case Pr Choice :
e (L@ J,j7) if and only if both R 2 (L,i) and S B (J,k). In
similar style to the Pr Prefix case, R may evolve into some R’ such that
(R, X) € L, and similarly for § and S’. By the inductive hypothesis, neither
R nor S may reach (H,0) + Q; the multiset of derivatives reachable by P is

equal to LW J, and so P cannot reach (H,0) + @ either.
Case Pr Mixed Choice :

By a similar argument.

Case R BL<] S -
Both sets of inference rules, Coop and Pr Coop, lead to derivatives which retain
the static structure of P; therefore no derivative may be of the form (H,0) + Q

(exhibiting a dynamic choice context).
Case R/L :
By a similar argument to the case R D§ S.
Case PE R .
By either rule Const or Pr Const, the behaviour of P is identical to that of R.

R is guaranteed not to reach (H,0) + @ by the cases above, and so the same is

true for P.

O

It will be helpful to understand this system of rules with a worked example. In this
example, for the sake of analytic simplicity, the random variables used are assumed to

be exponentially distributed.

Example 5. Consider the following gPEPA model:

P Y (a,x)7
— def —7
Q = (BY)Q
B« (y,7).R'
- def = -
S = (P+Q) ™R
where o, B,y € L, Fx(t) =1 —e ™M Fy(t) =1 —e# (5.2.3)

Now the rules are applied to derive the possible transitions for S.
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(by PrPrefix)
-7 X l}:]

(a, X).P {7, X))}, 5)
x L‘m (by PrConst) {|Y|}z

P ({(P". X)}}.j) Q > ({(Q,Y)]},19)

(by PrChoice)

5, A YRR
P -—> P/,X ) /’Y ’k
! +Q e {7, X), (@ Y)} k) (by PrCoop)
(P +Q) b {7, X),(Q,Y)}, k) IR (by PrConst)
_ XY}k

g ({I(W,X),(@,Y)I},k)%ﬂﬁ

Note that any k may be inferred. The behaviour of ({{(P’,X),(Q",Y)}, k) is given by
Definition 5.2.53; it will perform k exponentially distributed T activities, each with a rate
r identical to that present in the Erlang mixture distribution which approximates the

distribution function of mingx yy.

E

mingx vy = 17670‘4’“”, so a degenerate mixture is suitable in this case, containing one
branch to an Erlang-1 distribution with parameter A+ p. By definition, the transitions

inferred are actually

k times

5 T At ). (P, X). (. Y)].0) BIR for all k

However, the probabilistic choice resolving function for this mixture, p{pgy'}(') 18 such

that

(0) 1 ifi=1

1) =

PRy 0  otherwise

Therefore the only transition possible in this case is
XYL

S s (Ta)‘+ﬂ)-({](FaX>v(@’Y)‘}’O)DLQE

It is impossible to now infer a probabilistic transition, and so using PEPA Rules as
usual, the T transition can be inferred. Now finally, the rules of Figure 5.2 are employed

to give the following.

(by Successor)

(by Succ Coop)

WP, X), (@ V)ho) 2 P

{7, X), (@ Y)] owﬂR PR

In this example with exponential distributions, it is clear the semantics will be in tune

with intuition—the expected time to resolve the choice will be 1/(X + u), and the prob-

112



ability that P’ will result is \/(\ + p), since:
|- r@arx
0
= / e M fx(t)dt
0

_ /°° ity gy (5.2.4)
0
=A/(A+n)

Let gPEPA Rules = Pr Rules U Successor Rules. By use of gPEPA Rules,
the behaviour of every gPEPA model with generally distributed activities may be un-
derstood in terms of probabilistic transitions and exponentially distributed activities

only.

5.2.2.1 Consistency of the Probabilistic Rules

It was stated informally in Section 5.2.2 that in order to derive a transition system
for a gPEPA model, the rules for probabilistic transitions must be applied first, such
that a process could not enable any exponential transitions if it enabled probabilistic
transitions. This simplified the presentation, but more formally, the transition system
specification should contain a modified version of each rule in PEPA Rules. These
modified rules require the addition of negative premises. For example, consider the rule

for exponential choice given in Figure 5.3. Such an exponential transition may only

(O"T)
Mod Choice E——FE' E /s F /»

(a,r)
E+F——F

Figure 5.3: PEPA Choice rule with negative premises

be inferred if neither subprocess is capable of enabling probabilistic transitions. The
new set of rules Mod PEPA Rules contains modified versions of each rule in PEPA
Rules except Prefix; this remains an axiom, since the only capability a prefix process

has is of performing an exponential activity.

With negative premises present in the operational rules, it is by no means clear that
the rules are consistent, and that a transition system may be derived. Such problems
were described by Groote [31]. To illustrate, Groote presents the following operational

rule (amongst several others).
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F—F—F
F——F

Of course, no such transition system is consistent with this rule. Given a set of rules,

Groote constructs a literal dependency graph, where

e a p-labelled edge exists from v to ¢ if ¥ is a positive premise of a rule where ¢ is

the conclusion (allowing substitutions for variables in rules);

e a n-labelled edge exists from 1) to ¢ if ¢ is a negative premise of a rule where ¢

is the conclusion.

Then a cycle in the dependency graph with a negative edge indicates a contradiction,
that a transition may be inferred if and only if it may not. gPEPA Rules do lead to

a consistent transition system. This fact is proven in the following lemma.

Lemma 5.2.4. Let R = —— U ——». Then for no gPEPA processes P, Q is it the
case that (P, Q) € R if and only if (P, Q) ¢ R.

Proof. The argument presented here is informal, but illustrates that there can be no
such cycle with a negative edge in a literal dependency graph derived from gPEPA
Rules. Consider the subsets of rules that make up gPEPA Rules. The only rules
which contain negative premises are contained in Mod PEPA Rules. By analogy with
the rule presented in Figure 5.3, each of these rules implies an exponential transition if it
is possible to refute one or more probabilistic transitions. Only two rules contained in Pr
Rules conclude in a probabilistic transition with an exponential transition premise—
these are both labelled Pr Mixed Choice. Therefore the only potential for a negative

cycle derives from an inference tree of the following form:

P+rQ——-- P+Q />

(by Const)

R ...

0 (by PrCoop)

P25 0

" Fx(t)=1—e"t
— _ AW{X|ni _
P+ B (mu @ x5

The reasoning is as follows. It must be the case that an application of Const is present

because this is the only PEPA rule which implies a transition from a process simpler in
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structure than that appearing in the premise. From the transition of R, it must then
be possible to infer the exponential transition of (). However, this tree implies that a
gPEPA process of the form R def c[P + Q] exists, and also that Q def [R], for some
contexts ¢, (or if not R, then some constant S defined to depend upon R). This is
explicitly forbidden in PEPA, and thus in gPEPA; it must be possible to unwind each
process specification until all variables are replaced by guarded terms. Therefore, no

inference tree of the form above may exist. O

gPEPA Rules lead to the following derivation graph model for a gPEPA process, with
no reference to generally distributed sojourn times in states. The model is given by

(C, Act,——,--»), where
—»C (Cx 2PV x N) x Q) U (€ x [0,1] x C)

and

e — — is the least relation which can be inferred under Mod PEPA Rules, and

e ——> is the least relation which can be inferred under gPEPA Rules.

Notice that such models are potentially infinite-state. However if such a model is built
by application of the presented transition rules, this extra data is used only in a very

restricted way.

5.2.3 Interpreting a gPEPA Model as a Stochastic Process

In this section, it is shown how the derivation graph of a gPEPA process can be used
to generate a representation of the model as a stochastic process. It is shown that by
applying the probabilistic semantics, and with an intuitive operational interpretation
of the probabilistic transitions, the resulting stochastic process is a potentially infinite-

state continuous time Markov chain.

A naive approach is taken to generate the stochastic process. Assume a gPEPA process
P with a model of the form (C, Act, ——,--»). This defines a set of states which is
infinite with the introduction of any generally distributed activity, and two transition
relations over the state space. The first is —— which is a set of exponentially dis-
tributed transitions, and the second is --» which is a set of probabilistic transitions. In
order to form the stochastic process, a state is associated with each node of the graph,
and the transitions between states are defined by use of a combination of both model

transition relations.

On entering a state in which probabilistic transitions are enabled, the choice of which

one to take is deemed to be resolved instantaneously; if exponential transitions are
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enabled, they are deemed to race, and the successor state is determined by the tran-
sition which completes first. It will be proved that no sequential component enables
both probabilistic and exponential transitions. This leads to a demonstration that the

resulting process is a continuous time Markov chain.

A derivative of the process P may be given the representation (Sy,...,S,)s, where
each S; is a sequential component. The subscript P is required since knowledge of the
static structure of P must be retained in order to reason about the process’s behaviour.
However, this will be omitted when it is clear from context. If the ith sequential
component S; currently enables probabilistic activities, it will be denoted by 5‘;; other-
wise, it will be denoted by S;. The desired behaviour of a gPEPA model is that when
a set of probabilistic transitions are enabled, the choice is resolved instantaneously.
Therefore, the stochastic process will witness no time passing in any state in which
probabilistic transitions are enabled. For this reason, such states are excluded from the

state space of the stochastic process. The states of the stochastic process are given by
{Q €ds(P):Q = (Si;,--- + Si)p}

Lemma 5.2.5. A sequential component cannot enable both probabilistic and exponen-

tral transitions.

_ Ak

Proof. Consider any sequential component S such that S --» (K, k). The proof that

S does not enable any exponential transitions is by structural induction on the depth
_ Ak

of inference of S —-» (K, k).

Case S=T+7V :

_ Ak
If S —» (K, k) then its behaviour may be inferred by one of two rules.

Case Pr Choice :
Then both T 25 (H,7) and V <23 (J, ) where A = Bw C and K = H & J.
By the inductive hypothesis, both 7' —~— and V —£—, and therefore it is
impossible to infer that S = T4+ V ——.

Case Pr Mixed Choice :
Then without loss of generality, T’ S (H,i) and Vﬂ? where
Fx(t)=1—-e¢ " A=BwW{X[} and K = Huw {(V’, X)[}. By the inductive
hypothesis, T —/— and V /». The only possibility to infer § ——— is
through Mod Choice but this rule insists that if V ——— then T /»;

r==1 B7 i .
however this contradicts the inference that 7 - (H,1).

Case S = (o, X).T :
There is no rule which allows the inference of an exponential transition from a

process of the form («, X).T.
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Case S = (a,7).T :
There is no rule which allows the inference of a probabilistic transition from a

process of the form (a, 7). T, so this case is true trivially.

_ ok —
Secondly, consider any component P such that P --» P’. By inspection of Successor
Rules, it can be seen that P = ¢[(H,0)], for some H and static context c[.]. Therefore
if P = S is sequential, the only inference rule available is Successor; therefore there is

no potential for the inference of exponential transitions. O

Theorem 5.2.2. Let P = Py such that P;,i € N is a (possibly countably infinite)
enumeration of ds(P)\{P’': P' —»}. Define the stochastic process {X;:t € Rt} such
that Xy = P; indicates that the model behaves as component P; at time t. Then {X;}

18 a continuous time Markov chain.

Proof. {X;} has the Markov property if and only if for t) < t; < ... <t, < t,4+1, the
joint probability distribution of (X, Xy,,... , Xy, Xy,.,) is such that

Pr(th+1 :Pin+1 :th :Pio7"' ,th :Pln) :PI'(th+1 :Pl ZXt :Pl )

n+ 1 n

This property means that given the state of the process at the current time, the future
behaviour, conditional on the current behaviour, is independent of all past behaviour.
This is equivalent to the property that the distribution of the time until the next state

change is independent of the time already spent in the current state.

Let Xy = @ = (Siy,- .-, Si,)p- Consider Y;, a random variable representing the sojourn
time in (). This state will enable a set of exponentially distributed activities, some of
which might be the result of a cooperation between (possibly several) sequential com-
ponents. The sojourn time distribution, conditional on the completion of a particular
activity a, is given by S;a(t) = Pr(Y; < t|a completes). Therefore, the unconditional

sojourn time is given by

Si(t)= > Pr(Y; <t|acompletes) = >  Si(t)
acds(Q) a€ds(Q)
As Hillston shows in [44], this sojourn time is exponentially distributed, with a rate
equal to the sum of the rates of the individual enabled activities. Denote the successor
state Q' = (S_]l, . ,E)p. Note that Q' does not necessarily meet the requirements for
being a state of the stochastic process some of the sequential components may enable
probabilistic transitions. However, by Lemma 5.2.5, each sequential component enables
either probabilistic transitions, or exponentially distributed activities, but not both. For
each sequential component @ enabling probabilistic transitions, a successor derivative

is deemed to be chosen accordingly and instantaneously. The order chosen is irrelevant,
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since the probabilistic transitions of one sequential component cannot interact with
those of any other component. Therefore, without further passing of time, the process
evolves to a state Q" = (S—k, .. ,S’—kn)p, where for each S_ki, S_k, +#~+. Therefore this
derivative is a state of the stochastic process. This shows that the distribution of time
until the next state change of the stochastic process is exponentially distributed, and

hence the stochastic process has the Markov property. O

Onme issue is in which state the stochastic process P begins. If any of the S, en-
able generally distributed activities, then immediately P enables a set of probabilistic
transitions, and strictly, P is not a state of the stochastic process. A solution is to
instantaneously resolve all probabilistic choices, leading to a state which is a state of
the stochastic process. It might seem that this influences the future behaviour of the
process; however this is an academic point, since firstly, the generally distributed activ-
ities will introduce no deadlocks and will not affect the positive recurrence property of
the stochastic process (the states of the process representing the stages of a generally
distributed activity will be positive recurrent), and secondly, the interest in this chap-
ter is in steady-state only. In the rest of this chapter, a sequential component which
enables only exponentially distributed activities will be referred to as exponential. 1f a
sequential component enables any generally distributed activities, it will be referred to

as generalised.

5.3 Balance Equations for General Distributions

This section examines the conditions under which a gPEPA process has an equilibrium
solution identical to that which it would have with exponentially distributed activities
only. These conditions take the form of partial balance equations over the state space
of the stochastic process underlying a gPEPA model. First it is established when a

gPEPA process has an equilibrium solution.

Definition 5.3.1 (Cyclic gPEPA process). A gPEPA process is cyclic, or
irreducible, if P € ds(P’) for all P’ € ds(P).

By the same reasoning discussed in Section 2.3.4, it is the case that for a gPEPA
component to be irreducible, it must not feature static combinators, that is hiding or
cooperation, within the context of a choice combinator. Furthermore, the continuous
time Markov chain underlying a gPEPA process is irreducible if and only if the process
is cyclic. As a consequence, each sequential component must also be cyclic. It is
assumed the stochastic process underlying a gPEPA model is time homogeneous since

no features of a gPEPA model depend on time.
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Lemma 5.3.1. Let P be a cyclic gPEPA process. Let {X;} be the stochastic process
underlying P such that the sample space of each Xy is given by ds(P). Let T be a

random variable representing the time at which {X;} returns to P after starting in P
(independent of time). Then for each P’ € ds(P), E[T5] < co.

Proof.

Let P’ € ds(P). Without loss of generality, P can be represented as (S;,... ,S,)5. The
subset of states {P’ € ds(P): P’ /-»} is finite, for the same reason that the derivation
graph of a PEPA process is finite. From this set, construct the reduced derivation graph
such that P = P’ if and only if either ?ﬂﬁ or P —» — %5 P! for any finite
k by the evolution of a particular S; only. There is at least one finite path from P’ to
P in the reduced derivation graph. It is shown (informally) by induction on the length

of such a path that the expected time to return is finite.

Base Case :
Let PP = P. If Fﬂ? then the expected time to reach P is 1/r. Otherwise,
P’ reaches P because one of its sequential components S; performs a generally
distributed activity, some (3, X). The probabilistic model ensures that the ex-
pected time to perform this activity is equal to E[X]. Therefore, the base case

holds.

Inductive Case :
This argument is simpler. Let P = P” =% P. Then by the same argument
above, the expected time to reach P” is finite; and by the inductive hypothesis,

the expected time to reach P from P” is finite.

O

It is henceforth assumed that the stochastic process underlying any gPEPA model P
has a steady-state solution (that is, that any gPEPA model is cyclic).

Now, some notation used in describing a set of balance equation conditions is intro-
duced. When referring to a component, or derivative, in the context of the gPEPA
model, or its transition system, P or @ is used; when referring to either a PEPA or
gPEPA model, P or @ is used. Since the state space of the underlying stochastic pro-
cess consists of gPEPA derivatives, the states of the stochastic process are denoted P
and Q. Recall that the state space of the stochastic process underlying P is given by
ds(P)\{P": P’ —-»}. The probability of being in a particular state P of the process at

steady-state is denoted by 7(P). In the expression of the balance equations, it will be
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useful to represent the transition behaviour of a process due to behaviour by the ith

sequential component only. The following definition makes this precise.

Definition 5.3.2. Given P = (Sp,... ,S,), T C{1,... ,n}, and a binary relation R,
PRy P if and only if PRP' can be inferred using only the sequential components S;

where 1 € T

The derivative set of a process P is the set of components which are reachable from P,
or put another way, the least set of processes containing P closed under the transitive
closure of the (union of the) transition relation(s). It is convenient to introduce notation

to represent the components reachable via one step of a relation.

Definition 5.3.3. ds%X(P) = {P’' € ds(P): PRy P'}.

In the balance equations that follow, this notation is annotated to denote the particular
relation R being employed. Thus, ds;. (P) is the set of all one-———-step derivatives
of P which can be reached involving only sequential components S; where i € T'. If
T ={1,... ,n} then the T may be omitted. The following definition introduces the set
of previous derivatives of a component P; these are simply those derivatives which may

make a (one-step) transition to P.

Definition 5.3.4. psF(P) = {P': P € dsF(P')}.

When expressing balance equations, it is necessary to talk about the probabilistic flux
into and out of states of a stochastic process. The sojourn time of residence in a
component P is given by a random variable. In the case of a PEPA process, the
random variable is exponentially distributed, with a parameter equal to the sum of the
rates of the activities it enables. The rate at which the process leaves a component P is

denoted by ¢(P) =>{r: P (a—r?|} The rate at which component P is left, given that

the successor is @, is denoted by ¢(P,Q)=>{r:P (o) @ [}. This can be further

generalised by considering the part played by particular sequential components only.

Definition 5.3.5. q(P, P',T) represents the instantaneous rate of transition from pro-
cess P to all P’ by the action of components S;,i € T and no others. The singleton

case may be expressed more concisely as q(P, P',1).

It is now possible to express concisely the global balance equations for a PEPA process
P. The semantics of PEPA ensure that if () and R are processes, then so is () D§ R,
a cooperation between the two. Therefore, this composed process may cooperate with
another component, if the model context allows it. A term expressing each possible

combination of cooperations between sequential components S; to S, is contained in
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Equation (5.3.1). The characteristic of a process in steady-state is that the probabilistic
flux out of any state equals the probabilistic flux into that state. Therefore, the global
balance equations for each component P may be expressed as
Y Y wPPR=Y Y alPa(PPR)
Re2S pedsy~ (P) Re25 Pepsy~(P) (5.3.1)
where S ={1,... ,n}
However, a stricter balance may be observed. If the flux into a sequential component

S;, is equal to the flux out of 5;, the component has sequential local balance.

Definition 5.3.6. A sequential component S; of a PEPA component P, has sequential
local balance if the flux into any state P due to an activity which leads to the appearance
of a sequential component S; is balanced by the flux out of P due to the completion of

an activity enabled by S;.

If S;, a sequential component of P, has sequential local balance, the following equation
holds:

P) >y > qP P RU{i}) =) > w(P)g(P,P,RU{i})

Re25 preds Re25 preps

RU{'L}(P) RU{’L}( )

where S = {1,... ,n}\{i}
(5.3.2)
Recall that the following restrictions are placed on the use of generally distributed

activities:

e a cooperation between n components may result in the appearance of no more

than one generally distributed activity.

e generally distributed activities may not synchronise (the processes enabling them

may not cooperate on these activities).

This means that in effect, sequential components S; of P which enable generally dis-
tributed activities, will have sequential local balance if treating these activities as being
exponentially distributed, the following equation holds:

mP) Y qPPi)=> > w(P)e(P,P,RU{i})

P'eds; " (P) Re25 Preps i (P) (5.3.3)

where S ={1,... ,n}\{i}
In the case of a gPEPA process, the underlying transition system also enables proba-
bilistic transitions. Although these contribute nothing to the sojourn time in a state of

the stochastic process, they contribute to the probabilistic flux, in that they contribute

to the choice of a successor state.

121



Definition 5.3.7. Pr(P, P’ i) represents the probability that the ith sequential compo-

nent of P will make a (probabilistic) transition leading to the derivative P’.

The main result of this chapter compares the steady-state solution of a PEPA process
with the steady-state solution of a related gPEPA process. The processes are equivalent
where possible, except of course, the semantics of PEPA does not construct any proba-
bilistic relations. Assume the ith sequential component S; of some derivative P enables
a set of generally distributed activities. The probabilistic semantics of gPEPA model
this as an initial choice over probabilistic transitions, leading to a linear multi-stage
process working off exponentially distributed lifetimes, leading to a final probabilis-
tic choice of successor derivative. The main result requires that the mean lifetime of

component S; is equal to the mean lifetime of S;.

Assume the stochastic process underlying the gPEPA model P = (S;,...,S,) has a
steady-state probability distribution, denoted by 7(.). Then the following global bal-

ance equation must hold:

A—new r r—r—1
h n
)3 PO GHEUEED DI LG D
i=l  Pregs— (P Pledsy (P! . =1
S; is exp €ads; (P) €dsi (P') S; has k > 1 lives
r=1l—-new r r=1—X\
n n
Pr(P.P.i - Pr(P.P.i
S SRS DRI X P D ST S
_ =1 Predst— (P _ =1 Pleds; (P
S has 1 life T 0% (P) S has 1 life T 0% (P)
S/ is gen S} is exp
AT AT AP A new ¢
> ) dP TR+ ) > Pr(ﬁﬁ)) =
Re2% Pledsy (P) Re2%  Predsy(P)  Pleps; (P7)
IRI>1 g, is exp i€R |R>1 S; 1s gen

Sjisexp, j€ R—1
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A—new r r—r—1

— N fn
> X PP ) (P P) 4 PRGNS
i=1 Peps;* (P) Pleds;* (P7) =1 Peds (P)
S; has k > 1 lives
r=l—new r
- -
5y ST w(P)ve PP+ Y > (P q(P',P,R)
=1 Peps; > (P) Pleds; (P) Re25 Plepsy~ (P)
S/ has 1 life IRI>1
re1o AP — A" new r
n rn
Y Y sty XX X )P PR LD
i=1 Preds; (P) =l Re2® Pleps (P) Plepsy (P7)

S/ has 1 life |R|>1,ieR
where S ={1,... ,n} (5.3.4)

The label above each term is a mnemonic, intended to describe the terms contributing

to the probability flux. Briefly, these are

e A\ — new r: the flux due to a sequential component S;, enabling exponential
activities, performing an individual activity leading the component S_Z(’, which then
completes a probabilistic transition to the linear component E’ Component S_Z”
represents the translation of a component which enabled a generally distributed

activity.

e 7 — r — 1: the flux due to a linear sequential component S; completing one

(exponential) stage.

e r =1 — new r: the flux due to a linear sequential component S; completing
its last stage, and making a transition to S_Z(’; this then completes a probabilistic
transition to the linear component E’ Component S_Z” represents the translation

of a component which enabled a generally distributed activity.

e r =1 — X the flux due to a linear sequential component S; completing its
last stage, and making a transition to E’ Component E’ enables exponentially

distributed activities.

e \" — \": the flux due to a cooperation between sequential components leading
to a new state in which the derivatives of all components which participated
themselves enable exponential activities. Recall that cooperation is only possible

on exponentially distributed activities.

e \" — A" !/new r: the flux due to a cooperation between sequential compo-

nents, leading to a new state in which one sequential component newly enables a
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generally distributed activity.

5.3.1 The Proposition

Proposition 5.3.1 below shows that the gPEPA process P, enabling generally distributed
activities in a specifically constrained way, will have the same steady-state solution as
P, as long as those sequential components which are generalised in P have sequential

local balance in P.

Theorem 5.3.1. Let P be a gPEPA process. For each sequential component S; of P,
let G5 (+) be defined as:

1 otherwise.

, Hg (k) if S; has k Erlang mizture lifetimes left,
Gpli) =4 7

Assume that each generalised sequential component S; has sequential local balance. Then

it will be shown that:

Proof

A case analysis is sufficient to show the required result. The global balance equation for
the stochastic process underlying P is given by Equation (5.3.4). The proof proceeds by
substituting 7(P) [[7_, G5(j) for 7(P), and individually considering two sets of terms
for each component P: those due to generalised sequential components, and those due

to exponential sequential components.

The proof is split into two cases; the nature of the balance in the first case differs from

that in the second.

Case 1: {S;:1 <i <n} When viewed as a probabilistic process, this case captures
the balance between sequential components which are currently acting as linear PEPA

processes, as the result of the translation of one or more generally distributed activities.
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Equations (5.3.5) isolate the terms of the global balance equation which contribute.

r—r—1 (1) r=l—new r (2
) nA . N
Ls - ) T 6o ( vt Z vg-- Pr(P, P',i)
i1 =1 - =1 Pleds7 (P)
S; has k > 1 lives S; has 1 1i 57 is gen
r= 1~>/\ (3)
n
+ Z Z vy - Pr(ﬁ, ?, Z)>
Pleds; (P)

S; ha@ 1 life ? is exp

AT — A 1/new r (4)

n

RHS = zn: >y > H 0(5) -q(P", P",RU{i}) - Pr(P",P,q)

\RT> P €ps;> (P) P €psRU{i}(P)

A—new r(5)

+y ) S x(P)-q(P".P7,i) - Pr(P",P)

1=1 Weps;” (P) Feds;* (P

7'—)7':& (6)
+Z Dt | ke
=l Pleps;—(P) J=1

S’ has k& > 1 life

r=l—-new r (7)

+ i Z Z _H H G—// . _,, . PT(W, ﬁ, ’L)

i=1 preps; (P) Peps; (P7)
S_i// has 1 life

where S ={1,... ,n} (5.3.5)

It is possible to immediately simplify some of these terms. First, consider terms (2)

and (3). By Lemma 5.2.2,
> Pr(PPLi)=1 (5.3.6)
Preds— (P)

This should intuitively be the case, and is deliberately so by construction; a condition
of a correct probabilistic interpretation as Erlang mixtures is that the sum of all prob-

abilistic options on leaving a state is equal to 1. It is therefore possible to simplify LHS
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s ) 1 COTGD DRFTID SRS T DAY
] i=1 =1
7 has 1 life Eﬁas 1 life
(Si) is gen d(S;) is exp
=nP) [IGp0) D vy 637
j=1

i=1
S; has lives
Next, consider term (6). The component P’ is in ps; ~(P) and furthermore, S/ has
more than one remaining lifetime. Therefore P = P’ and the following simplification is

possible.

n

() [[Gp ) = n(P) [ Goli) - Grli) (533)

Jj=1 Jj=1
J#i

Further, notice that vg- = g since they are both part of the same sequential process

(H, k). This leads to the following amalgamation.

©-1-2-B)=> >  «(P)]]Gs0) Gp)- ver
=1 prleps;—(P)
S/ has k > 1 life
— Z 7(
Si hla:sllives

(5.3.9)

P) 11 Gp0) - vs
j=1
= Z n(P) [T Gp(i) - (Gwli) — G5(0)) - vg;

K3

EAn

1 j=
S; has lives i

since |ps; " (P)|= 1 and S/ is generalised with more than 1 lifetime. Now, the term

G5:(1) — Gp(i) is equivalent to

1
Hg(k) — Hg(k — 1) = — — Pr(S; starts with k lives) (5.3.10)
V5 TS

where as described in Lemma 5.2.1, Ty is the mean time until the end of the sojourn
due to generally distributed activities enabled by S;. Therefore by construction of

the stochastic process, 1/7'?1, is given by Zﬁed,s."(ﬁ) q(P, P',7). This finally leads to
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Equation (5.3.11).

= Z m(P) H G5(J) <—1/I/57-P7‘(Si starts with & lives) Z q(P, P’)i)) v
Si }li;]iives ]];:é P’eds; (P)
- Z H G5(j) - Pr(S; starts with & lives) <7r(P) Z q(P, P’,i))
S ias lives 24 Preds (P)

(5.3.11)

Next, terms (4), (7) and (5) can be combined. Term (7) simplifies via Equation (5.3.12).

— Z Z Z H G—u Vg Pr(P',P)

=1 Plepsy (P) P'eps; (P7)
S7 has 1 life

n n
=3 > > W(P”)HGW(J')'(1/VSTI)Q(ﬁai)'V§'P7‘(F,Fi)
1=1 WEpsi_" (P) WEpSi*> (P7)
ST{’ has 1 life

=3 ¥ Yo w(P) ] Grl) - a(P', Pi) - Pr(S; starts with k lives)
1=1 FEps;* (P) WEpsi_> (P)
S has 1 life

(5.3.12)

However, note that P’ differs from P in the ith sequential component only; that P =

P’; and finally, that |ps;™ (P)|= 1. This leads to the following.

Z H G5(j) - Pr(S; starts with k lives) Z 7(P"q(P', P,i)-
i=lj=1 Pleps; (P)
7 S/ has 1 life

(5.3.13)
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Term (5) can be simplified using similar reasoning. Secondly, term (4) can be manipu-
lated as illustrated in Equation (5.3.14).
n
=22 X >, A

ZIREQSPES_*PPES P
e ps; (P) Pspory (P "

Yy ¥ ). B

i=1 Re2% Pleps; (P) P’ ’EpsRU{Z}(P )

|R[>1
where A = (P H 5 q(P",P',RU{i}) - Pr(P', P,i)
7= (5.3.14)
=n(P") [[ G0 - a(P". P',RU {i}) - Pr(S; starts with k lives)
i
(by similar reasoning to Equation (5.3.13))
= Z H G5(j) - Pr(S; starts with & lives) Z Z C
i 1162 ey (P
where C = n(P') - q(P', P', RU {i})
Terms (4), (7) and (5) can be added directly to give the following.
4)+(7) = H G5(j) - Pr(S; starts with & lives) Z Z A
i=1 g7é1 Re2% pr EpsRU{l}(P)
where A = 7(P')-q(P',P',RU{i}) (5.3.15)

Finally for this first case, all the simplified terms are amalgamated to produce Equa-

tion (5.3.16).

(5.3.11) + (5.3.15)

n

= — Z H G5(j) - Pr(S; starts with & lives) <7r(P) Z q(P, P’,i))
=1

P'eds; (P)

1=

1 Jj=
Si has lives j=£;

+ Z H G5(j) - Pr(S; starts with k lives) > Y «(P')-q(P",P',RU{i})

i=1j=1 Re25 pie
J;ﬁl, psRu{z}( )

g H G5(j) - Pr(S; starts with k lives) B
=1 j=1
;éz

where B=—n(P) Y  qP.P.i)+ > > a(P)qe(P,P,RU{i})
P'eds; " (P) Re25 pr GpsRU{ }( )
(5.3.16)
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Term B in Equation (5.3.16) matches the sequential local balance equation given in
(5.3.3), and since this is true by assumption, it can be deduced that LHS = RHS in

this case.

Case 2: {S5;:1 <i <n} Equations (5.3.17) isolate the terms of the global balance

equation which contribute by performing exponentially distributed activities only.

A—new r (1)

LHS:w(P)HGP(j)< > > @ Py Y (PP
j=1

s, Zi?éxp Pleds; " (P) Pleds; (P7)
A= AT (2) A= A" new r (3)
+>, > dPPR+Y, ) >, PP F))
Re2% Pleds, (P) Re2%  Pliedsp (P) Pleps;  (P7)
IRI>1 g, is exp,i€R |R|>1 S; is gen
Sjisexp, j€ R—1i
r=1—-X\ (4)

RHS =YY  w(P)]][Gpli) vy Pr(P",P.i)
i=1 Preds; (P) =1 '
5'72-/ has 1 life
AP A (5)

n

+3Y Y wPY[[GpG)-aP.P,R) (53.17)
Re28 Plepsy; (P) Jj=1
|R|>1 ’

First, consider LHS. Immediately terms (2) and (3) can be combined to produce the

following.
(2)+(3) = Z Z q(P,P",R) + Z Z Z Pr(P7, P7)
REQS ﬁedsi_‘ (?) R€2S Weds“(?) FEpsi"(W)
[RI>1 5, is exp,icR |R>1 S; is gen

Sjisexp, j € R—1i

= Z Z q(P,P",R)

Re25 Pledsy, (P
a1 r (P)

(5.3.18)
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Now LHS can be simplified as the following derivation illustrates.

LHS = (1) + (5.3.18)

Jj=1 s ii?%exp P’eds; " (P) Peds; (P7)

+> Y q(F,?,R)>

Re2~9 Pledsy  (P)

|R|>
SR CEOI D YR VR IR VD SR LA
Jj=1 SlllséxpP’eds*’(P) |112%€‘25P’€ds (P)

)Y, > aP PR

Re2% Pledsy; (P)

1
60 Y ¥ arrm
Re2®

Jj=1 2% P'edsy " (P)
(5.3.19)
Secondly, term (4) may be simplified as follows.
H=>" > wP)[Gr0)- VS—{PT(F,?, i)
i=1 Preds— (P) j=1
S! has 1 life
=Y X P LGw0)- Gl -vglaP PP )
i=1 Preds— (P) j=1 "
ST-’ has 1 life 7

=1 ﬁedsi_* (P)
57 has 1 life

Furthermore, since all terms P’ € ds; > (P) are such that S/ has one remaining lifetime,

the RHS can be further simplified to the following.

D=3 IIce) > =(Pha(P'. P (5.3.21)
i=1 j};ly P'eds; (P)
JF
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Then with a view to amalgamating the terms present in RH S, term (5) can be manip-
ulated as follows.

Y r_[ (7.7, )

Re2% Plepsy (P)
|R|>1

where S ={i:1 <i<n,S, is exp}

=> > (P HGP, q(P',P,R)

S 7 D
ﬁﬁi Pepsg(P) Igs (5.3.22)

:HGﬁ(' Z Z (P,)'q(P/7P7R)

1= REQS P’epsy (P)
Jjgs |R|>

=116 >, >, #(P)-oP,PR)
Jj=1 Re2% Pleps . (P)
Jjgs |R|>1

Now terms (4) and (5) can be added together.

RHS = (4) + (5)

i=1 j=1 P'eds; (P
J#i €ds; (P)
+ HG— > > w(P)-a(P'PR)
= S pr
; é ﬁze|2 Plepsy (P)
=l > =(Pha(P, P (5.3.23)
j=1 i=1 P'cds; (P)
Jgs
+IIGs) > >, «(P)-a(P.PR)
g;é ﬁ%EIQS Plepsy (P)

e Y. > #P)-aP.PR)

Re25 Preps; (P
jes PSR (P)

It is assumed that sequential local balance holds for each sequential component S; that
is generalised. This implies that the following equation also holds (where S is defined

to consider only generalised sequential components).

[[GrG)nP) S a(P.P.i H @ >, >, w(Phe(P,P,RU{i})

j=1 P'eds; " (P) Re2® Plepsy iy (P)

where S = {j:1<j <n,S;is gen}\{i}
(5.3.24)
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Since this equation holds for each S;, these terms are added to LHS and RH S respec-
tively. Finally, LHS and RHS may be expressed as follows.

LHS =x(P) [ Gp() Y. Y a(P.P.R)
j=1

Re25 P'edsy, (P)

RHS=[[Gs() > > =(P)-q(P',P.R)

j=1 Re2% Prepsy; (P)

(5.3.25)

However, global balance states that
Py, Y aRP.R=) > (PP PR
Re2% pedsy (P) Re25 Pleps (P) (5.3.26)
where S = {1,... ,n}

and therefore, the conclusion is that LHS = RHS, completing the theorem. O

5.4 Implications and Examples

Theorem 5.3.1 gives conditions under which generally distributed activities may be
introduced into a PEPA process; in fact if these conditions hold, they guarantee that a
gPEPA process will have an equivalent steady-state solution to its corresponding PEPA

process if the means of the activity distributions are equal.

There are two clear applications for results of this kind. One was the main motivation
for this work, which is to improve the expressiveness available to SPA modellers. The
result gives conditions under which non-exponential model elements may be introduced
without impacting the tractability of model solution. The second application is in
model aggregation. The distribution of time to absorption of a Markov chain is given
by a phase-type distribution. An area of the state space of the Markov process can be
considered as an absorbing Markov chain, and therefore replaced by a single activity
with an appropriately calculated mean. If the component enabling the activity has
sequential local balance, then the solution of the reduced model is equivalent to that of
the original, in the sense that the steady-state probability of being present in the state
enabling the aggregate activity is equal to the sum of the probabilities of being in the

original aggregate states.

The result is distinct from previous work by Hillston which followed similar lines. In [44],
the motivation is to construct a performance-preserving equivalence relation enabling
a modeller to generate sufficient measures from smaller aggregated models. This was
based around the contraction of reducible sequences, broadly speaking sequences of
silent 7 activities. The result given here is more general in allowing more arbitrary areas

of the state space to be reduced as required (with the given restrictions). Furthermore,
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it extends the preliminary result detailed in [43] which catered for one generally dis-
tributed active element only. In a sense the theorem provides a reworking of Matthes
theorem in a different mathematical setting (see Theorem 4.2.1). The constructed
stochastic process is more complex in allowing countably infinitely many states, albeit
in a restricted fashion. These are to cater for the introduction of general distributions,
which are modelled by Erlang mixtures. However, the result guarantees that in group-
ing together states which correspond to the same generally distributed elements, the

solution to the process is identical to the solution of its exponential partner.

The restrictions that were placed on the gPEPA models were:

e a sequential component enabling a generally distributed activity must have se-

quential local balance.

e two generally distributed activities cannot be newly enabled by two different

sequential components at the same time.

e two generally distributed activities enabled by two different sequential compo-

nents cannot both complete at the same time.

e two generally distributed activities may not cooperate.

In fact the second restriction can be understood as special cases of the first. Consider

the following problematic gPEPA process.

QY (ang @ Y 3x)Q
Y nRF F® Y 1v)R (5.4.1)
P = GEQ}R P = @Eﬁﬁ

Both Q and R represent different sequential components within P. This process has
only one option initially, that being to perform an « activity; after having done so,
both of the generally distributed activities (£ and -y) become enabled at the same time.
Clearly R must be forbidden according to the restrictions above. The reason becomes
clear on considering the required sequential balance equations for the exponential ana-
logues of these components. Recall that these require that the flux out of a sequential
component due to the completion of some activity is balanced by the enabling flux into
that component. Consider the equations for @’ in the context ¢ = [] l{iﬂ}ﬁ, together

with the global balance equations for P’ given below.
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Sequential Balance:
flux out of c[Q] = n(P").E[X]}
flux into c[Q] = =(P).r
Global Balance:
flux out of ¢[Q] = =(P").(E[X]'+E[Y]™)
flux into c[Q] = =(P).r

Clearly these equations are not consistent with each other.

The third restriction is an artefact of the construction of approximations to general
distributions using Erlang mixtures, as explained in [24]. This example is made more
interesting by comparison to the one given by Henderson and Lucic in [38] for stochas-

tic Petri nets. Consider the SPN model given in Figure 5.4. The authors wish to

SN

p2 p3

Figure 5.4: Insensitivity in a stochastic Petri net

consider insensitivity of SPN transitions; that is when a transition may have a gener-
ally distributed time-to-fire. They do this by constructing a GSMP model for the SPN,
yielding a set of insensitivity balance equations for each transition. The equations for

transition ¢ are:

7(0,1,1).E[t:]™* = 7(2,0,0).E[t;]™*
7(1,1,0).E[t]™t = 0
(5.4.2)

Regardless of the particular global balance equations, on the assumption that the model
has a steady-state solution, the second equation cannot possibly be satisfied. Intuitively,
the reason is that the marking (1,1,0) represents a state which is such that in all of

its predecessor markings, transition ¢, is already enabled. The same conclusion can be
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drawn from an intuitive and reasonable translation of Figure 5.4 into a gPEPA model.

This translation is given below.

f déf tl.? F déf tg.z

-  def -7 —  def —

R Y o W LR (5.4.3)
Trans = L {Df]} R Trans' = I/ E‘i} R

The SPN model behaves in such a way that transition ¢, is independent of transition

ts, and so it is reasonable to retain this structure in Trans. Now let ¢ =[] {Dﬁ}ﬁ; in
tq

similar fashion to earlier, the balance equations for this process can be obtained, with

a view to determining the insensitivity of activity ts.

Sequential Balance:
flux out of ¢[I/] = w(Trans').E[ts]™"
flux into ¢[L/] = n(Trans).E[t;]™"
Global Balance:
flux out of ¢[L/] = = (Trans').(E[tz]™' + E[t3]™)
flux into ¢[L/] = = (Trans).E[t;] !

Via a sequential local balance analysis, the same conclusion is reached—that t5 is not

insensitive to its distribution.

5.4.1 Some Examples

A simple example of a legitimate gPEPA process is given below.
Pr = (a,7).(8, X).(7,5).P; (5.4.4)

P; represents one sequential component only, and behaves as a simple cycle. It also
meets each restriction listed at the start of this section. On consideration of the se-
quential local, and global, balance equations for its exponential counterpart, Py, it is
simple to see that they are consistent (indeed identical), and therefore P; is insensitive
to the distribution of 5. This trivial example, and in fact any gPEPA model consisting
of one sequential component, can be given a semi-Markov process representation; this
stochastic model is insensitive to the residence time in any of its states. For example,

P5 below also consists of one sequential component.

Po ¥ (0, X).(a,r). Pz + (3,Y).(b,5). Py (5.4.5)

Therefore once again, the sequential local balance equations are identical to those for
global balance. However in this example, the balance equations do not obviously cor-

respond to one activity—in fact there are two, o and 5. What Theorem 5.3.1 says
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is that the process is insensitive to the residence time spent in P, and by extension
insensitive to the distributions associated with both o and 8. However, if the aim is
to solve this process assuming exponential distributions, then calculating the mean of

mingy yy, and the time-averaged branching probabilities will be non-trivial in general.

In summary, this chapter presents balance equation conditions which guarantee the
insensitivity of generally distributed activities within a gPEPA model. Restrictions are
placed on the use of such activities; two may not be newly enabled simultaneously,
and they may not be used to cooperate (synchronise). The continuous nature of the
distributions ensures that two may not both complete at the same time. Under these
restrictions, if a component has sequential local balance, then the process is insensitive
to the distributions of its activities. Equivalently, it may be assumed that each gen-
erally distributed activity is exponentially distributed (with the same mean), and this
stochastic process will provably have an identical steady-state solution. This would al-
low conventional Markovian solution techniques to be employed for a gPEPA process.
Notice that the conditions for sequential local balance are not expressed as structural

conditions on the form of the algebraic model.
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Chapter 6

Case Study: Transaction
Processing Systems

6.1 Introduction

In this chapter, both the reward structure methodology of Chapter 3 and the process
algebra insensitivity structure of Chapter 5 are exemplified by the presentation of a
case study. Although consistent with the literature, the results presented here may
not be of novel interest, but rather are intended to highlight the use of the techniques

presented earlier in the thesis.

The examples are drawn from the field of multi-user database systems (or transaction
processing systems (TPS)). In recent years, the demand for these systems has grown
rapidly, along with a strong focus on performance requirements. These systems con-
sist of a centralised database, which controls a set of database objects; and a set of
transactions, which attempt to access database objects, and thus perform, for example,
user queries. Models of transaction processing systems abound in the literature; these

include purely analytical approaches [50, 63], through to simulations [53].

Since the systems to be modelled are multi-user, and furthermore, in order to take ad-
vantage of technical developments like multiple processors, transactions will in general
be viewed as behaving concurrently and independently, and thus may simultaneously
attempt to interact with the same database objects. This raises the issue of the consis-
tency of the database, in particular when more than one transaction wishes to update
an object. The topic is known as concurrency control [72], and several methods ex-
ist to ensure the consistency of the database. The examples presented here, although

idealised, incorporate concurrency control methods.

Transaction processing systems were chosen as the subject of this case study because

although well-structured and suitable for an algebraic analysis, the calculation of per-
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formance measures is not a trivial task. It is shown that with some simplifying assump-
tions, it is possible to obtain a reasonable model of such a transaction processing system
within the insensitive structure defined in Chapter 5. This means that the exponen-
tial assumption is unnecessary at various points in the model; or equivalently, allows
a greater modelling freedom, whilst guaranteeing that with an exponential assumption

always in place, the same solution will result.

This chapter begins by describing some relevant background to transaction processing
systems, and highlights some important features with respect to the PEPA models. In
Section 6.3, a simple model of a centralised database and a set of accessing transactions
is presented. It is shown that the structure is insensitive, in the precise sense defined in
Chapter 4, and thus the freedom to use generally distributed random variables gives a
greater degree of realism. Section 6.4 proceeds with some alternative models, presented
originally by Pun and Belford [63], and considers the problem of calculating useful
performance measures. It is shown that by using the PEPA Reward language, it is

possible to precisely specify, and automatically calculate, the measures required.

6.2 Transaction Processing Systems and Concurrency Con-
trol

The competition in industry such as finance and banking, coupled with the rapid ad-
vance of technology, has driven the modern development of large-scale transaction pro-
cessing systems. In modern industrial applications, it is not unusual to find databases
containing many tens of millions of records, or objects. Systems, such as those deployed
by traders require rapid real-time access to data, in order to give them a vital edge. It

is clear that the performance requirements on such database systems are stringent.

When transactions are able to update, or modify database objects, then an important
consideration is maintaining the consistency of the data. The problem is well-known,
and can be exhibited when the processing a transaction performs on a database object
is not atomic. Consider a transaction which intends to update a particular datum; first,
it reads the current value; a concurrent and independent transaction then accesses the
same object, and commits an update (modification) to its value. The original trans-
action now calculates what it considers to be the correct new value, and commits its
change. Clearly, the modification made by the first transaction has been lost. Pre-
venting this problem from occurring, while ensuring the best possible performance of
the database system, is the subject of concurrency control. A universally accepted cor-
rectness criterion for processing transactions against a database is serializability; that

is that the interleaved execution of a set of concurrent transactions has an equivalent
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effect to their sequential execution [22]. One popular method for guaranteeing this
property is known as two-phase locking. Several variations exist, and the performance
of many have been studied in the literature. One variation incorporates static locking
and general waiting [72]. Static locking means that a transaction may only be processed
once locks have been obtained for all database objects that will be required (in con-
trast, dynamic locking means a transaction may request database objects as and when
it needs them). However, in order to guarantee serializability, no locks are released until
the transaction has completed its work in its entirety. General waiting means that a
transaction that makes a lock request for a database object already exclusively locked
by another transaction is blocked, awaiting the lock’s release. Notice that if dynamic
locking is used, this may result in a deadlock; two transactions may both be blocked,

each awaiting the release of a lock that the other holds.

6.3 Modelling Transaction Processing Systems with PEPA

In this section, some PEPA definitions are presented to represent components of a trans-
action processing system. From these initial components, an insensitive model structure
can immediately be realised; further development leads to more complex models with
more involved behaviour. Nevertheless it is shown that the precise specification and

extraction of performance measures can be handled by using the Reward language.

The TPS models consist of components to represent a collection of transaction classes,
and a manager to enforce locking rules on database objects. Broadly, each transaction
class may launch a transaction, which may then attempt to access particular database
objects, be they pages or even records. In a typical database system, each object will
be in a certain state of access—perhaps currently being modified by a transaction, or

perhaps not being used at all. A model of a transaction may either attempt to

e modify a particular database object, in which case it attempts to acquire a write

lock for that object; or

e read a particular object in its current state, in which case it does so regardless of

any locks present on that object; this is called a dirty read.

Dirty reads are useful when a set of data is required often and in real-time. Although
they run the risk of occasionally reading out-of-date information, they have the great
advantage that they do not impact on transaction concurrency, and so keep transaction
throughput higher. However, if a transaction acquires a write lock on an object, no

other transaction may also acquire a write lock until the first has committed its changes.
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This is modelled by forcing such transactions to block in an orderly fashion, sequentially
gaining write access to the required object. According to the attributes of the class it
belongs to, each transaction will choose to read from, or write to, an object with a fixed
probability; and after the object access, another transaction of the same class will be
immediately generated with another fixed probability. In this way, different transaction
classes will be characterised in part by the mean number of transactions generated in

a row.

Figure 6.1 presents a model which represents a class of transactions; that is, it can be
used as part of a model when a sequence of transactions with particular characteristics

are required. Component TznC; represents the state in which no transactions of class

TznC; def (think;, t;). T'tn;
Tan; o Z;V:ll (work, w X p;).(writelock;j, 73;).(commitsy, T).Loop;
+ (work,r).(dirtyread, d).(accessdb, 11).Loop;
Loop; def (nexttxni, r X a;). TenC;
+ (nexttxng, (I — r) x a;).Tan;

Figure 6.1: PEPA model of a transaction class

C; are presently being processed. From this point, there is a delay, a think time (mean
1/t;), before the user generates a job which requires access to the database. The think
time represents the delay between jobs generated by the supposed ith user or applica-
tion. A transaction then begins the process of accessing the database by attempting
either a write lock, or a dirty read, which is modelled by a probabilistic choice over
the work activity. The issue of deadlock is avoided since in this model, transactions
cannot accumulate locks—locks are released immediately the processing of an object is

complete. Therefore this structure is closest to a static locking methodology [72].

Some assumptions are made on the respective database object requirements of each
transaction class. Let D represent the set of all database objects; and further let
Si ={Ln,...,Lin,} represent the class of objects to which write access is required by
transactions characterised by class 7. That is to say, a transaction of class 7 will require
a set of locks L;;, where 1 < j < ;. The choice over work probabilistically resolves
the set of locks any particular class-i transaction will require. It is stipulated that each
S; partitions D in a non-overlapping fashion—that is, ﬂ;vzll Lij = 0. From this the
assumption is made that if a class-i transaction requires a set of locks L;;, that none
of these locks are present in partition Ly, for each transaction class i # ¢/, and each

3" # j. In terms of the model, this means that a class-i transaction holding a particular
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set of locks cannot prevent the progress of a class-i’ transaction wishing to take a set
of locks from a different partition. Intuitively, this means that although in general,
each transaction class will see a different partitioning of the set of objects, a class-i
partition will only overlap with one class-i’ partition. Although a strong assumption,

this is not infeasible, as demonstrated in Figure 6.2. Assuming that the transaction

L21 L22

—_— ——~————

//
N\

L1 L2

Class 4 ]é(”ts CI%S&O jects

Figure 6.2: A valid transaction access pattern

requires exclusive locks (such that other transactions must wait to access the locked
objects), an additional factor in the sum over work governs which area of the database
the transaction wishes to access. In this way, the model captures the fact that parts of
the database may be more frequently accessed than others. This phenomenon is known
variously as the ‘b-¢’ rule and ‘80-20’ rule [72], meaning that 6% (20%) of the database
is accessed on average ¢% (80%) of the time. Activities writelock and dirtyread
model the point at which the transaction attempts to access an object. If a write lock
is awarded, the object is used, and the transaction commits its changes. The work of
the current transaction is now done, and the model now probabilistically determines if
the current job features more transactions. This is specified by a choice over nexttxn;,
where r is the probability that the current job will generate more transactions. If
required, another is generated, and if not, a transition is made back to TznC;, to await

another job from the ith user.

The next requirement is to model the central database itself. This will be an abstraction,
allowing access to database objects, and enforcing a two-phase locking concurrency
control scheme. The database is constructed as a product of n processes which control
access to M classes of write-locked database objects. Each of these lock manager
processes, and the collection constituting the database, are given by expressions, the

form of which appears in Figure 6.3. Each LockMgr process simply acts as a queue—
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M

=1
M
LockMgr; 1.a,....b) def Z (writelock;j, T).LockMgrj’<k7a,...’b’i>
i b b
+ (commityj, ¢;). LockMgr; 4. . b Hk,a,... b}<n

(6.3.1)

Figure 6.3: The database lock managers

a transaction performing a writelock claims exclusive access to a particular object,
and any other transactions making subsequent conflicting requests are blocked until,
by performing a commit, the original claimant releases the required resource. This
observation hints at the alternative way to model this system, to be described later.

Figure 6.4 gives the definition of the transaction processing system in its entirety.

M n
Ps & (H TznC;) B (H LockMgr; )
i=1 j=1

where L = {commit;j,accessdb;j:1 <i< M,1<j<n} (6.3.2)

Figure 6.4: The complete transaction processing system

6.3.1 Exploiting an Insensitive Structure

There are elements of this model which it may not be appropriate to model using
an exponential distribution. Omne such activity may be the think time of each user,
i.e. think;, 1 <17 <mn, for example if the ‘user’ in one case is a computer program
generating transactions at a constant rate. In this case it is possible to choose a generally
distributed duration of activity, since the TPS may be modelled by making use of the
combinator presented in Chapter 4. Rate restriction is in place, since each lock manager
controls the rate at which waiting transactions may commit changes to the database i.e.
activities commity; happen at a constant rate. Therefore the rate is fixed independent
of the number of blocked transactions, which is actually stricter than the queue-length
dependent rates required. This is not unreasonable, since access times will depend on

the database objects, not on the transactions themselves.
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Proposition 1. The steady-state solution of TPS with arbitrarily distributed think;, 1 <
1 < n is identical to the steady-state solution of T'PS where those activities are expo-

nentially distributed (with the same mean of %)

This proposition allows the transaction processing system to be modelled in PEPA, yet
with no commitment to the stochastic nature of the distribution associated with each
think; activity other than the mean. The QD model, called TPS’, consists of the same
set of transaction class processes, but where the set of LockMgr processes is replaced

by a queueing discipline. The formal definition of TPS’ is given in Equation (6.3.1).

TPs’ & Qy(TanCy, ..., TenCy)

where x = (A1,&1,... . AN, EN)

A; = {writelock;j:1 <i< M} 1<j<n

gi = <Ci7 e ,Ci> (633)
These models are in fact isomorphic, that is TPS = TPS'. Given
Qy(TznCy, ..., TenCy,) € ds(TPS’), the steady-state solution of being present
in Qy(TznCy,... , TenC},) is given by the following expression:

M

M n o4
m(Qy(TanCy,. .., TenCyy)) = éHm(TwnC{)H H cj. H Z r
i=1

i=1j=gi+1 i1 /
T Tenc!'is blocked @) €A L)

(6.3.4)

where 1/G is a normalising constant, and ¢; represents the number of transactions

blocked wishing to access database objects in Ly; for 1 < k < M.

6.4 Using the PEPA Reward language

In this section, the PEPA Reward language is employed to specify and automatically
calculate performance measures from a set of TPS models due to Pun and Belford [63].
These models are treated analytically by the authors, using queueing theory and the
BCMP theorem. However, they serve to prove the main point of this section—that the
Reward language can be used to automatically generate performance measures from
these models. The results presented match those produced by Pun and Belford using
an alternative analysis; the Reward language is then used to specify and calculate some

more elaborate properties.
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6.4.1 Description of the Models

Pun and Belford [63] present three classes of models for a TPS. Once again, transactions
in this model obey two-phase locking, and employ a preclaim strategy for securing
database objects. A database consists of a collection of data objects, bundled into
granules. If a transaction acquires a lock over a data item, all data items in the granule
are also locked. In these models, it is assumed that granules are ‘well-placed’, that
is that the data items referenced by a transaction are packed into as few granules as
possible. Following Pun and Belford, let T'S be the number of items referenced by a
transaction, DS the size of the database in items, and NG the number of granules in

the database, then the number of items in each granule is G = [DS/NG].

When a transaction enters the system, it requests all locks at once. The lock manager
determines whether all these locks may be granted or not. If any of the locks are held
by another transaction, the request cannot be granted, and the transaction is blocked.
Otherwise, the locks are granted, and the transaction is allowed to access all its held
data items. It then alternates between computation and database access, where each
access retrieves one data item. After its final computation, the transaction terminates
and all its locked data items are released. If another blocked transaction may now be

unblocked, this is done, and it proceeds as described.

The model may be represented as a queueing network, as illustrated in Figure 6.5.

The integer labels represent classes of customer—classes 1, 2, 3 and 4 pass through the

-—%94'5}!’ — 4 > 1 —= ‘IIII}—— 1 = 4 =

PS FCFS

e (W
IS

Figure 6.5: Queueing model representation of TPS

processor-sharing CPU node, and therefore represent some computation with respect to

a transaction; class 1’ represents a transaction accessing the database, customers being

144



governed by a FCFS node; and class 1” represents a transaction waiting for locks,
modelled by an IS (fixed delay) node. A class 1 customer is a transaction requesting
locks, class 2 represents locks being granted and set, class 3 the locks being released,

and class 4 represents computation by the transaction between database accesses.

Each transaction enters as a class 1 customer, and requests locks, which is either
granted, causing a change to class 2, or denied causing a change to 17. A class 2
transaction is changed to class 4 on having its locks granted, and then cycles between
the CPU and accessing the database, alternating between class 4 and class 1. On the
departure of a transaction, a new one immediately enters Pun and Belford’s model is

closed.

Since the authors solve such models analytically, the movement between customer
classes, and the delays incurred by the service centres are modelled probabilistically.
Here, a concise summary is given—the interested reader is referred to [63] for more

details. The models are parameterised by the following additional variables:

e N, the degree of multiprogramming, that is, the number of transactions concur-

rently executing.
e TC'PU, the mean time spent by a transaction on a ‘useful’ computation.
e TLKREQ), the mean time spent deciding on a lock request.
e TLKSET, the mean time spent setting a lock.
e TLKNRFEL, the mean time spent releasing a lock (on transaction completion).
e TIO, the mean time taken by a transaction to access the database.

e MTULG, the mean wait time for a blocked transaction to obtain its locks.

Now, let p;, denote the service rate of class r customers at service centre i. Let P;,.; s
denote the probability that a class r customer at centre ¢ will become a class s customer
and next require service at centre j. Then the following parameters are chosen, which

depend on a value P, the probability that a transactions locks are granted:

1/ucpus = TLEREQ 1/ucpus = TLKSET

1/ucpus = TLKNREL 1/ucpua = TCPUJ(TS + 1)

1/pi1/000 = TIOJTS 1/upwar = MTULG
Popui,cpue = Py Pepupwir =1 —F
Fopuacpuz =1/(TS + 1) Pepuarjor =TS/(TS +1)

(6.4.1)
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Pepui.crua = Pepus.crur = Prjo1,cpua = Powircruz =1
and all other probabilities are assumed to be 0.
6.4.2 Representing the Model in PEPA

Modelling a transaction such that it is faithful to the behaviour of the queueing model

above is reasonably straightforward. The definition is given below.

Teny; < (reqlocks, pcpu,1 X Popu,i;cru,2)- Trnig
+ (reqlocks, uopy,1 X Pepu,i.ow,17)-(waitforlocks, prw, 17). Tengs
Trng, (setlocks, ucpu,2). Taniyy
Txnyy, def (compute; pg, ioru,4 X Peru,yir/0,10)- Tongg
+  (compute; re1, icru,y X Poru.yicpu,s)- Tonig
Trng & (accessdb;, T).Tznjy
Tanis def (releaselocks, ucpy,s). Tengg (6.4.2)

Progress through a non FCFS service centre is modelled by a PEPA activity with an
appropriately chosen rate; the probability of exchanging customer classes after a service
centre is modelled by a choice (a race) between two activities, where the probabilities
are introduced into the activity rates. The FCFS service centre is modelled in straight-

forward fashion as a PEPA queue:

N
def
Qy = Z (computes pg, T). Q)
i=1
def
Q(k,a,...,b) = Z (ComPUtei,DBaT)'Q(k,a,...,b,i)
iZ{k,a,... b}
+ (accessdby, pro,1/)-Qa,... 5y ~ where [{k,a,... b}|< N
ef
Qik,a,...,b) = (accessdby, (70,17)-Qa,... 5y ~ Where [{k,a,... ,b}[= N (6.4.3)

A benefit of this model is the insight it affords into parameterising the model by N, the
degree of multiprogramming—the individual transactions are explicitly represented in

the complete specification below:

N times
def h
TPSPB = (Txnu H H Txn]\u) BLQ Q<>
where L = {compute; pg, accessdb;:1 <i < N} (6.4.4)

Therefore the system is composed of the independent product of N transaction pro-

cesses, in cooperation with a FCFS service centre.
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6.4.3 Choosing Parameters

The aim of this study was to use the PEPA Reward language to reproduce the results
reported in [63], and further to specify and calculate some more elaborate performance
measures. Pun and Belford calculate the percentage of useful CPU utilisation, for
different degrees of multiprogramming (N = 2,4,6), as NG, the number of granules in

the database, and TS, the number of items required per transaction, are varied.

Before solving the models, concrete values were given to the model parameters. Let
NL = [DS/G] giving the number of locks required by a transaction. The parameters

chosen were

DS = 5000 items TCPU =50x1TS
TLKREQ =5xNL TLKSET =5x NL
TLKNREL =10x NL TIO =50 xTS (6.4.5)

Two parameters remain unspecified. The first is P, the probability that a transac-
tions locks are granted. Following Pun and Belford, this is estimated in the following
way. Let A(k) be the probability that a new transaction is activated, given that k
transactions are already in the system. To allow the transaction to be activated, the
granules holding the data items it requests must be outside the £ x NL granules al-
ready held by the k active transactions. The number of ways to choose these granules
is f(k) = choose(NG — k x NL, NL); the total number of ways to choose N L granules
is p = choose(ING, N L); this gives A(k) = f(k)/p. To determine the average number of
transactions in the system, N A, Pun and Belford use a well-founded recurrence relation

determining the probability k transactions are active given m are in the system i.e.

N-1
NA=>"kxPk|N-1)
k=1

ultimately determining P, = A(NA).

Fach parameter so far has been calculated analytically, given an initial set of model
conditions such as the number of data items, granule size, etc. The final value to
be specified is MTULG, the mean time a transaction has to wait for locks to be
granted. Let 1" be the throughput of transactions. When a transaction finishes, a
blocked transaction is immediately activated, meaning the number of active transactions
in the system remains the same. After a transaction joins the ‘blocked’ queue, the
expected queue length is N — N A, giving an estimate for MTULG of (N — NA) x 1/T.
However, in order to determine 7', the model must be solved. This leads to an interative

process.
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The initial value chosen for MTULG is the total resource time requested by each
transaction, ' LKREQ + TLKSET +TLKNREL 4+ TCPU 4+ TI10. Thereafter, the
PEPA Reward language can be employed to automatically generate the transaction
throughput 7', allowing the value of MTU LG to be refined, and the process repeated

until convergence. A suitable reward specification and attachment are given below:

spec = (Aget1ocks, rate(setlocks))

N times
attachment = (spec, ¢, (Tonyg, ... , Trnyg, Qp))
N times
———
where ¢ = ([] || ... |[ []) B[] (6.4.6)

This reward specification is satisfied by states in which an activity of type setlocks
is enabled. By assigning to these states as a reward the rate at which setlocks is
performed, and 0 to all others, the reward structure built gives the overall transaction
throughput by the Forced Flow law. The PEPA Workbench was used to calculate
the throughput, and the value was used iteratively in the construction and solution
of subsequent refined models. As mentioned, the Reward language is only partially
implemented—however, the reward above does not require an analysis of the behaviour
of individual subcomponents, and so the Workbench could be satisfactorily used. Fig-

ure 6.4.3 shows the value of T converging for T'S' = 250, N = 4, and NG = 8000.

‘ Iteration ‘ Start Value ‘ Resulting Value ‘

1 17543 22222
2 22222 25641
3 25641 27777
4 27707 29411
5 29411 31250
6 31250 31250

Figure 6.6: Convergence of mean time between transactions

6.4.4 Specifying the Performance Measures

Once a final value of T" had been derived, the next task was to calculate the useful CPU
utilisation. This is defined as the time the CPU is being used by any transaction in
between accesses to the database. By studying TPSpp, it can be seen that any state
from which an activity of type compute; pg is possible, for any i such that 1 <i < N,
represents the utilisation of the CPU by a transaction. Therefore, the PEPA Workbench

was provided with the following reward specification:
spec = (Acomputespp V - - - V Acomputeypps 1) (6.4.7)
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Results were calculated for values of N = 2,3,4, T'S = 250,5, and with NG varying

between 1 and 10000. The CPU utilisation is presented in Figures 6.7 and 6.8. These
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Figure 6.8: CPU utilisation for a transaction size of 5

results mirror those presented in [63]. Figure 6.7 shows that for a transaction size of
250, the utilisation hits a peak at around 20 granules. The curve rises as the number of
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granules in the database increases, which is intuitive since this will increase the number
of active transitions in the system. However beyond NG = 20 it is the case that the
number of locks required by each transaction, [DS/NG], rises above 1, and thus the
locking overhead increases. Figure 6.8 indicates that for a much lower transaction size,
the CPU is effectively utilised at much higher values of NG, that is with much finer
database granularity. However it also shows that beyond low values of NG, the increase

in utilisation is not marked, and therefore the benefits of such fine granularity are slight.

The next measure specified is used in the calculation of the mean number of transactions
waiting to access the database (therefore the mean number queueing at the FCFS
service centre). In order to do this, each state of the model which represents ¢ queueing
transactions must be assigned a reward of i. This can be done by using several reward

specifications; the case for N = 2 is shown below:

speco = (Vaccessab; A Vaccessdby s 0)
speci = ((Aaccessab; /A [accessdby]Vaccessan,)
V' (Aaccessab, A [2ccessdby|Vaceessaby )5 1)
speca = ((accessdbi)Azccessab, V {(accessdba)Agccessdby s 2) (6.4.8)

The expected number of queueing transactions can be calculated by simply adding
together each of the reward structures produced from the specifications above. The

results are presented in Figures 6.9 and 6.10. It can be seen that these graphs follow
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Figure 6.9: Expected number of queueing transactions for T'S = 250
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Figure 6.10: Expected number of queueing transactions for 7'S = 5

approximately similar trends to the previous two. This is for the same reason that while
the granularity increases, this increases the locking overhead, and so more transactions
are blocked, preventing them from gaining their locks in the first place. The curves
rise initially because for low values of NG, each transaction only requires one lock
per transaction, and so the locking overhead remains constant while allowing more

transactions into the system at any one time.

6.5 Summary

This chapter has exhibited the two themes of this thesis. Firstly, a transaction process-
ing system was shown to be suitable for modelling with the new combinator presented
in Chapter 4. This meant that the model was insensitive to a particular set of ac-
tivities. Some features of the TPS were unsuitable for modelling with exponential
random variables, and it was shown that in these cases, the exponential assumption
in the model was unnecessary—the corresponding activities could be distributed arbi-
trarily without affecting the steady-state solution of the model. Secondly, TPS models
of Pun and Belford [63] were translated into PEPA, and it was shown that by use of
the PEPA Reward language, reward structures that were specified logically, and calcu-
lated automatically, could produce the same performance measures as those calculated
analytically from another modelling paradigm, networks of queues. Furthermore, the

Reward language was used to calculate some more elaborate properties of the models.
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Chapter 7

Conclusions

Extending and improving the repertoire of techniques available to the SPA modeller is
a worthwhile pursuit. As well as assisting the performance modeller already convinced
by, and working with, process algebra, it should also serve to persuade others that the
methodology is maturing and may serve their needs. The author is in no doubt that
the compositionality present in SPA gives a significant advantage over other modelling
paradigms. Much of the work presented in this thesis exploits this compositionality, in

both constructing and analysing stochastic process algebra models.

7.1 Summary

The theme of this thesis has been to build on model construction and analysis techniques
for stochastic process algebras. This has been done in two ways—firstly, by providing a
specification language for performance measures, and secondly, by providing conditions

for incorporating generally distributed random variables into SPA models.

The PEPA Reward language was presented, a specification language for performance
measures. It employs a modal logic, PML,,, which the modeller uses to describe be-
havioural properties of PEPA models. The states assigned a reward are those which
satisfy a behavioural property. PML, was shown to be especially suitable for working
with PEPA, since it characterises strong equivalence. This was shown by a similar
construction to Larsen and Skou [56] for probabilistic bisimulation. Two PEPA models
are strongly equivalent if and only if they satisfy the same set of PML,, formulas. The
PEPA Reward language also allows the modeller to exploit the structure of a PEPA
model by focusing attention on model subcomponents within a larger context. A pre-
cise meaning was given to a PEPA context, intuitively a process algebra ‘skeleton’ with
‘holes’ in which model subcomponents can be placed. A PML,, formula is satisfied in

context if the set of subcomponents in the view of the context satisfy the formula, sub-
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ject to the observations that the process may also evolve silently due to subcomponents
not in view, and further that the timing behaviour specified by the formula is satisfied
by the model, not the subcomponents. Conditions were then given for the preservation
of the truth of a PML, formula when aggregating in context. In essence, these con-
ditions are that any context representing a component to be aggregated must be such
that all its subcomponents are within the view of the context. These results ensure the
PEPA modeller may specify a reward structure by studying the behaviour of a set of
subcomponents of a model in a larger context, and yet may still aggregate particular

subcomponents with a guarantee that performance measures will be preserved.

A new model construction technique was presented, the aim of which is to allow the
use of generally distributed activities in PEPA models. The technique provides a new
derived PEPA combinator. The combinator arguments are sequential components, that
is PEPA models that do not consist of a cooperation of further subcomponents, and
sets of action types and rates. This combinator implicitly introduces an arbiter sub-
component, which is placed in cooperation with the sequential components. Its effect
is to force subcomponents into a bottleneck at particular points in their evolution, such
that they may have to queue in order to proceed. Subcomponents must leave the queue
at a rate dependent on the length of the queue. This structure of model was mapped
to a GSMP, and by deducing the general solution form of such models, insensitivity
theory was applied to conclude that a particular set of the model’s activities need not
be assumed to be exponentially distributed, while crucially retaining tractability of so-
lution. Interestingly, the general solution form of such models is a product form over

the subcomponents.

The thesis then revisited insensitivity, without recourse to the GSMP. An extension
of PEPA called gPEPA was introduced, a syntax for describing models with generally
distributed activities. Some restrictions were placed on gPEPA models, for example
that generally distributed activities could not cooperate, and general distributions were
then modelled using Erlang mixtures. This construction meant that the evolution of
the model could be described using only probabilistic and exponentially distributed
transitions, which was necessary for the balance equation analysis presented. An op-
erational semantics was presented, partly in terms of probabilistic transitions, and the
performance model was shown to be an infinite-state continuous time Markov chain.
The main result was that if model subcomponents exhibit a local balance property,
then again, the steady-state solution of the model is provably equal to that for a corre-
sponding Markovian version. This recovers the essence of insensitivity. The difference
to the work presented earlier is that models need not conform to the structure enforced

by a particular combinator. However, conditions on the structure of insensitive process
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algebras models were not provided; they were presented as local balance conditions, at

the level of the stochastic process.

To demonstrate the applicability of these techniques, a case study was presented. PEPA
models of transaction processing systems were produced. The new combinator was
demonstrated to satisfactorily model one class of database models. The PEPA Reward
language was then used to automatically generate reward structures which duplicate
performance measures presented in the literature. The purpose of the case study was
to exemplify the use of the techniques, rather than to draw any conclusions of novel

interest to those in the field of database systems.

7.2 Topics for Further Work

The PEPA Reward language is new, and its utility remains to be demonstrated. Cer-
tainly it is the most expressive technique available for specifying performance measures
of SPA models. One area of concern is the exposure of the PEPA modeller to unnec-
essary theory. With expressiveness comes additional complexity, and though straight-
forward to those familiar with the use of modal logics, PML, might be daunting to
the user. This could cause the user to disregard the technique, or to use it improperly,
leading to mistakes. It would seem useful to provide a ‘sugar’ for the theory, which may
even be used to restrict the modeller to useful subsets of the language. An interesting
avenue would be to translate other techniques, such as EMPA, [5] into the Reward

language.

At the end of Chapter 3, a conjecture is made on the use of rate-reduced PML,, formulas
in reward specifications. Proving this conjecture could allow the modeller to aggregate
more subcomponents, while still preserving the integrity of existing performance mea-
sures. The ability of the Reward language to study subcomponents in context suggests
links to a ‘weak’ version of the modal logic PML,. A weak modal formula, such as
{(a)F, is satisfied if an « is possible during some finite (possibly zero) length sequence
of unobservable 7 actions, leading to a derivative which satisfies F'. The semantics of
a PML,, formula in context are similar, in that subcomponents not in the view of the
context are free to perform activities. This link is worth exploring, and may provide

the modeller with additional insight into the use of the Reward language.

A more down-to-earth concern is the implementation of the Reward language. Certainly
the technique should be implemented in its entirety, within the PEPA Workbench. Tool
support should allow the detection of reward preserving aggregations within a context,
and warn the user if aggregation will impact upon existing reward specifications. Fur-

thermore, the calculation of performance measures should be efficient. A reasonable
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naive runtime can be given as O(m x 2™), where the PEPA model has m states, and
the n is the maximum depth of any PML,, subformula in the reward specification (since

the logic possesses no temporal combinators). It may be possible to improve this.

The new combinator for building insensitive models provides interesting links to another
area of research in Markovian process algebras, that of identifying structures for product
form solution. The nature of the combinator is that it implicitly introduces queues
as interacting components into a model of independent subcomponents. In queueing
theory, the BCMP theorem [4] states that a queueing model with nodes in any of
four classes of service centre, and with multi-class traffic, has a product form solution
for the steady-state distribution of the customers at the nodes. The new combinator
produces models with a product form solution; moreover, the queues introduced by
the combinator may be viewed as first-come-first-served nodes, and the independent
activities of the subcomponents may be viewed as infinite-server nodes, two types of
node covered by the BCMP theorem. It may be that the class of models presented in
Chapter 4 may be extended with PEPA analogues of processor-sharing and last-come-

first-served preemptive-resume nodes, while retaining the product form solution.

Other classes of SPA models with a product form solution have been identified. For
example, in [46], Hillston and Thomas demonstrate a class of PEPA models which
satisfy a set of exclusion conditions identified by Boucherie [10]. These models are
similar in construction to those presented in Chapter 4. They consist of a ‘resource’
interacting with the independent parallel composition of a set of processes. In line
with Boucherie’s work, a restriction on these models is that if a process P holds the
resource, and another, (), needs it now or at any point in the future, ) is blocked.
These models have a product form solution over submodels. An interesting piece of
future work will be to attempt to combine these two approaches to product form. It
may be the case that Boucherie style resource access, and the interaction imposed by
the new combinator, can be combined to produce a more general structure of PEPA

model which exhibits a product form solution.

The insensitivity results presented in Chapter 5 present further balance equation con-
ditions on PEPA models. However, there are still process algebra models, which are
insensitive to the distributions of some activities, which fall outside of the frameworks

presented in this thesis. For example, recall the model presented in Section 4.4.

p “ (a, 7). P’
def
Q = (Oé, 8)' Q,
def
= I p QX
R P {Q}P Ta} Q o Q (7.2.1)

Process R is a cooperation between four subcomponents, but each must cooperate with
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the others to perform an activity of type a. At the derivation graph level, this one
transition represents the evolution of four subcomponents. At the stochastic process
level, a change of state due to « is only represented once. It is simple to see that as long
as the original mean is maintained, the distribution of the duration of this activity may
be arbitrary without affecting the steady-state solution. Future work could attempt to
identify more classes of process algebra structure which guarantee the insensitivity of

activity durations.

Insensitivity gives great flexibility, but the conditions required to guarantee the property
are strict. It is expected that naturally occurring insensitive process algebra structures
may appear infrequently when large ‘real-world” models are being studied. However,
results such as those published by Henderson and Lucic [38] in the context of stochastic
Petri nets suggest that it may be possible to aggregate SPA models to produce an
insensitive ‘skeleton’, and then disaggregate exactly to generate the complete steady-
state distribution for the model. It is the author’s belief that the structure inherent in

SPA models will assist in identifying just such an insensitive skeleton.
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