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Abstract

The work reported in this thesis arises from the old idea, going back to the origins
of constructive logic, that a proof is fundamentally a kind of program.

If proofs can be considered as programs, then one might expect that proof
theory should have much to contribute to the theory of programming. This
has indeed turned out to be the case. Various technologies developed in proof
theory are now widely used in computer science for formulating and investigating
programming languages and logics connected with them.

Yet there is a vigorous and venerable part of proof theory which has so far
had little impact in computer science, namely ordinal-theoretic proof theory. This
focuses on proofs of wellfoundedness, usually expressed in the form of a schema
of transfinite induction with respect to a representation of an initial segment of
the countable ordinals. Proof theory of this kind is concerned with what it is that
limits the capacity of a proof system to ‘see into the transfinite’.

If proofs can be considered as programs, what kind of program is a proof of
wellfoundedness? My hypothesis is that the limitations of a formal system for
writing proofs of wellfoundedness reflect its limitations as a system in which to
program strategies for defeating ones opponent in a certain kind of game. In
recent computer science, games have proved invaluable as models for describing
patterns of interaction between a system and its environment.

I cannot claim to have substantiated this hypothesis, but only to have taken
a few steps in that direction. The work reported in the thesis lies in three areas.

First, I present a framework for dependently typed programming in the style
advocated by Martin-L.of. The novelties here are connected with bringing the
type-theoretic approach to programming that comes from the Curry-Howard cor-
respondence closer to the calculational approach in the categorical tradition that
comes from Lambek and Lawvere. A particular challenge is to find a smooth and
practical way of encoding inductive and coinductive definitions.

Second, I have investigated a number of ways of modeling interactive systems
and transition systems in a constructive context. The focus here is on models with
a direct computational interpretation, that can actually be used in programming.
The approach is inspired by a construction due to Petersson and Synek. It is
shown how one may represent game-theoretic strategies of various kinds using

these models.



Finally, I give a construction of provable ordinals within a Martin-Lof style
type theory that has a type of natural numbers, and an external sequence of
universes closed under generalised Cartesian products. The locus of the ideas for
this construction lie more in conventional proof theory, and were the basis for a
conjecture made by me almost thirty years ago in work that I then abandoned.
What is new here is the concept of a ‘lens’. This is a predicate transformer that
has been implicit in the construction of proofs of wellfoundedness since Gentzen.
I hope this concept may be of some use in an algebraic, systematic approach
to setting lower bounds on the proof-theoretic strength of more extensive type

theories.
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Chapter 1

Introduction

The work reported in this thesis arises from the old idea that a proof is funda-
mentally a kind of program. It is concerned with connections between the theory
of programming languages, and proof theory, particularly ordinal analysis.

If proofs are programs, or can be considered as programs, then surely they
constitute a very interesting kind of program, if only because programming of
this kind has been practiced for over 2000 years, and has been intensively studied
for more than 100. If programming is a dark street, then at any rate there are
occasional street lights.

Among the most interesting kinds of proofs, from the perspective of compar-
ing the strength of formal systems in which proofs might be written, are proofs
of wellfoundedness. For general reasons, any formal system for writing proofs is
strictly limited in its capacity to recognise the wellfoundedness of simple effective
wellorderings between concrete data structures. These limits can be investigated
and located in terms of ordinal arithmetic, as first demonstrated by Gentzen. This
has been pursued extensively in the part of proof theory known as ordinal anal-
ysis [89], [85], hand in hand with developments in ordinal arithmetic necessary
to analyse increasingly strong systems. If proofs are programs, what kind of pro-
grams are proofs of wellfoundedness? My hypothesis is that they are paradigms of
terminating interactive programs. The limitations of a formal system for writing
proofs of wellfoundedness reflect its limitations as a system in which to write a
particular kind of terminating interactive program.

The pattern of alternating interaction between distinct components (master
and slave, client and server, caller and called, environment and system) is very
pervasive in practical programming and system design. There is considerable in-
terest in knowing when and how such a sequence of interactions can be constrained

to terminate!. For example, successful termination is a fundamental property of

LOf course, there is even more interest in knowing that termination will occur within a
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transactions that interact with a number of resource managers. Thus the lim-
itations of formal systems and the arithmetical description of those limitations
have considerable interest if one wants to calculate and compare the competitive
strength of systems for writing interactive programs which terminate.

Games serve as an apt metaphor for alternating interaction. In the games
I have in mind, two players take turns, choosing successive moves from a set of
legal moves that depends on the sequence played so far. The object is to ‘beat’
one’s opponent by driving them inevitably into a position in which they have no
legal move. A strategy which accomplishes this has essentially the same structure
as a proof of wellfoundedness.

The idea of developing an arithmetic of competitive advantage for positions
in terminating games has been extensively pursued by Conway and others [15],
[41], [16]. Conway did not however consider the metamathematical question of
how competitive strength is limited by the programming system in which the
strategies are written, which seems to be a question more in the province of proof
theory.

If proofs are programs, it does not follow that programs are proofs. If I

understand him, that idea was advanced by Martin—Lof in [66]:

If programming is understood not as the writing of instructions for this
or that computing machine but as the design of methods of compu-
tation that it is the computer’s duty to execute (a difference Dijkstra
has referred to as the difference between computer science and com-
puting science), then it no longer seems possible to distinguish the
discipline of programming from constructive mathematics.

This seems to me to give insufficient weight to a key distinction between proofs
2

and programs, namely that circularity, or running perpetually is a vice® in a
proof, but a virtue in a program. A proof must be wellfounded in a sense which
guarantees the termination of any investigation back into its construction, and
rules out any kind of petitio principii.

In programming, we are sometimes very much concerned with systems which
ideally would run ‘forever’, as for example when the program forms part of the
control system for a machine, or a web site. In the terminology of games, the
desirable outcomes are often those in which neither party loses. This raises the
general question of extending the arithmetic point of view to games which need
not terminate. Here the concerns are not so much with termination, wellfound-

edness and initial algebras, as with non—termination, coinduction, and final coal-

reasonable time.
2As in: “vicious’ circle.



gebras. These have been more in the province of computer science, since the
development by Park [83] and Milner [70] of the concept of bisimulation. There
is a widespread appreciation of the value of coalgebraic notions when modeling
computer systems mathematically, though little seems to be known about how
our ability to program perpetual strategies is limited by the system we choose in
which to program.

I am disappointed to say that I cannot claim to have substantiated my hy-
pothesis, but only to have taken a few steps in that direction.

The first section of this introduction explains in more detail the background
to the ideas above. The second gives an overview of the work reported in the
body of the this thesis.

1.1 Background

This idea that a proof is fundamentally a kind of program has a long history. It
is more or less explicit in the very origins of constructive logic and mathemat-
ics. An early expression is in Kolmogoroff’s [55] explanations of the constructive
interpretation of first order logic, according to which its statements express prob-
lems, and to assert a statement is to claim to know an effective solution to the
problem expressed by the statement. If putting a solution into effect is thought of
as running a program, then a proof of a statement is a program whose execution

solves the problem expressed by the statement.

1.1.1 Some history

The constructive approach to logic arose against the background of the crisis in
the foundations of mathematics which impelled the development of logic, type
theory, and set theory at the end of the last century, and the beginning of this.
The crisis was provoked by the need to improve upon the standards of rigour
prevalent in 19—th century mathematics so as to deal with new notions of func-
tion, continuity, limit and infinity. The crisis grew in scope and urgency as the
difficulty of obtaining a clear view of even the basis of elementary arithmetic
became starkly apparent. Many of the questions raised by this crisis were philo-
sophical in character, concerning for example the nature of the statements made
in mathematics, what kind of meaning they possess, what it means to apply
mathematics, and what sort of relation holds between a mathematical statement
and a proof of it.

From a philosophical perspective, the appeal of the constructive interpretation

7



of mathematical statements is that it connects proofs and propositions with hu-
man activity, specifically putting a program (of an idealised kind) into execution,
or operation. There is therefore nothing mysterious about how mathematics can
be applied, as this is so to speak its very nature. Neither is it mysterious what
a proof has to do with what it proves, as the relation is the same between that
between means and end. According to the more Platonistic view according to
which mathematical statements are descriptions of a realm more or less imper-
fectly accessible to human beings, with no intrinsic application in human affairs,
the properties of a proof in virtue of which it conjures up conviction in the proved
statement are quite mysterious.

A resolution of the foundational crisis was eventually secured by axiomatisa-
tion of set theory, through a progression of mathematical moves by mathemati-
cians such as Zermelo, Hausdorff, Frankel, Skolem and von Neumann. Arguably
this resolution was accomplished in spite of the philosophical preoccupations and
initiatives of some of those who contributed to this resolution [54]> With the for-
mulation and general acceptance of Zermelo—Frankel set theory, mathematics of
the kind developed in the second half of the 19—th century had been set on as
simple and rigorous a basis as could reasonably be desired, and could pass as it
were from adolescent crisis into adulthood. This formalisation took place decades
before the invention of the stored program digital computer, or the emergence of
programming in the sense in which it is understood today. Such questions as to
what extent mathematics could be rendered in a formal framework admitting a
computational interpretation, and how much would be gained or lost by so doing
were nevertheless raised, and addressed.

Hilbert regarded axiomatisation as an essential step for the resolution of foun-
dational questions, but only the first. His central concern was the consistency of
such an axiomatisation, proved mathematically, but on the basis of so called fini-
tistic principles underlying combinatorial reasoning about concrete objects, such
as natural numbers, and formulas and formal derivations [46]. Hilbert began
to refer to his way of providing a foundation of mathematics as ‘proof theory’
(Beweistheorie), and so brought the term into currency, in connection with the
mathematical investigation of (primarily) the consistency of formal systems ad-
equate for the formalisation of significant parts of mathematics. He set about
the creation of this new subject with his collaborators, principally Bernays and

Ackermann. Hilbert was considerably exercised to refute the contrary views of

31t is perhaps the peculiar fate of philosophers that such an accomplishment as Frege’s
invention of predicate logic becomes ‘what everybody always knew anyway’ and merely the
stage on which some more technical subject unfolds.
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Brouwer, who considered formalisation irrelevant*, and pursuit of a foundation for
mathematics by metamathematics absurd. The following passage from Hilbert’s

polemical paper ‘The Foundations of Mathematics’ ([46]) illustrates this.

The formula game that Brouwer so deprecates has, besides its math-
ematical value, an important general philosophical significance. For
this formula game is carried out according to certain definite rules, in
which the technique of our thinking is expressed. These rules form
a closed system that can be discovered and definitively stated. The
fundamental idea of my proof theory is none other than to describe
the activity of our understanding, to make a protocol of the rules
according to which our thinking actually proceeds.

Of course, Hilbert’s hopes of a wholesale reduction of arithmetic, analysis and
transfinite set theory to a finitistic basis were destroyed by Godel’s second in-
completeness theorem. Moreover, Hilbert’s conviction that mathematics could
be expressed as a ‘closed system’ was revealed to be an illusion.

Gentzen’s contributions to proof theory were profound, and are for the most
part well known. The first of these was the formulation of systems of natural
deduction for classical and intuitionistic first order logic, arguably taking more
seriously than Hilbert the question of making ‘a protocol of the rules according
to which our thinking actually proceeds’. (Credit for this invention is due also
to Jaskovski: see [87].) In a natural deduction system, the rules pertaining to
each logical constant (i.e. connective or quantifier) are teased apart from each
other (with respect to the axiom—based formulations of Frege and Hilbert). For
each such constant, there are introduction rules, for introducing the constant as
the outermost constant of the formula which is the conclusion of the rule, and
elimination rules, for eliminating the operator from the ‘main’ premise of the rule.
Gentzen did not consider reduction rules. The investigation of reduction rules in
natural deduction systems was due to Prawitz [87]. This was a crucial step in
establishing the correspondence between computation and the use of proofs as
programs as something more than ‘mere philosophy’.

Another major contribution of Gentzen’s was the formulation (deriving from
certain ideas of Paul Hertz) of an alternative presentation of the rules of classical
and intuitionistic predicate logic, better suited to the investigation of systems
of classical logic. This has become known as ‘sequent calculus’, or ‘Gentzen
systems’. A sequent is a pair (I', A) of sequences of formulas, commonly written
I' - Aor ' A, where the sequences I' and A are the antecedent and succedent

respectively. The conclusion and premises of a rule are not formulas, but sequents.

40ddly, it was Brouwer who first (in his thesis) formulated the idea of metamathematics.
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The rules are classified into logical rules pertaining to the various logical constants,
and structural rules. The rules for each logical constant are divided into rules for
introducing that constant into (a formula of) the antecedent and for introducing
it to the succedent of the conclusion sequent. The structural rules (assumption,
thinning, contraction, and interchange) are concerned with the bureaucracy of
sequents themselves, while the remaining structural rule called ‘cut’ allows for
the elimination from the conclusion of an entire formula which occurs in the
antecedent of one of its premises, and from the succedent of the other. The
content of Gentzen’s Hauptsatz or cut—elimination theorem is that the rule of
cut is an admissible rule of the system of rules without cut. From this, a host of
corollaries flow, in virtue of the crucial subformula property of the (first order)
system without cut, that in any derivation of a sequent I' — A, the only formulas
which occur are subformulas of I' and A. (See for example Chapters 4 and 5
of [105].) The technology of natural deduction systems and sequent calculi has
become pervasive throughout logic and computer science.

Yet another contribution of Gentzen’s, of more direct relevance to the subject
of this thesis, was to launch the whole subject of ordinal—theoretic proof theory,
or ‘ordinal analysis’ [89], [85]. Unlike Gentzen’s other contributions, to the best
of my knowledge this subject has had little impact on computer science, and is
perhaps considered to be at best a highly technical field within mathematical
logic, very distant from the motivations and concerns from which it arose. Here
the focus is on proofs of a particular kind of statement, namely statements of
wellfoundedness. T shall usually reserve the term ‘wellfoundedness’ for the prop-
erty of a binary relation that all points in the field of that relation are accessible.
Accessibility of a point ¢ is usually formulated schematically in the form of trans-
finite induction over the binary relation <, up to some point ¢ in the field of
=<, with respect to a free schematic predicate P. One way to express this is as

follows.

(Vm)((Yn)n < m = P(n)) = P(m)) = P(t)

By a proof of such a statement is meant a proof in the language extended with
a new predicate constant P, using no special rules for P. Accessibility of a point
is equivalent to wellfoundedness of the initial segment of the relation below that
point in the transitive closure of the relation; so I may sometimes refer to the point
itself as wellfounded. For general reasons, any sound formal system for writing
mathematical proofs has a strictly limited capacity to recognise wellfoundedness,
in the sense of permitting the construction of proofs of accessibility for naturally

arising notations (such as Cantor normal form) for countable ordinals. Gentzen
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showed (in [35]) that the consistency of first order arithmetic followed by finitistic
reasoning from the descending chain principle for the first ordinal closed under
the operations of Cantor Normal form, namely Cantor’s first ‘epsilon’ number
€. From this it followed (by Godel’s second incompleteness theorem) that the
wellfoundedness of ¢, cannot be proved in (classical or intuitionistic) first order
number theory, so that this ordinal (whose importance had been noticed over half
a century previously) represented a limit on the ability of such a system to ‘see
into the transfinite’. Not long afterwards (in [36]) Gentzen also established that
this limit is best possible, in the sense that the wellfoundedness of notations in
Cantor normal form can be systematically established with proofs expressible in
first order arithmetic. (This is a modern treatment in chapter 10 of [105].) Since
then, ordinal theoretic proof theory has been concerned with what it is about a
system for writing mathematical proofs that determines its capacity for expressing
proofs of wellfoundedness. Hand in hand with this has gone the invention of
ordinal notation systems with which to describe ever more far—flung regions of
the second number class in which the limits of more powerful systems are located.
Dull would he be of soul perhaps, who did not find something marvelous (if
difficult to pin down) about the connections between logic and arithmetic that
have so far been traced. On the other hand, the question can be raised: what
has this to do with programming, or computer science? The question is far
from rhetorical, in view of the connection between proofs and programs in the
appreciation of which Gentzen’s formulation of natural deduction played a crucial
role.

Gentzen’s instigation of ordinal theoretic proof theory (in the setting of se-
quent calculi for first order arithmetic) was soon followed by another consistency
proof for classical first order arithmetic given by Ackermann [2], by means of
the descending chain principle for the same ordinal. Ackermann’s consistency
proof used a formulation of classical arithmetic exploiting Hilbert’s so—called
e—symbol, or ‘choice’ operator ¢ A = ex : A(z), where A(z) is a predicate ex-
pression with a distinguished argument indicated by the variable z that is bound
by the higher—order operator €. The term ¢ A stands for an object of which the
predicate holds if it holds for any object at all. This operator can take on the

role played by the first order quantifiers, by means of the equivalences

Vz.A
dz. A

Az : —~A(z))
Aez : A(z))

It turns out that in a given proof within classical first order arithmetic terms of

e—form can be systematically replaced (ultimately) by numerals in such a way as
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that what remains are true quantifier free statements (thus establishing consis-
tency). Ordinals are used to establish that the process of replacement terminates.
Ackermann’s methods were squarely in the tradition of Hilbert’s Beweistheorie.
Ackermann’s work was subsequently clarified by Tait ([103]) and developed by
Kreisel ([56], [57]) into his no—counterexzample interpretation of classical arith-
metic. In this interpretation, roughly speaking, a proof of first order classical
arithmetic is interpreted as a certain effective functional mapping finitely many
first order numerical functions to numbers. (That is, the functional is of second
order.) In a loose sense, this constitutes an interpretation of such a proof as a
terminating program for responding to a stream of concrete data tokens with an-
other such token, modulo some coding. This may also be thought of as a strategy
(which can be implemented, though it may not be feasible to use the implemen-
tation) for winning a contest against someone who contends that the functional
is undefined for a certain argument of which he is prepared to supply arbitrarily
long initial segments. It may be worth noting that all proofs of classical arith-
metic are interpreted in this way, not just proofs of wellfoundedness. Not only are
the functionals continuous (considered as functions from Baire space to the dis-
crete space of natural numbers), but they can be coded by wellfounded trees (the
nodes being neighbourhoods throughout which the value of a given functional is

not determined) whose depth is bounded by the ordinal €.

A better—known functional interpretation of proofs in first order intuitionistic
arithmetic is Godel’s ‘Dialectica interpretation’ ([39]), in which functionals of all
finite types over the natural numbers are used, closed under primitive recursion
at all finite types not just second order functionals. Godel’s paper was published
in 1958, but the interpretation was apparently known to him as early as 1941
(as reported by Feferman [32]). He described a system ‘T of formal rules for
deriving typed equations, which are stipulated to be decidable. The computation
of these functionals cannot be visualised as readily as in the second order case, so
the ordinal theoretic content of Godel’s interpretation is not as accessible as with
Kreisel’s. On the other hand Gdédel’s interpretation is primarily for intuitionistic
first order arithmetic, not directly for the system with classical logic. His inter-
pretation diverges from the BHK interpretation of the intuitionistic connectives,
but is much closer to it than Kreisel’s, in that the type operations have roughly

the same structure and complexity as the logical operations.

To analyse the ordinal theoretic strength of systems stronger than arithmetic,
in particular to bound it from above, a crucial step was taken by Schiitte [96],

and independently by Lorenzen [60]. (The idea was anticipated by Novikov [81].)
12



Schiitte and Lorenzen simplified the problem of cut—elimination for formal proofs
involving induction principles by effectively representing such proofs by infinite
wellfounded trees. Tait in [103] showed how one might use infinite terms to give
an ordinal—theoretic analysis of the terms of Godel’s T. This is an early example
of exploiting the (so—called) Curry Howard correspondence to transfer an idea
from a system of rules for inferring statements (with reduction steps for eliminat-
ing cuts, to a system of rules for constructing functionals (with reduction steps for
computing their values). Schiitte’s invention arose in the context of his analysis
of systems based on the ramified fragment of Principia Mathematica, incorporat-
ing a certain autonomy principle providing for transfinite ramifications; similar
studies were undertaken by Feferman. An improvement of of Tait’s method was
given by Martin—Lof in [64]. Another way of exploiting semi—formal systems
(with infinitary rules) to analyse computations of Godel’s terms had also been
demonstrated by Sanchis [95]. Sanchis’ approach was developed further by Diller
[25] and Howard in [50]. Some modern developments are by Schwichtenberg in
[97].

It may be fair to say that the idea at work (subliminally) in the development
of functional interpretations, and in the analysis of the computations of the func-
tionals that arise is the idea that programs are implicit in proofs, but have to
be extracted from them by some more or less ingenious meta—mathematical pro-
cess, non—standard reinterpretation, or unwinding. The rather bold step (back)
to the proposal (of Kolmogoroft’s) that one could actually think of proofs as them-
selves (without any disembowelling) a kind of program, was taken by Howard,
but arose from a milieu (of people in close contact) involving also Tait, Prawitz,
Martin—Lof, Scott, Kreisel, Goodman and Gédel. (Godel and Kreisel were very
sceptical.) Howard in [49] gives a presentation of the proofs in intuitionistic arith-
metic in natural deduction form as a system of typed terms, with computation
rules for the terms in correspondence with normalisation rules for formal proofs.
The implications of the Curry Howard analogy between program calculi and proof
systems began to be appreciated and exploited in proof theory, for example by
transferring and extending Tait’s normalisation results for the terms of Godel’s
T to systems of greater expressive and proof theoretic strength. The substance
of the Curry—Howard correspondence had also been discovered in de Bruijn’s
Automath project, independently of the proof theoretic tradition (but not of

Heyting’s explanation of the intuitionistic meanings of the logical constants).

About the same time, the philosopher Michael Dummett was developing a

view of direct semantics for mathematical statements that focussed on the rights
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and obligations of participants in the human activity of making assertions. These
rights and obligations were explained in terms of putting into practice ‘methods
for obtaining’ canonical proofs, where the notion of canonical proof is that in terms
of which the meanings of the logical connectives and quantifiers are explained.
Dummett’s ideas invited comparison between his notion of canonical proof and

the the technical notion of irreducible proof arising from proof theory.

In these circumstances Martin—Lof began to develop a series of systems of in-
tuitionistic type theory, with no formal boundary between propositions and types.
These were thought of as playing a foundational role for constructive, or computa-
tionally relevant mathematics analogous to that played by the Zermelo—Frankel
axiomatisation of set theory. In other words, the fundamental idea was that
one should be able to understand these systems directly, roughly as indicated
by Dummett, rather than indirectly by a mathematical semantics in the form
of a mathematically defined interpretation function (whose definition would pre-
suppose a direct understanding of the language used to express the definition).
Martin—Lof’s main technical invention, with respect to the state of development
of type theory in the 60’s, was of the notion of a universe, or a type of types
permitting the definition of new types, particularly types of transfinite depth, as
if they were data. His first system contained a universe designed so that with its
use one could define a category of all categories and functors, in which the cate-
gory is itself one of its own objects. This would indeed have been a foundational
coup; but as is well known, Girard was able to point out that this universe was
inconsistent, and the rules for it permitted the formation of expressions whose
computation does not terminate. After this, Martin—Lo6f turned to the consider-
ation of predicative universes, to which one could consistently adjoin schemata of
recursion stipulating wellfoundedness of the natural extension of the subformula
relation to types. These universe principles allowed for a much more practical ex-
pression of the autonomy principle compared to the formulations used by Schiitte
and Feferman in their analyses of rather artificial formal systems for predicative
reasoning. The question arose of establishing the proof theoretic strength of these

principles.

Up to the 60’s, with some exceptions, the ordinal arithmetic on which the
notation systems used in proof theoretic analysis had been based on Cantor nor-
mal form, (from the mid 19—th century), and Veblen’s hierarchy of continuous
and increasing functions over the ordinals in which each function enumerates the
common fixed points of those that precede it (from the beginning of the 20—th

century). To push further, notations for certain uncountable ordinals were in-
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troduced, using the idea due to Bachmann [7] of using higher (regular) number
classes to index sequences of functions on lower number classes. This combina-
tion of ideas seemed to run out of steam in making use of an inaccessible number
class [53]. A new idea was called for. Besides this, it was recognised that there
were subtle properties of the notation systems actually used in ordinal theoretic
proof theory that were frustratingly difficult to pin down mathematically. It is
possible to cook up a well—ordering of order—type w such that the consistency
of first order arithmetic can be proved by adjoining the scheme of proof by in-
duction over a notation system representing that ordering [89] The definition of
the notation system is primitive recursive®, but depends on an arithmetisation
of the syntax of first order arithmetic, and is in that sense unnatural. There
seemed to be more to notation systems than their order type, and this was not
adequately captured by limiting their definition to be primitive recursive, or el-
ementary in a complexity theoretic sense® In these circumstances the possibility
of exploiting a type structure for functionals over the ordinals in order to develop
new ‘natural’ notation systems was recognised by Feferman [30]. (These ideas
had been anticipated a decade previously by Neumer.) He raised the question of
exploiting a transfinite type structure. The question was pursued by Aczel [3],
for two hierarchies of functionals, one based on the idea of w—iteration, and the
other on ‘the critical process’ of adjoining to a notation system a new operator
which enumerates its fixed points. Aczel showed that the ordinals obtained were
not large, and in particular if one required that the use of transfinite types was
autonomous, then his hierarchy of functionals based on w—iteration constituted
a notation system for Veblen’s ordinal I'y, used by Schiitte and Feferman in their
analysis of formal systems for predicativity. The other hierarchy gave ¢r,,  (0)
Bachmann notation.

As Martin—Lof’s first predicative type theory allowed for the formation of
transfinite types in autonomous fashion, and the definition of functions of arbi-
trarily high type by primitive recursion (for example, the definition of w—iteration
functionals), it was natural to conjecture that (something like) Aczel’s weaker sys-
tem of functionals could be defined in Martin—Lof’s system, and conversely that
any ordinal definable in Martin—Lof’s system is bounded by an ordinal expressed
using Aczel’s w—iteration functionals. This became known as Hancock’s con-

jecture, on the basis of some efforts I made to formulate a hierarchy like Aczel’s

5In fact, Kalmar elementary

6This was stressed by Kreisel in a number of places. He had a ‘jingle’, stolen from a cigarette
advertising campaign of the time, that “with proof theoretic ordinals it’s not how large you make
them, but how you make them large”.
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within Martin—Lof’s theory, exploiting his rules for an external sequence of cumu-
lative universe types. I also expected that by lifting suitable relations hereditarily
to transfinite types (as with Plotkin’s ‘logical relations’), one would be able to
bound the definable ordinals by notations for ordinals below I'y. This conjecture
was established by Aczel (in the fragment with one universe), and Feferman (for
the sequence of universes) by relating Martin—Lof’s system to certain systems
known as I/DIC. These are systems based on classical first order arithmetic, which
iterate finitely the principle that a positive inductive definition has a fixed point
(but not necessarily a least such fixed point). The highly indirect and ingenious
nature of the proof theoretic reductions employed by Aczel and Feferman meant
that it remained for practical purposes obscure how one could exploit the uni-
verse constructions available in Martin—Lof type theory to exhaust its capacity
to recognise wellfoundedness. In the fourth chapter of this thesis, I have remedied
this to some extent, by showing how to define ordinals up to I'y directly in type
theory; what is still missing is a simple argument establishing a bound for the

definable ordinals.

Since the 70’s, the proof theoretical analysis of Martin—Lof type theory has
been pushed considerably further in various publications by Setzer [98], [100] [99],
Rathjen [90] [88], Palmgren [82], and Griffor [91]. For the most part, this has con-
sisted in the treatment of stronger forms of universe construction than those orig-
inally introduced by Martin—Lof. Roughly speaking, the methods employed use
mutual interpretations of type theories in (classical) systems of Kripke—Platek set
theory extended by axioms asserting the existence of large cardinals. The systems
of Kripke—Platek set theory are analysed by other means, using sophisticated de-
velopments in the proof theory of infinitary systems due to Biicholtz and Pohlers
(local predicativity), and in the principles underlying the construction of ordinal

notation systems.

From the beginning, Martin—Lof stressed that his type theory could be con-
sidered to be an implementable programming language, with the property that
the computation of the value of a well—typed expression must terminate. For
example, if one was able to establish by a constructive proof carried out within
such a type theory that such and such a family of differential equations have
solutions, then one could use the proof to compute arbitrarily precise rational ap-
proximations to the value of a solution for a particular argument given arbitrarily
precise rational approximations to that argument. The whole of [66] is devoted
to an explanation of how type systems of the kind he had developed primarily

with the aim of providing a foundational framework for constructive mathemat-
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ics could be considered as type systems for programming languages. The view of
type systems advanced in this paper is radically different from those prevailing
in computer science. The prevailing view is perhaps that the purpose of a type
system is to prevent programs ‘going wrong’ [12]. In contrast, Martin—L&f’s type
systems were designed so that (not only should programs not ‘go wrong’, but
also) any computation evoked by a well—typed program should terminate, or in

other words to ensure that programs should ‘go right’.

1.1.2 The notion of program

If proofs are programs, than at least on a superficial level they do not much
resemble the kind of programs that one encounters in the computer industry.
Over 20 years ago, when I was preoccupied with philosophical questions about
mathematics and logic, the idea that proofs were intrinsically programs struck me
as an important insight, an impression which I have never succeeded in shaking
off. For a long time, employed in the computer industry as a programmer, |
have tried to clarify to myself what it actually amounts to, and to square it with
and apply it to what I have learnt about programming. In retrospect it is more
than faintly ridiculous that I should have found the comparison of a proof with
a program enlightening, having had even less experience of actual programming
than of mathematics.

In some cases the programs I was employed to write formed part of the control
system for complex machinery. I was lucky to work sometimes with engineers from
fields such as hydraulics, metallurgy, and electronics. I began to appreciate how
little I knew about Fourier analysis, differential equations, discrete sampling, and
many other fields of mathematics extensively used in engineering.

It was a particular pleasure in my career as a programmer, even a relief to col-
laborate with engineers from other fields than software, because there appeared
to be a solid foundation for what these other engineers said and did, despite the
fact that they hotly denied the existence or relevance to them of any such founda-
tion. The effect of having this foundation was that they had available to them a
variety of well—understood ways of describing and modeling the things they built,
and that the models supported useful calculational techniques. My impression
was always that if I did not understand something they said, and it mattered
enough, then in principle it would be possible to tell what they were talking
about, what they were saying about it, and why they were saying it. In contrast,
a foundation of this kind seemed much less explicit in software engineering. My

first impressions of computer science were of a Darwinian jungle of competing
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theories, compared to the elegant flower beds of engineering mathematics. The
difficulties software engineers face in communicating with each other, or in repre-
senting even to themselves what they are doing are profound. Yet what they do
is surely programming, the activity I had thought such a firm bed—rock for the

very meaning of mathematical statements.

As a result of my experiences as a programmer, I am now less interested in
answers to philosophical questions, but more in what basis there is for thinking
about programs and programming, in a sense of ‘program’ intelligible to pro-
grammers. I hope to have made it obvious why I have inevitably asked myself
how matters look from the perspective that proofs are a kind of program. There
is a certain dilemma: on the one hand the idea that a proof is a program is in
danger of collapsing into platitude, and on the other hand from a programming
perspective it can seem a paradox whose absurdity is close to grotesque. How
could one write a program to control a large piece of complicated and danger-
ous machinery, for example the aileron system of an aircraft, as a constructive
proof? What might the theorem say? How should one understand the notion of

‘program’ if this is even to make sense?

A program is a guide to action. Two things go on when we follow a program.
The first is to figure out from the program what to do next, and the second
is actually to perform that action when we have found out what it is. These
are different ‘phases’ in the execution of a program. If we think of a machine
language program, the two phases are well known as the different parts of the
‘fetch—execute’ cycle of the instruction processor. In this case, the ‘fetch’ phase is
almost trivial”, in that it generally consists of little more than reading a memory
cell into an internal register where it will be decoded into micro—instructions to
be issued to different parts of the machine. If we think instead of a functional
program, for example a program written in Haskell, the fetch phase is usually
implemented using some form of graph reduction, and is highly non—trivial. It
may not even terminate, in which case programmers describe the execution of the
program as ‘hung’. With functional programs it is more difficult to understand
what the instructions are which are the result of the internal computations of a
functional program. For several decades this has been a deep conceptual problem
affecting the very notion of a functional program, and what it means to run or
execute a program. Indeed, if we take seriously Wadler’s witty comparison in [111]

of the problem of ‘how functional programs can affect the world” with Descartes’s

It is not at all trivial at the level of the micro—architecture of modern instruction processors,
which may have several arithmetic units, register banks, and instruction streams.

18



problem of how incorporeal minds can interact with physical bodies, it is possible
to view the problem as a modern manifestation of one of the deepest puzzles
in Western philosophy. For that matter, Wadler might as well have compared
the problem to the still more ancient problem of understanding how it is that

mathematics can be applied to the physical world, or as a guide in human affairs.

If one wants a very hum—drum example of the application of mathematics as a
guide to action in human affairs, as familiar to school—children as to professional
engineers, one need look no further than the practice of paying for goods in
shops. The mathematical objects we apply in such a situation are primarily the
natural numbers. We make a certain computation — five packets of Smarties at
£3.84 a packet makes so much — and we use the result of that computation (a
natural number in canonical form) as a guide or template in handing over coins
and bank notes in exchange for the goods. Similarly, the shopkeeper makes a
computation and uses its result as a guide for handing back change, if any is
due. In a certain sense, the natural numbers are being used as programs. The
canonical form ‘S(...)" is interpreted as an instruction to hand over another coin;
the canonical form ‘0’ is interpreted as successful completion of the execution
of the program. The canonical forms are interpreted as instructions to perform
some real, extra—mathematical action. Computation is necessary to figure out or
‘fetch’ the next instruction; the performance of that instruction (the whole goal

of the computation) is something lying outside mathematics itself.

In a certain sense, computation is what a (computer running a) program is
doing when we do not care what it is doing, beyond that it should hurry up and
finish. (Of course, we care very much that it should get the right answer.) The
result of a computation tells us the canonical form of a mathematical value; we
then interpret this canonical form imperatively, as a command or stimulus with
which to initiate an interaction. One can compare these two phases with the
‘fetch’ and ‘execute’ phases of an instruction processor or CPU cycle. The next
instruction is fetched by computation, in the sense of calculation, evaluation, or
reduction to canonical form. When the canonical form has been obtained, it is
then executed or performed. Here the instruction is the canonical form, which is
general instantiated with certain subcomponents. These subcomponents, together
with data supplied externally through the execution of the instruction determine
a residual program which is the starting point of the next machine cycle. (In
the case that a subcomponent has the type of a function, the external data is
used to form the argument of this subcomponent.) It is the sequence of actions

and interactions that we directly care about, for example the commands sent
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to the actuators controlling the ailerons of an aircraft and the data read from

accelerometers and other such sensors.

Within the last decade, through the work of Moggi [72], Wadler [109] [112]
[111], which has resulted in the design of the input—output system of Haskell and
other pure functional languages, a clearer view has emerged of what it means to
run a functional program (in a sense going beyond mere computation to include
interaction with the physical universe), and by extension, to run a mathematical
proof. If we are to look for a significant application of proof theory to program-
ming, then we will hardly find it by concentrating on the proofs of TI? statements
(as for example in [97]). At best, these proofs can serve only as models of ‘batch’
programs, in which all interaction takes place before computation is initiated and

after it has ceased.

There is still a distinction to be drawn between the notion of program in func-
tional programming and that which underlies the paradigm of proofs as programs.
The type systems that have been devised for functional programming, such as the
Hindley—Milner polymorphic type system ([71]) provide for a programming lan-
guage which is Turing—complete, in the sense that any partial recursive function
can be defined by an expression of the language. From this it inevitably follows
that there are properly typed expressions whose computation does not terminate.
On the other hand, if we consider a type system for functional programming of
the kind advocated by Martin—Léf [66], it follows from the normalisation theorem
for such a type system that the computation of any properly typed expression
must terminate. From this it inevitably follows that any programming language
with such a type system is not Turing complete. There is a certain dilemma in

this situation, which I have referred to at the end of the previous section.

It is not easy to get a clear view of the issues involved in this dilemma. On
the one hand, a type system for which we can exhibit computable numerical
functions that cannot be typed within that system certainly exhibits a kind of in-
completeness; it has ‘false negatives’. It will always be possible to devise stronger
and stronger type systems that allow more and more acceptable programs to be
typed. (The work of Setzer, Palmgren, Rathjen and Dybjer on the formulation
of strong universe principles can be understood in this way.) On the other hand,
a type system for which we can exhibit well—typed expressions whose computa-
tion hangs (without actually ‘going wrong’ in Milner’s sense) certainly exhibits a
kind of overcompleteness; it has ‘false positives’. One thing is however reasonably
clear: an ability to write within a certain programming language programs which

hang has nothing to do with being able to write programs which run ‘forever’.
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On the contrary: a program which has hung is a program which has ceased to
run. It is precisely because we are interested in programs which run forever®, in
the sense of continuing to interact with their environment, that we should insist
on the termination of each computation in the infinite series involved in that

iteraction.

1.2 An overview of the contents of the thesis

My work is described in three chapters, which form the body of the thesis. They
are sandwiched between this introductory chapter, and a concluding chapter
which sums up what has been done, and what perhaps should have been done,

and remains to do.

1.2.1 Framework

In the second chapter I define the setting in which I work, which is essentially
the framework for dependently typed programming in the style advocated by
Martin—Lo6f. The novelties here are connected with bringing the type—theoretic
approach to programming that comes from the Curry—Howard correspondence
closer to the calculational approach in the categorical tradition that comes from
Lambek and Lawvere. A particular challenge here that has proved beyond me is
to find a smooth and practical way of representing sets, predicates and families

defined inductively.

1.2.2 Modeling interaction

In the third chapter I have investigated a number of ways of modeling interactive
systems and transition systems in a constructive context. The focus here is on
models with a direct computational interpretation, that can actually be used in
programming. The approach is inspired by a construction due to Petersson and
Synek. It is shown how one may represent game—theoretic strategies of various

kinds using these models.

8Perhaps there are, exceptionally, some situations in which we simply want a program to
hang. Most computers contain a STOP or HALT instruction in their instruction sets, the purpose
of which is simply to put a processor into a ‘coma’ (consuming no bus cycles, etc.) until it is
reset.
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1.2.3 Lenses

Finally, I give a construction of provable ordinals within a Martin—Lof style
type theory that has a type of natural numbers, and an external sequence of
universes closed under generalised Cartesian products. The general question is
how closure properties of a type system (i.e. the type constructors under which
the collection is closed) bear on closure properties of the programs which are well
typed according to that system.

The locus of the ideas for this construction lie more in conventional proof
theory, and were the basis for a conjecture made by me almost thirty years ago
in abandoned work on ‘Hancock’s conjecture’ [65], [31]. What is new here is the
concept of a ‘lens’ that plays a key role in organising the mass of detail in which
I had formerly become lost. A lens is a predicate transformer that has been
implicit in the construction of proofs of wellfoundedness since Gentzen. I hope
this concept may be of some use in developing a systematic algebraic approach
to setting lower bounds on the proof—theoretic strength of more extensive type
theories. By means of such devices, we can to a certain extent obtain the effect
of structural recursion principles on an initial algebra for a functor B by using
instead an operation on algebras for B that exploits closure properties of the type
structure.

The notion of lens is implicit in many proofs of wellfoundedness, since Gentzen.
In a certain sense, the difficulty of arriving at it has been the difficulty of realising
what is under one’s nose. The formulation of this concept is in part due to Thierry
Coquand and Anton Setzer, who asked me what was behind my conjecture. I am
very grateful to them for their interest, patience, penetrating comments, and

encouragement.

1.2.4 Appendix: combinatorial completeness of the arith-
metic combinators

Many people who have thought about why the proof theoretical strength of
Godel’s T? is no greater than the ordinal €, have privately expressed some dis-
satisfaction with the gruesomely syntactical nature of the various proofs of it
that are available!’. Somehow it is ‘written all over’ the system, and this is not

brought out by these proofs; there ought to be an extremely simple, direct proof

9Godel’s T is, roughly speaking, ‘nothing but’ the simply typed A—calculus with a combinator
for w—recursion.

00f course, many others are (sensibly) perfectly satisfied with one or more of the proofs that
have been given.
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of it, though one which no doubt will need a very deep insight into the problem to
arrive at it. Like many others, at one time I had the perhaps Quixotic ambition
to discover this supposed proof. (The hope was that the proof technique would
extend immediately from Godel’s T to allow one to ‘read off” upper bounds for
the provable ordinals of other type theories. As a matter of empirical fact ‘reading

off” ordinals is what experienced proof theorists actually seem able to do!)

The ordinal ¢, is the least ordinal which contains 0, w and is closed under the
binary operations of addition, multiplication, and exponentiation. It therefore
came as an unwelcome surprise to notice that these arithmetical operations are
combinatorially complete, both for the untyped and the simply typed A calculus.
In essence, this had been noticed several times before (by Fitch and Stenlund,
for example), although their definitions of the combinators are in my opinion not
quite correct. I have included an appendix on this matter. It is not easy to resist
the temptation to think that there are connections with certain ‘arithmetical’
lenses that are hinted at in the third and fourth chapters of this thesis.

1.3 Misgivings

The subject of ordinal theoretic proof theory is quite old. It was conceived in the
grip of a philosophy of mathematics, namely Hilbert’s finitism, which has the rare
distinction that it is universally acknowledged to be mistaken. The conditions
of stormy foundational crisis in which the subject arose subsided quite rapidly
into what appears to be utter calm and complacency. The very first paper in
the subject to be published was written to side—step (unfounded) misgivings the
referees had about an earlier draft that established the same result by different
methods, not employing ordinal arithmetic. From these inauspicious beginnings,
the subject rapidly developed into a highly specialised and almost impenetrably
technical field of mathematical logic. The most basic notions of the subject, such
as the very notion of ‘provable ordinal’ have for over 40 years proved exasperat-
ingly difficult to pin down mathematically, and resistant to conceptual analysis.
At the risk of seeming impudent, one can ask what the subject is really about,
and where precisely is its interest? My personal opinion is that ordinal theoretic
proof theory is in need of rehabilitation. A question mark hangs over the subject.
Its interest needs to be rediscovered and explained in a new way. My personal
inclination is to suppose that there is such an explanation, but that it will not
be easy to hit this nail squarely on its head.

The question is not one of finding ‘applications’ in other, equally recondite
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fields of mathematical logic, or for that matter mathematics or computer science.
It is reasonable to suppose that any subject worth the expenditure of human intel-
lect should ultimately bear fruit in terms of practical affairs. It is unreasonable to
suppose that it should be easy to foresee this practical outcome, or predict what
form it will take. A case in point may be the investigation of the distribution of
prime numbers that has exercised number theorists including some of the most
celebrated mathematicians in all history for over three centuries. It could hardly
have been foreseen that these investigations should have prepared the ground for
public—key encryption, a major technology underlying the security of internet
commerce, and considered to be a munition by the government of the United
States. It would surely be foolish to imagine that this practical outcome should
all along have been ‘the’ justification for the effort pure mathematicians have
spent on understanding the nature and distribution of the prime numbers. On
the other hand, it would just as surely be indefensible to justify this expenditure

of effort on the grounds that it was an agreeable entertainment for those involved.

It is the sheer intractability of the problem of factorising large numbers which
has turned out to be the key to this exploitation of work in pure number theory.
Perhaps there is more than a distant analogy here with the situation in ordinal

theoretic proof theory.

The question I have asked myself is as follows. If proofs can be considered as
programs, what kind of program is a proof of wellfoundedness? My hypothesis
is that the limitations of a formal system for writing proofs of wellfoundedness
reflect its limitations as a system in which to write a particular kind of interac-
tive program, namely a strategy to ‘defeat’; or find a ‘bug’ in a system program
that is intended to run forever. In recent computer science, the game—theoretic
metaphor has proved invaluable as an inspiration for constructing models that
help us to describe the patterns of interaction between a system and its environ-
ment. In game theoretic terms, the limitations of a formal system for writing
proofs of wellfoundedness reflect its limitations as a system in which to program
strategies for defeating ones opponent in a certain kind of game. I cannot claim
to have substantiated this hypothesis, but only to have taken a few preparatory
steps in that direction. My suspicion is that there are practical applications to be
discovered of the notion of proof theoretic strength for programming languages.
On the one hand there is the language in which one writes the program for a
system that is intended to provide certain services (practically) forever, and on
the other there is the language in which one writes a program that forms part

of the environment of such a system, and runs in ‘contest’ with it to obtain the
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services that it provides.
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Chapter 2

Framework, Types, Sets

Later chapters are concerned with transition structures and interactive structures
on a set, ordinal notation systems, and proofs of accessibility of those notations
in a particular type theory. These are ordinary mathematical notions of no great
sophistication. However, I have aimed at constructions with a clear computa-
tional, and ultimately practical meaning. In pursuit of that, I have used on the
meta level principles of more or less the same kind as are formalised in the type
theory being considered. From a mathematical point of view this may be eccen-
tric, compared with using set—theoretic abstractions. It seems quite natural from
a programming point of view.

In this chapter I set out, as far as I have been able to, the principles I use on
the meta level. The presentation builds on work by Martin—Lo6f on the syntax and
semantics of his type theory, presented at various occasions in the last 10 years,
and circulating in the form of lecture notes. This material includes among other
things a ‘variable free’ presentation of the logical framework in which Martin—Lo6f
style type systems are expressed. In essentials, I have adopted it here. Another
source is Hofmann’s survey article [48].

What is a logical framework? One can try to answer this general question in

two ways
e by saying what a framework looks like, or its formal representation.

e by saying what a framework is for, whatever it looks like and however it is

represented.

In this chapter I am concerned only with a framework for type systems belonging
to a certain limited family, rather than logics in general. Some of the limita-
tions are that I have made no attempt to deal with issues of linearity, or modal

operators.
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Formally, a logical framework looks like a finitely typed dependent type theory
over a family of ground types, one of which (written here Set) is a type of indices
A for the other ground types El A, and serves as the type of ‘small’ types of a type
theory represented in the framework. As just indicated, the function of a logical
framework is to provide a single setting in which a range of type theories may be
represented, taking care once and for all of mechanisms pertaining to schemata.
A type theory is represented within the logical framework by a collection of typed
constants which impose closure conditions on the index type Set and the indexed
types El A, together with equations between certain expressions constructed from
those constants.

What is novel may be that I have described a version of the logical frame-
work with co—products (which is a great convenience), and moreover one in
which the judgemental or computational equality is rather extensional, yet still
calculation—oriented. I do not claim that these ideas are of great originality, but
only that they deserved some effort to write them down, and hopefully the effort

of reading them.

The description can be divided ‘horizontally’ into three levels of generality.

e At the most general level is a categorical part, which concerns the most
general features of any notion of context dependent type (or object), and
construction of a value of such a type. The categorical framework lets us
represent expressions of the type system (the next level down) as composed
from certain primitive linguistic forms, and provides the general machinery

of composition.

e Then there is a logical or type—theoretical part, which concerns basic
type constructions corresponding to conjunctive, disjunctive, and schematic
form. The logical part is essentially a dependent type theory closed under
products and sums of families of types, under binary sums, over a family of

‘small’ ground types, or sets.

e Then there is a set—theoretical part. This is essentially a collection of
closure properties on the ground family of sets, formulated as typing judg-
ments and recursive equations, which I call a set theory. This places limits
on the forms of recursive equation which we suppose to have solutions, and
extreme solutions. (To avoid confusion, I call the normal kind of set theory

expressed in predicate calculus ‘ZF—style’ set theory.)
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2.1 Framework level

The logical framework is a system of judgments and inference rules appropriate

to a type theory. There are four basic judgment forms:

A:Typel A=DB:Typel
a:I"'—> A a=b:1T— A

as well as three auxiliary judgment forms:
[ : Context v:A—=T y=+~":A—-T

The auxiliary judgment forms may be taken as basic, and the basic ones as
auxiliary. This may be preferred because the three auxiliary judgment forms
correspond directly to the categorical notions of object, morphism, and equality
between morphisms, or merely because it is formally neat.

One can think of the logical framework as the (generalised algebraic [13])
theory of a categorical structure in which the key component is a category of
contexts. The intuition for a context is that it is a ‘coordinate space’ in which the
points are ordered sequences or vectors of values. A morphism between contexts
is a translation of points which defines each coordinate in the output vector in
terms of the coordinates of the input vector.

The extra structure with which the category of contexts is equipped is a con-
travariant functor to a category which is ‘universal’ in a certain sense. There are
various choices for this universal category. (There is a brief survey in section 3.2
of Hofmann'’s article [48]). The essential thing is that the objects of this universal
category should be ‘worlds’ rich enough to model both the types available in a
context, and the values inhabiting those types. The contexts should be closed
under extension of a context I' by declaring a new coordinate position, whose
values are confined to a type A available in I'. The new context is written (I, A);
this operation is a form of dependent or cumulative conjunction. Moreover, there
should be an empty context (); this is a form of empty conjunction.

One suggestion for a suitable universal category comes from Peter Dybjer

([27]), namely the category of families of sets.

e An ‘object’ or world in the category of families of sets is a small collection,
or set—indexed family of sets, having the form (7, /) where [ : Set and
J i1 — Set. An element i of the family’s index set I models a type in
that world, and an element of the set J(i) models a value of type 4 in that

world.
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e A ‘morphism’ or translation from (/,.J) to (I’,J') is a pair (f,g) with
f+I —= 1T and g : ([[i: 1)J(i) — J'(f(i)). That is to say, f is a
function between the index sets of the families, and ¢ is a function which
when applied to an index 7 from the first family, and an element of the set
J (1) so indexed, gives an element of the set J(f(7)) indexed by the image

of ¢ under f.

There are however severe technical problems in really making this structure into
a category when using type theoretical abstractions at the meta—level (to the
level of detail required for a machine—checked construction). The problem is
that there is no completely satisfactory mathematical notion of equality between
the morphisms, as is required for a category. Instead, as stressed by Dybjer, we
have to consider not just sets, but setoids, or sets endowed with partial equiva-
lence relations that are respected by morphisms between them. The objects of
the universal category are then not merely discretely indexed families of such se-
toids, but ones such that equal indices determine isomorphic setoids in a coherent
fashion.

Other choices for a universal category are possible which may be simpler (and
less sensitive to the subtle issues peculiar to type theory surrounding the notion
of equality in its various manifestations). In particular, instead of the category

of families' (31 : Set)l — Set, we may take (to a first approximation)

(Z[ : POU)(S))(H s:8)I(s) — Pow(S),

where S is a set (with equality) of ‘realisors’ (such as a combinatory algebra) and
Pow(S) is the type of predicates S — Set over S. This is to replace Set — the
types of ‘sets in thin air’ (and no obvious equality or morphisms) by Pow(S) —
the type of equality respecting predicates over S (‘solid ground’), with inclusion
morphisms and extensional equality. Now a world is represented by two things:
first a predicate I of an arbitrary realisor (the predicate’s interpretation being
that the realisor represents a type), and second a function which maps a realisor
s together with a proof that it satisfies I to a predicate of an arbitrary realisor
(the predicate’s interpretation being that the realisor represents a value of the
type represented by s). Constructively, that function has really two arguments:
the realisor, and the proof that it satisfies I, and the value of the function will
depend on this proof. However the predicates arising from any pair of proofs
should be extensionally equal. Coquand’s model in [18] can be viewed in this

way.

IHere and below, the scope of quantifiers should be taken as extending as far as possible to
the right.

29



These suggestions for a ‘universal’ category determine metamathematical mod-
els, in which the judgments are interpreted as propositions about a mathematical
structure. These may for example be expressed in the language of ZF—style set
theory, serving as a ‘neutral’ lingua franca. Besides models of this kind, there
are models in which the undefined constants and primitive rules of one system
are translated into the expressions and derived rules of a metalanguage, which
may have type theoretical judgement forms, rather than truth of a proposition,
as with ZF set theory. The target for the translation may be a type theory that
one actually uses and directly understands. Of course, neither kind of metamath-
ematical model can serve to bring about such a direct understanding, but on the

contrary presupposes such a directly understood metalanguage.

2.1.1 Syntax

The constants and operators of the framework are as follows. I will make heavy

and reckless use of overloading, in the interests of readability?.

e The binary operator _°_is used for composition of morphisms as in <4, as
well as for the translation of types and terms between contexts, as in A © -y

and a° .

e The constant 1 is used for the unit of composition, as well as the identity

translation of types and terms.

e The binary operator (_,_), pronounced ‘snoc’, is used both for extending
a context I by a declaration, as in (I', A), and for extending a morphism
by a new term as in (v, a). I take it to be left associative in the sense that

(v, a,b) = ((7,a),b). T also write (a,...,a;) instead of ((), a1, ..., a).

e The ‘nil’ constant () is used both for empty contexts and for empty mor-

phisms.

e The constant p is the projection morphism from an extended context (I, A)
to the interior context I'. The constant q selects the outermost value a from

a morphism (v, a). (The rules for p and q are given on page 36.)

A more scrupulous notation probably requires heavy use of subscripts, as

indicated in the following notation.

2Type theory seems to be peculiarly cursed in that it in practice very difficult to devise
notations that are at the same time readable, and logically impeccable. A presentation of type
theory in a framework based on a name—free substitution calculus encounters this problem in
spades.
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(), (I, A) contexts

Ors (7. a)r,a) substitutions

Oor, 1p categorical structure
Aep vy, aepy, functorial structure

In practice, this obscures things.

The expressions of the framework are built up from expressions of the type
theory (which occur in A and a position) using these ingredients. The expressions
built up in this way are constituents of judgments. We have no way yet of making
A’s and a’s.

As mentioned already, the judgments have the following six forms.

[ : Context
vy:A—=T
A:Typel A= B:Typel
a:I'—= A a=0b:I"— A
To save space, where several judgements occur together which are the same in

5. Thus 7,7 : A — I'is

the part beyond the ‘", T shall collapse them into one
short for the two judgements v : A — ' and 7/ : A — T; likewise, a, b,c: " — A
is short for three judgements.

The framework itself gives only general structural features of any theory of

context dependent types, and elements of those types.

2.1.1.1 Conventions

I have used an abbreviatory device in presenting rules for inferring equations, with
the intention of bringing into focus their real function, rather than just saving
space. This lets me write rules which say that in a certain context, if these things
are equal, then so are those. Such a rule states a criterion for equality between
an arbitrary morphism and a morphism of a specified form. To express this, use

an auxiliary ‘biconditional” judgment.

context

comparison
{ criteria,

where the comparison and criteria consist of one or more equations, understood

conjunctively. This figure abbreviates the left—to—right rule

context,
criteria

comparison

3A similar convention is used in many functional programming languages.
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as well as the several right—to—left rules

context,
comparison

criterion

2.1.2 Rules

The rules of the framework divide into those concerning the categorical structure,
the functorial structure, the terminal (i.e. final) structure, and the comprehension

structure.

2.1.2.1 Categorical structure

The following rules stipulate that the contexts form a category.

e That morphism equality is an equivalence relation.

I', A : Context,

v:A—=T

vy=v:A—=T
', A : Context, ', A : Context,
7.7 A—=T, 7,77 A =T
y=v:A—=T y=v:A—=T,
Y =7:A-T V=" A=T

y=~":A—-T

e Composition of morphisms, compatibility with equality.

I', A, O : Context, I', A, © : Context,
v:A—T, v,y A =T,
0:0—=A 0,01 O — A
¥e§:0 =T Y=7:48-1,
0=0":0—A,

vyed=7"°0:0—-T
e Associativity of composition.

I['A, 0, A : Context
v:A—=T,
0:0 — A,
0:\N—0O

yeo(de0)=(y°d)°0:AN—T
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e The identity morphism.

I' : Context
1:T'—>T

e That identity is a unit for composition.

I', A : Context, ', A : Context,
v:A—-T v:A—T
yel=~v:A—=T ley=~v:A—=T

2.1.2.2 Functorial structure

The following rules require that we have a contravariant functor from the category
of contexts into the category of families of sets.

e That equality between the types in a context is an equivalence relation.

(Omitted, as are certain other rules it would be pointless to write out.)

e That equal types in a context have the same values.

[' : Context,

A Typel,
A= A: TypeTl,
a:I'— A

a: T — A

e That equality on values is an equivalence relation. (Omitted.)

e That equal types put the same equivalence relation on values.

I' : Context,
A Typel,
A=A :TypeTl,
a=a:T— A
a=a:T — A

e Translation of types by morphisms, and its compatibility with equality.

', A : Context, I, A : Context,
v:A—T, vy=+":A =T,
A :Typel A=A":Typel
Aeory:Type A Aoy =Ao~":Type A
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Translation of types by the identity morphism.

I' : Context,
A:Typel

Ael=A:Typel

Translation of types by composite morphisms.

I, A, © : Context,
A Typel,
v:A—T,
0:0— A

Ae(ye0) = (A=7)6: Type ©

Translation of values, compatibility with equality.

[, A : Context, ', A : Context,
v:A—=T, vy=v":A—=T,
A Typel, A Typel,
a:1"— A a=da:T— A
acy:A— Aoy acy=a'°y:A— Aoy
e Translation of values by the identity morphism.
I' : Context,
A Typel,
a:I' = A

a°l=a:T"— A

Translation of values by composite morphisms.

', A, © : Context,

0o (776) = (a°7)°6:0 — (A=7) 0
2.1.2.3 Terminal structure

The following rules require that the category of contexts should have a terminal

object, to which any other context can be vacuously mapped.

e The terminal context.
() : Context
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e The terminal morphism.
I' : Context

):T—=0

e Uniqueness of the terminal morphism.

I' : Context,
0:T— ()

()=6:T— ()

2.1.2.4 Comprehension structure

The following rules require that the category of contexts should support an op-
eration of extension of a context by a new declaration. In categorical terms, the
extension is a form of product.

This operation is sometimes called comprehension. The word ‘comprehension’
is appropriate because of the analogy between on the one hand contexts and sets,
and on the other between types over those contexts and predicates over those sets.
Zermelo’s separation or Aussonderung axiom, better and less pedantically known
as the comprehension axiom requires that sets are closed under restriction by
predicates. Analogously, here we require that contexts are closed under extension
by a declaration.

The rules that follow share the following global context.

I' : Context,
A:Typel
This context is a tacit prefix of each rule.
The rules require that there be a context A = (I', A), a morphism v = p :
A — I" and a value ¢« = q : A — A-~, where (I', 4) is terminal among such

contexts.

e Extension of a context by a type in that context.
(I'; A) : Context

The context (I', A) is called an extended context, with interior context I,

and outermost type A.

e Extension of a morphism to one into an extended context, by a value in the
extension type.

A : Context,
vy:A—=T,
a:A— Aoy

(v,a): A — (T, A)
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The morphism (v, a) is called an extended morphism, with interior mor-

phism v, and outermost value a.

Compatibility of equality with morphism extension.

A : Context,

y=7:A-=T,

a=a:A— Aoy
(v,a)=(7,a"): A— (T, 4)

The projection morphism from an extended context (I', A) to its interior I'.

p:(I'A) =T

The outermost value of an extended context.

q: (I'yA) = A-p

Criterion for equality with an extended morphism.

A : Context,

v:A =T,

a:A— Aeory,

0:A— (I'A)
(v,a)=0 : A— (T,A)
pef=~v : A—=T
qef=a : A— A°y

=

Note that a priori, the values of q ° 6 have type (A ¢ p) © 6, which equals
A-(pe0) (by the functorial structure). So the second equation in the block

above type—checks, but only because of the first equation.

2.1.2.5 abbreviations

A ‘name—free’ presentation of the syntax helps to shed light on some quite in-
tricate aspects of its functioning, and serves as a paradigm for implementation.
However it is not really usable as a medium of communication between human
beings. To that end, I introduce now a number of abbreviations and notational
devices.

First we introduce notation for extending a morphism to a more specific con-
text by leaving the new type undisturbed. (My use of ™ clashes with Hofmann’s
in [48].)

vt = (y°p,q) — ‘burying’ a morphism
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We have:
I' : Context,

A TypeT,
A : Context,
vy:A—=T

v (A ARy) — (T, A)

Next I allow morphism expressions which do not begin with a unit (), and

so are not of the form ((), a,b,...) or (1, a,b,...). The morphism (a,b,...) is a
shorter way of writing (1, a, b,...). Morphisms of this form are sections for the
retractions p and their composites. (My use of over—lining is consistent with
Hofmann’s in [48].)

a = (1,a) — sections of p
a,b = (a,b)
a(b) = acb — preponent section
We have:

I' : Context,

A Typel,

a:I'—= A

a:I'— (I'A)

Finally, as a concession to human comprehensibility, I allow the use of names
to indicate positions within an input context rather than what amounts to a form
of de—Bruijn index. So I shall label positions in an input context with names,
as in (I',z : A), and use these names z in types and terms rather than terms of
the form ¢ - p™. I have tried to ensure that in every case, one can ‘compile away’
names into the p, q notation.

Note that as part of this we have already one form of application f(a,...,b)
in which f is acted upon by by the morphism (1, a, ..., b) — this is before we have
introduced any form of function type. The notion of function which is involved
here is sometimes called the ‘old—fashioned’ notion of function. (One can think
of f(a) as postfix application for the action of the morphism (a) upon f.)

The effect of the ‘sugar’ introduced above is that one can begin to use standard

notations in the presentation of contexts, morphisms, terms and type expressions.

2.2 Type theory level

In the last section I set out a categorical framework, consisting of rules for a
category of contexts closed under a certain form of limit. In this section I set

out a type theory in that framework. The types are (arguably) ‘logical’ types?,

41t might be better to say ‘grammatical’, and reserve ‘logical’ for the reflections in Set of the
grammatical constructions.
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which are used to classify syntactical structures of a given object language. These
structures are schemata, tuples, alternatives, and other syntactic stuff.

The type theory is in essence the type theory or logical framework in which
Martin—Lof style constructive set theory is (if I understand it) ‘officially’ pre-

sented; the novelties here are as follows.

e [ have included besides II—types also forms of coproduct type, with equa-
tional rules that require the relevant universal arrows to be unique. The
coproducts are useful for dealing with ‘blocks’ of context, and classifications
of different kinds.

e [ have tried to disentangle the II—type from the other type forms, so that one
can consider a type theory having only coproducts. This involved teasing
apart the notions of composition, application, and variable binding; these

are often run together.

e The type theory is extensional, in that I require (as in category theory)
a unique universal morphism for each construction. So not only are there
‘n—rules’, but also (in proof theoretical terminology), rules of permutative

conversion.

The only justification I have of the extensionality is rhetorical. Type theory
should be a labour saving device. The easier it is to remember the rules, and the
more equations available for calculational reasoning, the better.

Engineering seems to demand the development of ‘calculi’” with a prosthetic
function, in which symbolic calculation on the basis of a stock of memorable
algebraic laws helps to extend one’s intellectual reach. Sometimes these are used
with a certain optimism about how far the calculus is applicable, or how tricky

its foundation or implementation turns out to be.

2.2.1 Syntax

The syntax of the type theory is follows.

Its expressions are built up using certain constants and operators on mor-
phisms, using composition and extension to build up morphisms from () and 1
and previously built expressions. 1 shall call these [ogical constants, connectives,
and quantifiers.

In theory, this is all one needs. For practical use by human beings it is often
humane and sometimes essential to employ names for free and bound variable,

with the usual conventions of ‘punctual’ notation ([24]). So we suppose that
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expressions are built up also from mnemonic names (identifiers) which refer to
defined or merely declared values. There should an unlimited supply of new
names. These names are used to show where in the body of a quantifier (if
anywhere) the quantified argument occurs.
The forms of expression are listed below.
e Function types. [[ AB, Ab, f(_). (The latter is a postfix operator.)
I abbreviate f(-) °@ by f(a), and f(a)(b) by f(a,b) in the usual way.

I use (right associative) arrow notation A — B to abbreviate the function

type [[A(B ¢ p). (The arrow is also a punctuation mark in judgments.)

In concrete terms, B and b may be taken to be open terms in which each
occurrence of a variable has ‘de Bruijn’ form qepe...°p. Operationally, p

pops a stack of arguments, and q takes the top.

By B|z| I mean the expression B rewritten so that references to the topmost
value in B’s input context (i.e. gs) have been replaced by references to the

value z, and all other context references have been been shorn of one _e<p.

— J[ AB is the type of abstractions f such that f(z) has type B[z] when
x: A

— Ab is the abstraction whose value for argument z : A is b[z].
— f(a) is the instance of the abstraction f for argument a.
e Empty type. { }, [].
— { } is the empty type.
— [] is the empty map out of it.
e Singleton type. {x}, *, [¢].

— {«} is the standard singleton

— * is the constant map into it.

— the [c¢] construction allows a function to be defined on the whole of
{*} by specifying its value merely at .

e Disjunction types. A+ B, i, j, [a, b].

— The disjoint union of A and B.

— iand j are the two injections.
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— the [a, b] construction allows a function to be defined on a disjunction
type by specifying its value separately in each disjunct. (Definition by

cases.)
e Ordered pair types. > AB, pair, Splitc|.

— Y AB is the type of ordered pairs (z, y) such that z : A and y : Blx].
— pair is the form of such ordered pairs.

— the Split[c] construction gives a way of splitting an argument which is

a pair into its components.

e Ground types. Set, EL

2.2.2 Rules

The rules of the type theory are as follows, organised by type form.

2.2.2.1 Empty type

The following rules are all in the global context

I' : Context

e Formation.

{}:Typel A : Context,
v:A—T

{tery={}:Type A

e The empty function, or ex falso quodlibet.

C : Type(T,{})
[T {})—C

e Equality. This rule allows us to conclude that any function defined on the

empty type is equal to the empty function.

C: Type(I', { }),
0:(I.{})— C

(
6:(,{}) —C

[]
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2.2.2.2 Singleton type

The following rules are all in the global context
[ : Context

e Formation.

{*}:Typel A : Context,
v:A—=T

{x}ey={x}:Typel

e Singleton element.
*:F—>{>{<} A : Context,
vy:A—=T
koy=%: A — {x}

e Singleton function, given by the value. This rule allows one to assume
without loss of generality that an arbitrary object of a singleton type is in

fact its solitary denizen.

e Criterion for equality with a morphism of form [c].

C: Type(T, {*}),
c:I'— Co%,
}

(F{

2.2.2.3 Disjoint union types

The following rules are all in the global context

I' : Context,
A, B: Typel

e Formation.

A+ B :Typel

A : Context,
vy:A—=T

(A+B)ey=(A°y)+(B°y): Type A

41



e Injection.

i:(IA) = (A+B)°p
j: (T,B) = (A+ B)°p

e Binary case split, or case form. This rule allows one to define a function
with a disjoint union argument by defining instead two functions separately,

one for arguments of i form, and the other for j.

C : Type(T', A+ B),
a:(I',A) — C-(p,i),
b:(I',B) — C-(p,])

[a,0]: (' A+ B) — C

e Criterion for equality with morphisms of case form. This rule allows us to
express any morphism whose outermost argument has a disjoint union type

in case form.

2.2.2.4 Pair types

Contexts are closed under extension by fresh declarations. With pair types, the
types in a given context are closed under a similar kind of comprehension.

The following rules are all in the global context

I' : Context,
A Typel,
B : Type(T', A)
e Type formation.
> AB : Type T’
A : Context,
vy:A—-T

Qo AB) oy =2 (Aey)(Bo7yT): Type A

e Pairing.

pair: (I' A, B) — (3. AB) - p?
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e Splitting an argument of pair type. This rule allows one to define a func-
tion with a pair type argument by defining instead a a function with two

arguments corresponding to the components of the pair.

C : Type(T', > AB),
¢: (I, A, B) = C~ (p* pair)

Splitlc| : (I, Y AB) — C

e Criterion for equality with morphisms of Split[_] form. This rule allows
us to bring any morphism whose outermost argument has pair type into
Split[-] form.

c: (T, A, B) — C-(p? pair),
0: (T, AB) — C
Splitfc] = 6 (I, AB) — C

& 0 (p?pair)=c : (I',A, B) — C-(p? pair)

2.2.2.5 Alternative : disjunctive normal form

The types {}, {*}, connectives 4, and quantifiers ¥ introduced so far can be
obtained as instances of a certain schema, that I shall call disjunctive normal
form, which is indispensable in practice. This schema allows us to introduce
in a given context I' a new type which is the disjoint union of a finite family
{A; | i=1,...,n } of context blocks, or extensions of I'. Such an extension A,
may be empty, or start with a type A : Type I' in the context I', and continue
with an extension of the context (I', A).

It is almost essential in practice to allow the branches of a disjunction to
be labelled using ‘meaningful names’ with a mnemonic role. (For example, for
one might use nil and cons as labels). Fach branch of a disjunction is in gen-
eral a dependent (i.e. order sensitive) conjunction, and where conjunctions are
non—empty (as with cons), one sometimes wants to refer to the components by
names (as with _.head and _.tail).

The use of such a mechanism raises some difficult issues of specification (for
example, to do with equality), over which I shall skate. What matters is that
in the end we can ‘compile’ an arbitrary instance of the schema using only the
particular instances { }, {*}, +, and 3. Of course there may be more than one
way of compiling a multi—way disjunction ‘into binary’, and other headaches of
implementation.

The notation I shall use is as follows:
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e Disjunction, or data type.

data ¢; : A
(SR ANS
Here ci, ..., ¢, stand for branch labels, which should all be distinct. The

labels will be called constructors.

e Case expressions, for analysis of data types. We can ask a ‘datum’ (value

of a data type) about its constructor form, and its parts.

case d of
C1 — €1

Cp — €y

The case expression compiles into various kinds of split.

To formulate the rules for disjunctive normal form, one would introduce an

auxiliary judgment, written as follows.
A : Context I’
The main rules peculiar to this judgement form are as follows.

() : ContextT’

[ : Context
A:Typel
A : Context (I', A)

(A, A) : Context I’

Note that the notation (...,...) is being used here in a new way; the first argu-
ment place is for a type, and the second for a context.
One would then introduce the semicolon ‘;’ as a concatenation operator, so
that
I' : Context
A : Context I’

['; A : Context

However to do this properly one must introduce equality between contexts, and

a plethora of associated rules; so I content myself with this indication.
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If D stands for the typical data type given above, then the formation rule is
as follows.
I'; Ay : Context

I'; A, : Context
D :Typel

The typing rules for data constructors are as follows.
c:(T;A)) = Deph
o (I3 A,) — Depin

If additionally C stands for the typical case expression given above, then the

typing rule for case expressions is as follows.
ep: (T41) — Ee (pd1> c1)

ei: (I;A,) — Ee(ph c,)
C:(I,D)— E

2.2.2.6 Function types

The function type rules are all in the global context

I' : Context,
A Typel,
B : Type(T', A)

e Formation of function types.
[[AB: TypeD

A : Context,
v:A—=T

([TAB) oy =TI[(A°)(Be~"): Type A

e Formation of functions.

b:(I'A) — B
Ab:T —J][AB

e Application.
f:T —]]AB
f(o):(I'A) — B
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e Criterion for equality with a morphism whose leftmost component is of

function form.

A : Context,
v:A—=T,
b:(I'yA) — B,
0:A— (J[AB) -~
(Ab)ey=10 A — ([[AB) -~
& 0)=boyt i (AAoq) - Boyt

2.2.2.7 Ground types
The following rules share the following global context.
I : Context

They are rules of type formation, and equality between types.

Set : Type I' A : Context,
v:A—=T

Set ey = Set : Type A

El : Type(T', Set) A : Context,
v:A—T

Eley* = El: Type(A, Set)

I call use the words ‘small” and ‘large’ in connection with ground types so that Set
is the only large ground types, and all other ground types (namely those having
a form Ele (v,a), { }, or {x} ) are small. Informally, I call a type of some form
large if any of its components is large, and a function large if its type of values is
large.

The following rule rule is worth noting.
a:I — Set
Ele@: Type T’

In general, 1 shall allow myself to write El a ¢ v instead of El ¢ (v, a), and El a

instead of El - @.

2.3 Set theory level

So far, with an empty family of sets, the type system is empty. There is only a
general framework in which to lay out particular set—theories.
The description takes the form of closure conditions on (Set, El), expressed by

typing judgments and equations. The closure conditions are of three broad kinds.
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e Closure under reflections of the logical operations ({ },{*},+,>_,]]) of the

framework type system.

e Closure under principles of inductive definition of prescribed form, or more
generally principles guaranteeing the existence of extreme solutions to equa-

tions of various kinds.

e Closure under reflections of (Set, El), with its closure properties as universe

sets.

2.3.1 Closure under reflections of logical operations

Here we say what it means that (Set, El) is closed under reflections of the logical
operations. For each operation, there is a constant with which sets are formed,
and an equation between the type of elements of such a set and a type formed

with the operation. The equations for El are recursive.

I have taken an approach which is discussed by Hofmann ([48], sec. 2.1.6).
Where an operation on types (such as the function type operation) is to be re-
flected by a corresponding form of sets (such as sets of functions), I have required
that the type of elements of a set of the form in question is actually definitionally
equal to the reflected type, rather than just behaving like it. Hofmann points out
that this has consequences for the proof of metatheoretical results such as subject
reduction. Moreover, he draws attention to the fact that some standard models of
impredicative type theories (Such as Coq) do not validate these equations, which
hold only up to an isomorphism. Interestingly, the situation seems to be different
when the type of sets is predicative, as is the case below. This is a relief, because

a few definitional equations can then replace a plethora of rules.

For the moment, I shall use the following as symbols for the logical constants.

C{}y C{x}, C+, Cx,y Cn

Instead of _: () — A, I shall write _€ A, where the blank _ may be filled by
an equation or by a term. If a € A, I shall say that a is an element of A. (The
terminology is in accordance with the category—theoretic idea that an element
of an object A is a morphism into A from the terminal context ().) Instead of

Type (), I shall write simply Type.
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e The empty set

¢y € Set
El c;y = {}: Type
d{}E(HC:{}HSet,Z:{})El C(Z)

e The singleton

¢(s) € Set
El ety = {x} : Type

dioy € (TLC: {#} — Set, c: Bl O(x), 2 : {*}) El C(2)
dpy(Coe,x) =c: (C: {x} — Set, ¢ : El C(x)) — El C(x)

e Binary disjoint union

¢, € Set — Set — Set
El c; (A, B) =El A+ El B : Type(A : Set, B : Set)

di € (JTA : Set, B : Set,

C:(El A+ El B) — Set,
g:([Jz:A)ElC(2),
¢g:([Ty: B)ELC(jy),
2 :Fl A+ FlB)

— Kl C(Z)

di(A, B, C,c,¢,ia)=c¢:(A:Set, B : Set,
C:(El A+ El B) — Set,
¢G:(JJz:ELA)ElC(x),
6 (I1y:FLB) EL O y),
a:ElA) —ElC(ia)

di(A, B, C,c,¢,]b) =¢: (A:Set, B : Set,

C': (El A+ El B) — Set,
G:([Jz:ElLA)ElC(z),
6+ (I1y:FLB) L C(j y).
a:ElA) — ElC(jb)
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e Disjoint union of a family

cs € (J[TA:Set) (A — Set) — Set
El cs(A,B) = (>_x:El A) El B(z) : Type(A : Set, B : E1 A — Set)

ds € (J]A : Set, B : El A — Set,
C:((>z:ElA)El B(x)) — Set,
c¢:(J[z:ElL A y:El B(z))El C°pair°z, 7,
z: (> z:ElA)El B(x))
— El C(2)
dZ(Aan O; c,pairz‘ y)
=c(z,y): (A:Set,B:El A— Set,
C:((>z:ElA)El B(z)) — Set,
c:([[z:ElA y:ElB(z))El Cepair°Z,7,
z:El A y:ElB(z)) — El Cepairez,y

e Cartesian product of a family

cn € (JTA :Set) (A — Set) — Set
El (A, B) = ([]z : E1 A) El B(z) : Type(A : Set, B : E1 A — Set)

dn € (J[A : Set, B : E1 A — Set,
C:((J[x:ElA)ElB(z)) — Set,

c:([[b:(J[z:ElA)ElB(z))El C(Ab),
z:([J]z:ElA)El B(z))
— El C(Z)
dn(A, B, C,e,Ab) = c(b): (A:Set,B:El A— Set,

A

C:((J[[z:ElA)ElB(z)) — Set,
c:([Tb:(J]z:ElLA)ElIB(z))El C(Ab),
b:(J[z:ElLA)ELlB(z)) — El C(\b)

It is perhaps worth remarking that dp is the socalled funsplit constant
[80][page 55] which exploits the existence of higher type (i.e. nested) func-
tion types in the logical framework. At the level of types, the function
space construction has (roughly speaking) the flavour of a categorical limit,
whereas at the level of sets, it has the flavour of a colimit, just as with all
the other set constructors. An analogous phenomenon appears at the level
of types, where the singleton type {*} is defined by initiality, rather than

as a terminal object.

2.3.2 Inductively defined sets

So far we have typing axioms and equations for the constants that reflect the

logical operations. Now we give axioms and equations for inductively defined
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The next chapter uses inductive definitions heavily — and not just of sets, but
predicates (as least fixed points of monotone predicate transformers), families
of sets (as least fixed points of certain operators on these), and sets together
with some other structure. I should like to have been able to give a closed form
presentation of a principle of inductive definition sufficiently capacious to include
those which T consider to be justified, and that I am accustomed to use. This
has proved however to be far too ambitious. The problem lies at the frontiers of
research in type theory.

A schematic description of a sufficiently extensive class of inductive definitions
within a type theory a la Martin—Lo6f has been given by Peter Dybjer [28]. It
would be desirable to have instead a closed—form description, exploiting the ma-
chinery available in the logical framework to deal with schemata. Together with
Anton Setzer, Peter Dybjer have recently [29] written such a description, though
it is still in a preliminary form, and far from easy to understand. The paper [29]
also sketches a direct interpretation of the principle they describe in (classical)
Zermelo—Frankel extended by an axiom asserting the existence of a Mahlo cardi-
nal. It would be desirable also to have a description of the Setzer—Dybjer prin-
ciple from a categorical perspective, which seems challenging. Roughly speaking,
their principle asserts the existence of weakly initial algebras for an inductively
defined family of endofunctors on certain ‘slice’ categories in which the objects
are pairs, of the form (7, f) where [ is a (small) set, and f is a morphism from /
to a fixed (large) type.

Here I will content myself with showing an approach to formulating the rules
for two ‘standard’ inductively defined sets that may have some novelty. They are
based on the use of pre fixed points for predicate transformers over a datatype that
is defined inductively. It may be that this approach is some help in simplifying
the description of a broad class of inductively defined datatypes.

2.3.2.1 Natural numbers

The formation and introduction rules for the set N of natural numbers are ex-
pressed as follows.
en : Set
en = C4(Cqays Cn) : Set
Let N = El-zy. It follows that N= {*} + N.
We take an approach to recursion on the structure of natural numbers which
uses a predicate transformer. (By a predicate over a type A I mean an element

of the type A — Set, and by a predicate transformer over A I mean an element
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of the type (A — Set) — A — Set.) I write the predicate transformer with a
superscript —, as in C'.
_: Pow(N) — Pow(N)
C (n:N) =casenof i*x—cp,
ir—C(p)
A predicate C' : Pow(N) is progressive if ([[n : N) C~(n) — C(n), which
can be written more compactly as '~ C (. An element of N is accessible if
(to put it impredicatively) it is in the intersection of all progressive predicates.

The principle of recursion on the structure of natural numbers requires that all

elements of N are accessible.

dy € (I C : Pow(N),c:C~ CC,n:N) C(n)

dy(C,c,n) = let z =casenof ix — x

j p— dN(C: C'/p)
in ¢(n,z)

(C': Pow(N),c:C~ CC,n:N) — ElC(n)

2.3.2.2 W types.

The same approach as taken in the last subsection for the set N of natural num-
bers can be illustrated also for the so—called ‘well—ordering’ type constructor
introduced by Martin—Lo6f in [67], and described also in [80][pages 109 114].

Given a family (A, B) : (Y. A : Set) A — Set, intuitively the set W =
W (A, B) is the least solution of

W : Set
W=(>a:A)B(a) = W

The formation and introduction rules for W are expressed as follows.

cw € (JTA:Set) (El A — Set) — Set

El ey (A, B)= (Y a: El A) El B(a) — El (A, B)
: Type(A : Set, B : E1 A — Set)

Let W(A, B) = El- cy (A, B). It follows that
W(A,B) = (Y a:ElA)El B(a) — W(A,B)

Again, we use a predicate transformer over W (A, B), written with a super-
script —, as in C'~. For simplicity, I omit the global parameters A and B.
_—~ : Pow(W(A, B)) — Pow(W(A, B))
C=(z2:cw(A,B)) =case zof pairaf— ([[b:B(a)) C(f(b))
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A predicate C' : Pow(W (A, B)) is progressive if ([[p: W(A,B)) C~(p) —
C'(p), which can be written more compactly as ¢~ C C. An element of W (A, B)
is accessible if (to put it impredicatively) it is in the intersection of all progressive
predicates. The recursion principle requires that all elements of W(A, B) are

accessible, and expresses the ‘leastness’ of W (A, B).

dw € (J[JA : Set, B : Pow(El A)
C: Pow(W(A,B)),c: C- CC
p: W(A, B))
— C(p)
dw(A,B,C,c,p) = let z =-casepof pairaf — Ab.dw(A, B, C,c, f(b))
in c¢(p,x)
(A :Set, B : Pow(El A),
C:Pow(W(A,B)),c: C-CC
p: W(A,B)) — El C(p)

2.3.3 Universes

By a universe I mean a set—indexed family of sets closed under some sets and
set—forming operators. The notion has a certain arbitrariness as it depends on
a particular collection of sets and set—forming operators — e.g. 0, 1, 4+, and
Y. There is an excellent survey of different notions of universe in [82]. In this
subsection, after some introductory remarks, I give constants and equations for a

family of (cumulative) universes closed under N, [ and ).

One purpose fulfilled by the introduction of a universe is to permit the defini-
tion of families of sets by recursion, by providing a set or family of sets for that
recursion to ‘happen into’. For example, one may wish (as in the construction of

Scott’s D model of the untyped A—calculus), to define a set:

([In:N) F(n)
where F(0)

N
F(S n) F

(n) — F(n)

A definition by recursion on N requires a set (or set valued family indexed by N)
in which the values of the function lie. To formalise the definition above we need
a family of sets which (at least) contains the set N and is closed under the unary
operator X +— X — X. The construction of provable ordinals given in the fourth
chapter is riddled with definitions of this kind.

Another example of the definition of set—valued function by recursion into a

universe is afforded by the definition of the N—indexed family of ‘standard’ finite
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sets, which can be be written as follows.

= {}
N(Sn) = N(n)+1

Here one requires a universe which contains the empty set, and is closed under
the unary operator X +— X + 1. (If one does not make use of such a universe,
then as observed by Altenkirch [5] some form of inductively defined identity—type
seems required to formalise the construction of this family. As discussed in section
3.1.1 on page 59 there are is something problematic about a notion of inductive
definition in which two variables may in some contexts be constrained to be equal.
It is curious that by exploiting universes one can sometimes, as in the case of the
family of finite sets, obtain the effect of problematic forms of inductive definition.)

A universe is specified merely by closure properties. It is not required that a
universe is the least family of sets closed under some given constructors, although
for some purposes this may be appropriate. (For example, one may wish to
introduce a universe of ‘standard’ countable sets, as the least family containing the
(entire) family of finite sets, closed under the restricted quantifiers ([[n: N) ...
and (>_n:N) ....)

In giving examples it soon becomes necessary to use the ‘data’ form of co-
product constructor with corresponding ‘case’ expressions. This allows one to
use names for constructors more meaningful than composites of i_, j_ and the like.

In the remainder of this chapter we introduce constants and equations for a
variety of universes. First cy,, ¢z, for an empty universe, and constants for some
other ‘microscopic’ universes; next cy, cr for a ‘next universe’ operator; finally
cy, cg for a ‘superuniverse’ closed not only under the ordinary constructions
but also under the next universe operator. Having such a superuniverse allows
one to define (internally) a sequence of cumulative universes by recursion on the
structure of of natural numbers.

In the following rules, the equations specifying the decoding functions (cg,,
cr, cg) have been stipulated to hold ‘at the level of types’. Regrettably, I have
not given sufficient thought to the question of whether they should have been
stipulated at the level of sets.

e The empty universe.

Cup & et
cry - Bl ey — Set

These constants can be introduced by definition; that is to say that the
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rules are redundant.

Cuo = €}
cr, =[] = Ar.case z of —

The following type judgements then hold.

El Cyy = {} . Type
El cqy(c) : Type(c: {})

Although the rules are redundant, (cy,, c¢7,) is an (extreme) example of a
universe, which is a set reflecting certain closure properties of the “ambient”
universe of sets. The notion empty universe raises some rather delicate is-
sues as to what exactly it is closed under. It is for example closed under sum
types, the quantifiers II and ¥, and apparently any set forming operation

which is not a plain constant.
The universe containing only the empty set.

cy, ¢ Set
cp, + El ¢y, — Set

These constants can be introduced by definition.

Cuy, = C{x}
cr, = [cy] = Az.case z of * — ¢,

The following type judgements then hold.

El ¢y, = {x} : Type
El ¢, (¢) ={} : Type(c: {*})

The Boolean universe, containing just the empty set and the singleton set.

cy, © Set,
cr,  El ¢y, — Set,

We can define this universe as follows.

Cuy = C4(C(x}s Cpry)
cr(c) = case cof i*x — cpy

J* = cpa
With the following definitions
tt, ff: El Cy,
tt=jx*
ff=1x
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the following type judgements then hold.

Elcy, = {*} + {*}
El ep,(tt) = {x} : Type
El ey (ff) = { } : Type

e The next universe operator. This operator maps a family of sets to a
more extensive family which contains it and is also closed under ‘the usual’

set—forming operations.

cu: (JJA:Set) (El A — Set) — Set
cr:(J[A:Set,B:ElA— Set)El ¢y(A, B) — Set

In the following I shall replace Elcy by U, Eler by T and so on. Moreover,

I omit the parameter (A, B) from all occurrences of U and T.

U = data @ 2 ()
ta :(a:ElA)
+ab:(a:U,b:0)
i 10
gab :(a:U,b:T(a)— U)
ﬁlab IELZU,()IT((I)%U)
Ao ()

: Type
T(c) = case cof « —El A
ta — ElB(a)
+ab— T(a)+ T(b)
o —{}
[an b — g%x : T(a)) T(b(x))
7ab— ([[z: T(a)) T(b(x))
n — N
: Type(c : U)

e The super universe [82]. The super—universe is the least family of sets
closed under the next universe operator (as well as all the standard type

forming operations, which for simplicity I omit).

cy : Set
cs : El ¢y — Set

In the following I shall replace Elcy by U, Eler by T and so on. Recall
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that ¢y and cp are the set forming constants for the next universe operator.

V = data wab :(a:V,b:S8(a)— V)
tabe:(a:V,b:S8(a)— V,c: U(S(a),S D))
: Type
S(c)= casecof wab — U(S(a),S°b)
tabc— T(S(a),Seb,c)
: Type(c: V)

There is a small abuse of the composition operator above. § e b is used as

a suggestive notation for Az. S(b(z)).

e A vista of universes. The superuniverse construction can be elaborated
upon so as to obtain an operator on families, which assigns to a family the
next more extensive family which is closed under the next universe operator.

This generalisation can be taken in a number of directions.

In one direction, one can iterate the step from the next—universe operator
to the next—super—universe operator. As remarked by Peter Dybjer, this
step has close similarities with a key part of the ordinal—theoretic Veblen
derivative operator, namely the construction of the next infinite ordinal

above a given ordinal which is closed under a given normal function.

In another direction, one can add a certain fixed—point operator to the
operations under which a universe is closed, which abstracts away from the
operation under which the universe must be closed. Pursuing this direction
we arrive at certain forms of Mahlo universe, due to Setzer [100]. The
Mahlo universe is interesting because all the universes it contains internally
admit a principle of structural recursion, although the Mahlo universe itself
admits no such scheme. It is only a fixed point, not one which is in any

sense ‘least’.
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Chapter 3

Transition systems, interactive
systems

The previous chapter set out a framework for constructive set theories, and in
that framework described a particular limited set theory. The chapter after this
one exploits the closure properties of the sets in this theory to determine a lower

bound on its proof theoretical strength.

This chapter concerns two kinds of systems which are pervasive not only in
computer science, but also in nature, namely transition systems and interactive
systems. Ordinal notation systems are a particular kind of transition system. In-
teractive systems are useful for modelling interactive systems typified by 2—person
games of a certain kind. I describe an approach to representing these with data

structures in dependent type theory, so that one may program with them.

Some aspects of my approach may be novel. For example, a transition system
is usually taken to be simply a binary relation on a set, and modelled with a binary
propositional function. It appears though that there is often more than one way
to skin a cat, particularly in type theory. Even such an apparently straightforward
notion as a binary relation is susceptible to differing interpretations, and admits
at least one representation subtly different from ‘the obvious’ one. In a sense, this
representation is more computational, and less propositional. There is perhaps at
least a moral here, that in approaching a problem in type theory one must start
thinking right from the beginning. From one point of view this is sad, but one

may also look on it more positively as an opportunity.

The bifurcation between the computational and propositional representation
of relations can be traced back to the questions of representing ‘subsets’ in type
theory. There are really two notions: family (given parametrically, by an ex-
haustive enumeration), and predicate (given by a propositional function). The

relationship between these different notions is not at all straightforward; it is
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intimately connected with the extraordinarily vexatious issue of understanding
‘equality’ in type theory!'. From the beginning, it has been clear that one must
distinguish between equational judgements and proposition; but this is only to
double the problems that arise. The course I have adopted here is simply to ab-
stain from appeal to any general notion of propositional equality, or form of the
identity type, whether extensional or intensional. The first two sections of this
chapter discuss the notions of ‘subset’ in type theory from this perspective, and

the repercussions of taking this abstentionist point of view.

There are two main sections in this chapter. The first 3.2 is concerned with
transition systems. It gives the definition, the definitions of some related notions,
and illustrates their application with a number of examples and constructions.
The other 3.3 is concerned with interactive systems, which are somewhat more
complex than transition systems. Again, I give the definition, that of some related
notions that pertain to interactive programming (and strategies for games), and

present some illustrative examples and constructions.

The structure I shall use to represent interactive systems seems to have ap-
peared first in the work of Petersson and Synek [84], also described in chapter
16 of [80]. The structure I shall use to represent transition systems is a formal
simplification of their notion. It is natural to wonder whether an endless series
of other variants may not be wrung from it. As far as I have been able to see,
this is (fortunately) not the case. There is indeed a yet further simplification one
can make, obtaining a vestigial notion of dynamical system, and so a ‘trinity’
of structures; but in a sense, that’s all. The question appears to be connected
with certain investigations in predicate transformer semantics by Gardiner, Mar-
tin and de Moore [34]. There is some discussion of this in the final section 3.4 of

this chapter.

These matters dealt with in this chapter lead towards the concluding chapter,
which contains my suggestions of how the study of proofs of wellfoundedness
initiated by Gentzen and developed in ordinal—theoretic proof theory may be

relevant to issues in computer science.

!For that matter, in logic generally. It is interesting to note that the symbol = for equality
was introduced as late as 1557 (by Robert Recorde, choosing the sign = ‘bicause noe 2. thynges
can be moare equalle’ than such parallel lines). The nature of and role of equality among the
logical constants and quantifiers has been hotly debated in philosophical logic for well over a
century. The problems have only been exacerbated with the development of constructive logic,
which has raised in a new form quite old questions pertaining to ‘intensional’ equality.
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3.1 Predicates versus families

There are at least two ways in which we are given subsets of a set §: using a
predicate over S, (e.g. {n €N |VmneN. mxn=k=m=1Vvn=11}),
or using a function into S (e.g. { (t3,2x t) | t € R }). In Zermelo—Frankel set
theory, it is the separation axiom which guarantees us subsets of the first kind, so
it is natural to refer to such subsets as separative. The axioms that guarantee the
existence of sets whose elements are the values attained by a function are more
various, but a typical axiom with this role is the replacement axiom. The general
forms are as follows.

separative  { s:S | P(s) } where P:S — Set

parametric { p(i) | i: 1} where (I,p): (> 1:Set) — S

In a set expression of separative form, we pick out the elements of the set
from a given set S with a predicate P, or propositional (i.e. proposition valued)
function, defined on S. According to the identification of propositions with sets
that is made in set theories in Martin—Lot’s style, a predicate defined on S is a
function defined on S whose values are sets. I shall usually refer to a subset given
in separative form as a predicate.

In a set expression of parametric form, we have a function p defined on an
index set I, which gives a ‘generic’ element p(i) of the set expressed in terms of
the parameter ¢ : /.

These two forms of set expression correspond to the covariant (parametric)
and contravariant (separative) powerset functors on the category of sets, which

may be written as follows:

Fam(X) = (> 1:Set)] —- X

Fam(f: X —=Y) = XI,p).(I,fep): Fam(X)— Fam(Y)
Pow(X) = X — Set

Pow(f: X —Y) = AP.Pof: Pow(Y)— Pow(X)

Let Type denote the (large) category of sets and functions between them. In
accordance with the analysis of these notions in the predicative framework of the
previous chapter, 1 shall suppose that Fam() and Pow() are in fact functors on

the category of types and functions.

Fam(_), Pow(_) : Type — Type

3.1.1 Equality

The relation between the two notions of subset is rather subtle in type theory.

As demonstrated in this section, the relation hinges on questions connected with
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equality, and in particular propositional equality, most particularly identity, the
‘least reflexive relation’. As evidence that this topic is difficult, one can point
to the several formulations of rules for identity that have appeared (or never got
that far) in the development of Martin—Lof’s systems. Furthermore, there are the
surprising results of Hofmann ([47]) and Streicher ([102]) about identity between
proofs of identity propositions.

I wish to abstain from assuming that there is for an arbitrary set S a distin-
guished equivalence relation Id(S, -, _) which is included in any other. In other
words, I wish to avoid use of any form of schematic identity type, whether inten-
sional or extensional. Of course, this is a nuisance. What it means in practice
is that many if not most of the ‘sets’ which we refer to in informal reasoning
must be rendered as ‘setoids’ (that is, sets with an equivalence relation) when
that reasoning is formalised. We must check that these equivalence relations are
compatible with the operations and predicates of interest. For example, this is
the case when defining a category; the homsets must be equipped with equiva-
lence relations compatible with composition. For some purposes it may even be
necessary to equip the objects with an equivalence relation. A considerable part
of the charm of a set—theoretic framework is that ‘one knows what one means by
equality’.

There are equivalence relations which percolate through most of the usual
type forming operators. For example, in a set theory which includes the set
of natural numbers and the universe (cy,, Ab : cyy- Ty, (b) : Set) of Boolean
truth—values we can (as is well known) define a boolean valued equality between

natural numbers by recursion on their structure.

eq : N — N — cy,
eq(0,0) =
eq(0,n + 1) 0
eq(m+1,0) =0

eq(m+1,n+1)=eq(m,n)
By pre—composing this function to T¢;;, we obtain a set valued equivalence re-
lation which is included in any reflexive relation on N. It is clear that this way of
obtaining an equality relation can be extended in a natural way to concrete data
structures in general, and from there to extensional equality between functions.
Yet these ‘percolated’ equivalence relations are often finer than the equalities of
mathematical interest in a particular case, for example the relation of equiconver-
gence between Cauchy sequences of rationals, or the equivalence relation between
pairs of natural numbers in the usual construction of the integers from the ra-

tional numbers. Moreover, this percolation does not amount to a distinguished
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equality relation applicable uniformly throughout the type of sets; the type of
sets is not given by an exhaustive specification of the possible constructors for

sets.

I have mentioned that the relation I(S,_,_) is usually characterised as the
least reflexive relation on the set S. This suggests that one should think of it
as inductively defined, as for example in [80], page 61. For present purposes, it
makes little difference if one thinks of (say) the first argument of the relation as
a parameter s in the inductive definition of a ‘singleton’ predicate I(S, s,-). The
problem is that it is far from easy to arrive at a general conception of inductive
definition encompassing the identity type. Such an inductive definition, if that
is what it is, differs in a crucial way from inductive definitions of datatypes such
as the natural numbers, or of predicates and relations such as accessibility with
respect to a binary relation. (There are several examples throughout this chap-
ter.) In a certain sense, the definition is not linear. In the case of the identity
relation, the specification of the constructors by means of which one may form
elements of the set I(S,s,s’) depends on whether the parameters s and s’ are
equal, or the same. It seems this equality between parameters has to be inter-
preted as judgemental equality; after all, we are in the course of attempting to
define a general propositional equality. However it is far from clear whether these
equational constraints, which occur negatively in the definition of (5, s, s’) have
to be allowed as part of a context, or accounted for in some other way. What is
clear is that if 1(9,s,s’) is to be regarded as inductively defined, then there is

something new in this conception of inductive definitions.

In this connection, it may be worth mentioning how inductive definitions
are dealt with in the experimental system ‘half’? developed in Chalmers as a
framework for checking constructive proofs. To introduce an inductively defined
datatype such as that of the natural numbers N, one writes a recursive equation

for the constant N, as follows.

N = data {0, S(p: N)} : Set

To introduce a recursor constant for this datatype, one writes another recursive

2The constructions of provable ordinals reported in the next chapter were carried out and
checked with the aid of this system.

The ‘half’ system is unsupported by anyone at Chalmers. It has been su-
perseded by ‘Agda’; currently maintained by Catarina Coquand, and accessible at
http://www.cs.chalmers.se/ catarina/agda.
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equation, as follows.

R(A: Pow(N),af:‘ /(1)(0),6 ([[n:N,_: A(n)) A(S(n)),n: N)
S(p) — b(n, R(A,a,b,n))
: A(n)

There is nothing in this system to distinguish a recursive equation which intro-
duces an inductively defined set (like N) from one which introduces a function
defined by recursion on the construction of elements of that set (like R). It just
happens that in the former case, the type of the equation is Set, or more generally
a Set—valued function, and the right hand side is in most cases a disjoint union of
some kind (signified by the data construction, with constructors 0 and S(_)). It
just happens that in the latter case, the right hand side has usually the form of a
case construction. The system does not ‘police’” any particular scheme of correct
inductive definition (such as strict positivity, or even monotonicity). However, as
with any other definition, the left hand side of an inductive definition must be
linear, in that no parameter of the definition may be repeated. So if one tries to

define an identity predicate by writing a definition of the form
I(S :Set,s:S,s:5)=data ...

the system complains of an error. This is exactly what one expects if one is
accustomed to the treatment of definitions in most® functional programming lan-
guages.

As far as I am aware, the issue to which I am referring has not been explicitly
discussed in the literature of inductive definitions in type theory. (In essence,
the issue is not peculiar to type theory; it arises already in a presentation of
inductive definitions in the language of first order logic, as in [63].) Because
of these misgivings, I am particularly interested in constructions which can be
defined with no reference to general propositional equality on a set. Of course,
among these one may be particularly interested in constructions of particular
equivalence relations.

The rest of this section demonstrates three points of contrast between predi-

cates and parametric subsets.

3The functional programming language ‘Miranda’ is an exception. In Miranda the left hand
side of a definition need not be linear in its parameters. One can regard this as a form of ‘sugar’,
whose expansion involves the explicit introduction of conditional expressions that depend on
an appropriate, ‘percolated’ boolean—valued equality function.
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3.1.2  Separative is ‘more than’ parametric.

If we are given a subset of a (small) set S in separative form, { s: S | P(s) }, we
may form the set (Y s:S) P(s) of pairs (s, p) with s : S, p: P(s). This set of

pairs can serve as the index set for a subset of S in parametric form, as follows.

{polp:(22s:8)P(s) }.

This parametrically given subset is intuitively equivalent to the original separative
subset in the sense that every s € S for which P(s) holds, that is for which we
have a proof p : P(s) , is obtained (‘once’ per proof of P(s)) as a value of the
projection function. Conversely, every value of the projection function _q satisfies
P by construction. However, to actually say that an arbitrarily given s : S ‘is’ a
value of the projection function presupposes that we are given an equality on S.
Even if we had such an equality, the equivalence between the two representations

holds only if § is a set, as the index of a parametric subset has to be small.

3.1.3 Predicates enjoy more closure properties

Both kinds of subset are closed under unions (of small families).

U,.; P(i) 2 Xs.(Xi: 1) P(i,s)
Ui (J(0), N p(i,5) = (X T) J(i), A(4,4)- p(i, )

In particular, the notion of an empty subset of a set can be expressed both in
separative and parametric form.

Predicates are closed under intersections of small families.

N., PG) = As.([Ti:1) P(i.s)

Indeed, the predicates over a set (or for that matter a type) form a Heyting
algebra. On the other hand, to form the intersection of even two parametrically

given subsets we need to refer to an equality relation.

{f@ i1 ynfgG) iz Jy={ k) [ k: (2205 :IxT)[f(i)=9g0)}

Only in the degenerate case of an empty intersection can we express the notion
of the full subset in parametric form, and then only when the underlying set is

small.
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3.1.4 Inclusion and overlap

We can say that a family is included in a predicate, or intersects with (i.e. has

nonempty intersection with) a predicate.

{pli)i:I}C{s:8]|P(s)} = (ITi: 1) P(p(i)
{(3#{p@) [i:1¥n{s:S[P(s)} = (Xi:I)P(p(i)
However, to express inclusion in a parametric subset, or that two parametric

subsets overlap requires equality on the underlying set.

3.2 Transition systems

A binary relation R on a set S assigns to each element s € § two subsets of S
namely the set of elements of S to which it is related, and the set of elements
which are related to it. Of course, it is enough to have just one of these subsets, so
long as we know which ‘direction’ of the relation it is for. We may therefore think
of a relation simply as a function from elements of S to subsets of S. There are
two ways of modelling subsets, as described above. So for each of the approaches
to modelling subsets of a set S explained above, there is an approach to modelling
binary relations on S. The following equations show the typical forms of the two
kinds of relation. (Thus in the second equation, the relation is represented as a
set—valued function I together with a function d : ([[s:S) I(s) — S.
R=MXs,s": 8. R(s,5) : S — Pow(S)
R=MXs.(I(s),Xi:I(s).d(s,i)) 8 — Fam(S)

The first of these is entirely familiar. The second does not seem to have received
much attention among type theorists as a possible analysis of the notion of binary
relation. Note however that a transition system can be regarded as a coalgebra
for the functor Fam(_) on the category of types, and in that guise it is unlikely
that these have escaped the attention of category theorists.

The general form of an object of type S — Fam(S) is Az : S.(T(s), A\t :
T(s).d(s,t)) where

T :S5 — Set — transition predicate
d (J][s:9) T(s)— S — transition function

4The usual representation of a directed, binary—branching graph in LISP storage cells can
however be seen as of this kind. A directed graph is a binary relation between vertices. When
a graph is represented by a heap, the set S consists of heap cell addresses. The content of the
heap cells determine for each cell s whether it is a ‘nil’ cell (related to no other cells), or a
‘cons’ cell, with two fields ‘car’ and ‘edr’. In the case of a nil cell, the field set I(s) is empty,
whereas in the case of a cons call it is the two—element set { car, cdr}, and the heap contents
determine for each field label i : { car, cdr } the cell d(s, i) to which the cons cell is related by
that field.
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[ shall frequently write the transition function d(s, t) using the less noisy notation
s[t], and where necessary use decorations such as s[t]’, s[t]* etc. to distinguish
different transition functions. (This notation also happens to be one widely used
in connection with ordinal notation systems.) I call such a structure a transition
structure on S, and a transition system to be a set S together with a transition
structure on S. I shall often refer to the elements of the set S as states. One
can think of the set T'(s) as the set of transitions from the state s, and d(s, t) as
the state which is the destination of the transition ¢. (It is also possible to turn
things round, and think of 7'(s) as the set of transitions with destination s, and
of d(s,t) as the origin of transition t.)

Note that the type S — Fam(S) is a proper type, as Fam(_) contains an
existential quantification over Set. Given a family of sets (A, B) : Fam(Set) (for
example the family of finite sets), we can relativise the definition of ‘transition
structure’ so that the sets of transitions are restricted to be values of B, and so

obtain a set of transition structures.
famap)(S:Set) = (Y a:A)B(a)— S

It is occasionally useful to generalise the notion of transition structure slightly
to a function A; — Fam(As), where A; and A; need not be the same. In categor-
ical terms, such a function is a morphism in the Kleisli category associated with
the endofunctor Fam(_) on the large category Type. I shall call such a function
a transition structure from A; to A,.

If a is related to b, then there is always some reason for it, or in other words,
a proof of the proposition that the relation holds. If we picture the relation as a
directed graph, then the arrows in the graph are really bunches of labelled arrows,
where the labels are the various reasons why the source and destination nodes are
related. A more intensional way to model a relation is as a function which assigns
to a node an indexed family, consisting of an index set and a node—valued function
defined on it, giving the immediate predecessors of the node in parametric form.
One can think of the indices as ‘transitions’, and so it is natural to call this a

transition system.

3.2.1 Predicate transformers induced by a transition struc-
ture

Let Az.(T(s),At.s[t]) be a transition structure from S; to S;. The transition

structure gives rise to two predicate transformers (functions between predicates)
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as follows.

(AP.*P),(AP.°P) : Pow(S2) — Pow(5)

*P(s) = (IIt:T(s)) P(s[t])

°P(s) = (X t:T(s)) P(slt])

If @ is the transition structure, the predicate transformers will be written ®°_ and
®°_. (When the transition structure is implicit, I prefer to write just *_, °_.)

The predicate ®*P holds of a state s if all transitions from the state s lead
to a state satisfying P, and the predicate °P holds of a state s if there is some
transition from the state s that leads to a state satisfying P. For example, the
predicate ®Fulse means that no transitions lead from the argument state, while
°True means that there is at least one transition which leads from the argument
state.

Note that * commutes with taking the intersection of a (small—) indexed
family of predicates, in the sense that *(N;.;X;) = N;.r(°X;). It follows that *
is monotone with respect to the ordering of predicates by inclusion. Similarly,
° commutes with taking the union of a family of predicates: °(U;.;X;) equals
Ui.1(°X;), and it follows that the operator is monotone with respect to inclusion.
There is in general a considerable duality between ® and °. By the de Morgan
rules of classical logic, we have that 0(°X) = *(CX) (where C_ denotes the com-
plementation operator).

In the case when there is just one state set S, we call a predicate progressive
if *P C P. A proof of progressivity is in essence an algebra for ®, considered as a
functor on the category of predicates over S with inclusion proofs as morphisms,
with respect to the trivial equality between proofs (which identifies all proofs of
the same proposition).

An accessible state is one in the intersection of all progressive predicates.

Ace ' Pow(S)

A

Ace = (Y X : Pow(S) | Prog(X) }
The definition of Acc can be expressed using one level of second order universal
quantification over predicates. (This is not predicative, because the domain of
the quantifier includes the predicate being defined). Unpacked, it reads:

A

Acc = {s: 8| ([[X: Pow(S)) Prog(X) — X(s) }

We shall be concerned in the next chapter with the extent to which proofs of
accessibility can be be constructed without essential use of second order quantifi-
cation.

A transition system is wellfounded if S C Acc, or in words every state satisfies

every progressive predicate.
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3.2.2  Sequential composition of transition systems

Suppose we are given two transition structures ®; and ®, with the following

types.
q)l = \a. (Bl(a), )\bl a[bl]) . A1 — Fam(Ag)
q)g = \a. (Bg(a), )\bg a[bg]) . A2 — Fam(Ag)

We define another
® = Aa. (B(a),\b. a[b]) : Ay — Fam(A3)

where
Bla) = (Xb:Bi(a)) Byalh)
a[(b1, b2)] = a[bi][bs]
Then we have
O° = P75 : Pow(A3) — Pow(A;)
O* = P3PS : Pow(A3) — Pow(A;)
We write @, ° @, for @, and refer to _°_ as sequential composition. If you think of
®; as a relation By C Ay X As, and P, as a relation Ry C Ay x Az, then & ¢ O,
represents the relational composition (Ry; Re) C Ay x As.
When there is just one state space (i.e. Ay = Ay = Aj3), the following transi-

tion structure skip serves as a unit for sequential composition.
B ( CL) = N1
alb] = a

The choice of an index set (here N;) is to some extent arbitrary (as long at it is
always small and inhabited), and could even depend on the state. The transition

structure skip represents the identity relation.

3.2.3 Union of transition systems

Suppose we are given two transition structures ®; and ®,, both from a set A; to
a set As.

®; = Aa. (Bi(a), \by. alby]) : Ay — Fam(Ay)
Gy = Aa. (By(a), Aby. albs]) : Ay — Fam(Ay)

we define another such transition system

® = Aa. (B(a),Ab. alb]) : Ay — Fam(Ay)

where
B(a) = Bi(a)+ By(a),
a[l bl] = a[bl],
alj bo] = a[by]
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Then we have

°(P) = PY(P) U P5(P)

We write ®; U P, for @, and call it the union of ®; and P,. The interpretation of
®, U Dy is that the transitions from a state are put together. If you are choosing
successive transitions, at any point you have available to you transitions from
both structures.

For a zero, the transition structure 0 on a state space A can be defined by

B(a) = {}

alb] = caseaof —

3.2.4 The transitive and reflexive closure of a transition
system

If ® = Aa.(B(a),\b.a[b]) : A — Fam(A) is a transition structure on a set A,
then we may form its transitive and reflexive closure ®* | which is intuitively the
least solution of the equation ¥ = skip U (¥ & ). This is only an ‘intuition’,
because there is no obvious way to define an order on A — Fam(A) unless we are
given an equality relation (or at least an order) on A. Nevertheless the intuition

is sound, and we may define
O* = Aa. (B*(a), Abs. a[bs]*) : A — Fam(A)

where
B*(a) = {0}+ (2 b:B(a)) B*(alb])
albs]* = case bsof 0 —a
(b, bs") — alb][bs']*
The recursive equation specifying B* should be understood as defining B* to be
it’s least solution.

The transitions in B*(a) are finite lists bs = (bg, by, ..., b) of the transitions
from ®, where by : B(a), by : B(al[bo)), ..., by : B(a[bo][b1]...[bk]). The state
a[bs] is the state we finally land in after taking the successive transitions which
form bs. There is a natural concatenation operation, which is a proof of the

transitivity of ®*.

concat : (Jla:A, bs:B*(a)) B*(a[bs]*) — B(a)
concat(a,bs) = case bs of

ib — Abs’.j(b, bs')

j(b, bs") +— Abs”.j(b, concat(alb], bs', bs"))

The transitive closure of ® (written ®T) may then be defined as ® ¢ ®*.
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The transitive closure construction preserves wellfoundedness. To show this,
we need to show that for an arbitrary state a and predicate X, if X is progressive
with respect to (the composite transitions of) ®* then it is progressive already
with respect to (the atomic transitions of) ®. This is obvious because the atomic
transitions are among the composite transitions of ®7.

The reader may have already become a little exasperated that I have not
actually defined what it means for a transition structure to be transitive. I have
not done so because such a definition would require an equality relation on the
underlying state, and would depend ultimately on being able to express with a
proposition that one family is included in another. Although we cannot say that
a transition structure is transitive, it may be perhaps slightly surprising that
we can nevertheless express quantification over transitive transition structures.
Instead of saying for example ‘If ® is a transitive transition structure on A, then

P(®)’, we can say ‘If ® is any transition structure on A, then P(®1)’.

3.2.5 Segments of a transition structure

Suppose that Aa. (B(a), Ab. a[b]) : A — Fam(A) is a transition structure on a set
A. Given an element a of A we can define an transition structure As. (C'(s), Ac. s[c])
on B*(a), using concatenation:

C(bs) Bt (a[bs])
bs[bs'] = concat(a,bs, bs’)

This transition structure is called the segment of A up to a, and written Sega(a).

As a varies through A, we get a family of transition structures.

3.2.6 Relation transformers induced by a transition struc-
ture

Suppose we are given two transition structures ®; and ®5 with the following

types.
q)l = \a. (Bl((l), )\bl a[bl]) . A1 — Fam(Al)
q)g = \a. (BQ((Z), )\bg (l[bg]) . A2 — Fam(Ag)

The two predicate transformers ®;* and ®,° can be made to act jointly on the
argument places of a binary relation R : Ay — Pow(As) in essentially two inter-
esting ways (modulo transposition of the relation).

Given a binary relation R : A; — Pow(Ay) we define (®1,P2)*R : A —
Pow(Asz) as follows.

((I)I’CDQ).OR . A1 — PO’IU(AQ)
((®1,P2)"R) (a1, a2) = (I1b1: Bi(a)) (X ba: Ba(ag)) R[], az[by])
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Similarly, we define (1, ®2)*R : Ay — Pow(As) as follows.

(®1,D2)"R i A — Pow(As)
(1, ©2)" R)(ar, a2) = (301 Bi(ar)) ([]b2: Ba(az)) R(ai[bi], az[be])

Now a simulation of ®; by Py is a relation R : Ay — Pow(Asz) such that a
transition according to ®; can be matched by a transition according to ®, that
preserves R, in the sense that R C (®;, ®9)* R. For example, the empty relation
is obviously a simulation; if R and S are simulations, then so is R U S; and in
general simulations are closed under unions of (small) indexed families. It is also
easily seen that simulations are closed under relational composition, in the sense
that if R is a simulation of ® by ¥, and S is a simulation of ¥ by O, then (R;5)
is a simulation of ® by ©.

Clearly the notion of a transition system is highly intensional — there can be
lots of representational redundancy. For example, here are two representations of
the > relation between natural numbers.

Bi(n) = N,
nlmly = n+m

Here is a different transition structure that represents extensionally the same
relation.

By(n) = N,

nimls = n+|m-+19]
In the second transition system there are 19 different transitions for each of those
in the first system, and in a sense the identity of these transitions is irrelevant.
Though they differ as families of sets, the two transition systems are mutually
similar.

A simulation relation is insensitive to the representation, as it does not dis-
tinguish between a state and its family of destination states.

Where there is something called a structure, it is natural to look for something
to call a morphism between such structures. If one considers a transition system to
be a coalgebra for the functor Fam(_), it is tempting to take a morphism between
transition systems to be simply a coalgebra morphism. However this definition
presupposes that we are given an equality relation between states. It is clear that
we are far short of having a category® of transition systems. One reason to be
interested in the notion of a simulation is that it gives us a way of comparing the
structure of transition systems, yet its definition does not presuppose an equality
relation between states. If there is a simulation from (A, ®) to (B, V) which is

total, then in some sense the structure of transitions in (A, ®) is preserved in that

Sor even a ‘2—category’.
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of (B, V). It may be interesting (though I have not done so) to investigate the
(large) relation between two transition systems defined by the presence of a total

simulation from the first to the second.

3.2.7 Successor of a transition system

Given a transition system (A, Aa. (B(a), Ab. a[b])) we can construct from it an-
other transition system (A’, Aa. (B’(a), Ab. a[b]")) A" which has a new element ‘at
the top’, with a transition from it to each of the states in A. In a sense, this is
analogous to the ‘von Neumann’ successor of A.
A = 1+4
B'(a) = case a of
i0— A
ja— B(a)
a[b] = case a of
i0—ja
ib—Jalb]

There is an analogous construction which adds a new element ‘at the bottom’.

A = 1+4
B'(a) = case a of
10— {)
ja— 1+ B(a)
a[b] = case a of

i0+ case bof —
jbr—casebof i0 —i0
jb—jalb]

3.2.8 Ordered addition of two transition systems

Given two transition systems

A1 = (Al, Aa. (Bl(a), Ab. (l[b]l))
A2 = (AQ, Aa. (BQ(CL), Ab. (l[b]g))

we define an ordered binary sum A; + Ay = (A, Aa. (B(a), Ab. a[b])), correspond-

ing to Cantor’s definition of the ordered addition of two linear orders.

A = A+ A
B(a) = -case aof
ia; — Bi(a)
jag — Ay + By(a)
alb] = case aof
ia; —1ab);
j ag — case b of
ia;—1a
j bg I—>J ag[bg]
71



In this construction we put B ‘above’ A. A transition from an element of A is
the same as a transition in A, while we add to the transitions from an element of
B several new transitions, one for each element of A. Intuitively, it is clear that
this construction preserves transitivity.

The addition construction preserves wellfoundedness. This means that if we
are given a predicate X on A+ B which is progressive with respect to the transi-
tions defined above, then X holds throughout A+ B. So let X be such a predicate.
Define from it the following predicates:

X . Pow(Ay)

X . Pow(As)

Xi(a) = X(iam)

Xo(ap) = X(Ga) x([]a: A1) Xi(a)

It can be checked that X, and X; are progressive in A; and A, respectively. If
A1 and Ay are wellfounded, then this implies that X, holds throughout A;, and
X; throughout As. So X holds throughout A; + A,.

3.2.9 Ordered sum of a family of transition systems

Suppose we are given a transition system®
X = (Xyg, A\za. (Xp(za), A\xb. X .(za, xb)))
and for each za : X4 a transition system
Y(za) = (Ya(za), \ya. (Yp(za,ya), Ayb. Y.(za, ya, yb)))

(For example, the family may be constant, or be the family of segments of a given

transition system.) Then there is another transition system

Z=(>za:X) Y(za)
= (ZA, Aza. (ZB(ZG)7 Azb. ZC(ZCL, Zb)))

which is the ordered sum of that family, the order being given by the transition

system X.
Za = (Y. ma:Xy) Ya(za)
Zp(za, ya) = Yg(za,ya) + (> xb: Xg(za)) Ya(X.(za,zb))
Z.((za,ya), zb) = case zb of

i yb = (za, Ye(za, ya, yb))
j (yb,ya') — (X.(za, xb), ya')
8T apologise for switching notation here, but for honesty’s sake it seemed necessary to show

explicitly that the destination of transitions in an indexed transition system depends also on
the index.
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By essentially the same argument as in 3.2.8, if X is wellfounded, and Y (za) is
wellfounded for each za : Xy, it follows that (Y za: X4) Y(za) is wellfounded.
(It does not however hold that if za is accessible in X, and yb in Y (za), then
(za, yb) is accessible in (D> za: X ) Y(za).)

In the case in which the family of transition systems does not depend on
the element of X, the construction is the same as Cantor’s definition of the
lexicographic product X x Y (in which X takes precedence over Y).

A variety of other product operations which crop up in the theory of rewriting
can be conveniently defined as operations on transition systems. For example,
the following (symmetric) operation appears in the work of Stefan Kahrs. Given
two transition systems

A1 = (Al, /\(I. (Bl(a), )\b a[b]l))
A2 = (AQ, Aa. (Bg(a), Ab. a[b]g))

then A = A; ® A2 = (A, Aa. (B(a), Ab. a[b])) is the following.

A = A3 x Ay
(a1, az) = Bi(m) + Ba(az) + Bi(ar) X Ba(ag)
(a1, a2)[b] = case b of

1 bl — ((ll[bl], (IQ)

jba = (a1, az[bs])

k (br, bo) — (a1[bi], az[bo))

The transition structure A; ® As contains transitions in which there is simulta-

neously a transition in A; and a transition in A,.

3.2.10 The well ordering type

Let the set W be the so—called ‘W—type’ [67, pages 79-86] over a family of sets
(A:Set,B: A — Set). W may be considered to be the initial algebra for the
functor F(X) = (> a : A) B(a) — X on the category of sets. Let it have
the constructor Sup : F(W) — W. We can put on W the following transition
structure Awa. (Wg(wa), Awb. W.(wa, we))
Wy(Sup(a,f)) — B(a)
Sup(a, N)IO] = f(b)

It is wellfounded.

3.3 Interactive structures

Transition structures serve as models for situations in which an object moves from

state to state atomically; that is, where the moves have no interesting or relevant
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substructure. It isn’t really necessary to argue for the value of such models, as

their applications are pervasive in computer science.

There are however situations of practical interest in which we would prefer a
mathematical structure that can take account of structure within the transitions
themselves. For example, there is a certain metaphor of ‘clients’ and ‘servers’
that is very prevalent in the computer industry, and the electronic marketplace
which computer businesses are building. You (the customer) send a server a re-
quest, it does something (e.g. exchanges goods for money), and sends you back
a reply. The model is familiar to anyone who knows how to buy things in shops,
and so is an important paradigm for widespread electronic commerce. Here the
customer or client has the initiative, and makes a request or issues an instruction
‘spontaneously’, in the sense that initiating a transaction can be blamed on them.
The server or service has responsibility for concluding or performing the transac-
tion. Not only is the client/server metaphor important merely to sell things to
the general public, it is also very pervasive in systems programming as a design
paradigm, when writing system software like operating systems, or their compo-
nents. At the level of procedural code, the same bipolar structure is present even

in calls to and returns from the humble subroutine.

This section contains the definition of a class of structures which I shall call
‘interactive systems’. These are more intricate than transition systems in that
a transition is no longer considered atomic, but to have two parts, which have
a different ‘polarity’ reflecting the spontaneous nature of a client’s request, and
the reactive nature of a server’s response. Because of this, we are able to model

notions of relevance to the design of system software — such as freedom from
deadlock.

The structures I shall describe appeared first in [84], where they arose in
connection with modelling formal grammars and parse trees in type theory. There
is a later description in [80], where it is pointed out that the trees identified by
Petersson and Synek are in a strong sense a paradigm for a broad class of inductive
definitions, in which what is defined is a family of sets over a given (fixed) index
set, and there is mutual recursion across indices. The class consists of those which
can be expressed as the least fixed points of predicate transformers in ‘disjunctive

normal form’.

What is new here is that I describe a role for these structures in modelling
interactive systems, and spell out the significance in that application not only
of wellfounded trees, but also their duals. I also show how some conventional

program combinators (such as sequential composition) can be given a semantics
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in terms of predicate transformers induced by an interactive system.

An interactive system consists of the following data’:

A Set
B(a: A) : Set
C(a:Ab:B(a)): Set
d(a:A,b:B(a),c: C(a,b)): A
These components have the following names and interpretations.

o A set A. This is the set of states of the interactive system; the remaining
components of the structure (which follow) comprise an interactive structure

on that set of states.

e A predicate B : Pow(A), which is to say a Set—valued function on A. If a
is a state, then B(a) can be thought of as the set of instructions b that it
would be correct for the client to issue in that state. This set may be empty

in some states, meaning that no further instructions may be issued.

e Arelation C: ([Ja: A) B(a) — Set between a state a : A and a proof that
B holds in that state. If a is a state and b is an instruction that it would
be correct for a client to issue in that state, then C(a, b) can be thought
of as the set of results ¢ that a server might correctly return when the
instruction has been carried out. Carrying out the instruction is thought of
as a state transition that happens at some instant between the instruction
being issued and the result being returned. The set C'(a, b) may be empty

for some states ¢ and instructions b.

e A function d(a, b, c) : A of variables a : A,b : B(a),c: C(a,b) giving the
next state to which the system moves. One might say that the function d
gives the ‘semantics’ of the instructions and results, as it allows the next
state to be computed from the current state, the instruction, and the result

of its execution. I shall often use the notation

alb/c|
instead of
d(a,b,c)

and resolve ambiguity where necessary by decorations of some kind, as in
alb/cl*, alb/c]’, a[b/cly, etc.. 1 shall call the pair b/c an interaction.

I use the notation of Petersson and Synek. It may be objected that this notation is rather
‘colourless’, but in my opinion that is its advantage. The structure admits such a wide variety
of interpretations that to base the notation on any one of them soon leads to incongruity. It is
hopeless to fix the colour of something iridescent.
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It is possible to give a more compact formulation of this notion, which may

be useful. An interactive system is equivalent to a value of the following type:
(Y8 :Set) S — Fam?(S)

which we can describe categorically as a coalgebra for the functor Fam?(_) (mod-
ulo concerns about equality). To the interactive system (A, B, C, d) there corre-

sponds the coalgebra
(A, Aa. (B(a), \b. (C(a,b),\c.d(a, b, c))))

In practice, both representations are useful.
It is sometimes useful to generalise the notion of an interactive structure, so
that the origin and destination states of an interaction can lie in a different state

space. I shall call a structure
®: A — Fam?(A)

an interactive structure from A to A’. In this guise an interactive structure is a
morphism in the Kleisli category for the composite functor Fam?(_).

It is also useful to have the notion of a pointed interactive system, which is
an interactive system with a distinguished ‘start’ state.

Besides the client/server interpretation of interactive structures there are a
number of other interpretations that are useful.

For example, one may obviously think of the states as positions in a certain
kind of 2—player game, in which there is (corresponding to the client) a player
called ‘White” (who goes first), and (corresponding to the server) a player called
‘Black” who responds to White’s moves with countermoves. White’s objective is
to ‘beat’ Black, by bringing about a position in which there is a move for which
Black has no countermove. Black’s objective is to avoid being beaten, possibly
(but not necessarily) by bringing about a position in which White has no moves.

Perhaps more interestingly, there is what I shall refer to as a ‘rule—set’
interpretation. Here the states a : A correspond to unanalysed statements
of some kind. Associated with statement a there is a set B(a) of inference
steps with conclusion a. (The inferences are not schematic, neither do they
discharge hypotheses.) For each such inference step b : B(a), there is a family
{ alb/c] | ¢: C(a,b) } of statements which make up the premises of the infer-
ence step. The notion of rule—set was introduced by Aczel in [4]. Aczel defines a

rule set (for a given set S of statements) to be an element of Pow(Pow(S) x S).
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He might equivalently have taken them to be elements of S — Pow(Pow(S)), in

view of the isomorphism

between Pow(X x Y) and Y — Pow(X)
which sends RC X xY to Ay.{z:X|R(z,y) }:Y — Pow(X)

As demonstrated in Dybjer’s paper [28], rule sets play a fundamental role with
respect to principles of inductive definition. He puts them to use in constructing
realisability interpretations of systems of dependent types with strong universe
principles. We obtain an ‘isotope’ of Aczel’s notion by replacing Pow(_) with
Fam(_).

3.3.1 Predicate transformers induced by an interactive
structure

In the previous section I defined the notion of an interactive system ® = (A, B, C, d).
In essence, an interactive system associates with each state a : A a doubly and
dependently indexed family of states { a[b/c| | b : B(a),c: C(a,b) }. In this
subsection, I fix an interactive system ® from A; to A,, and define two gen-
eral families of monotone predicate transformers P +— ®°(P) and P — ®*(P)
which arise in connection with this doubly indexed structure. Since ® is fixed
I shall write simply °P and *P. In a certain sense, ®° gives a transformation
in disjunctive normal form, and ®* in conjunctive normal form. The definition
follows.

AP.P° AP.P*: Pow(As) — Pow(A;)

P(a) = (2 x:B(a)) (I1y: Cla,x)) Plalz/y])

P*(a) = (ITx: B(a)) (X y: Cla,x)) Plalz/y])
A predicate of the form ° P holds of a state a : A; in which there is an instruction
b : B(a) that can be issued correctly and a function f : ([[y : C(a,z)) P(a[z/y])
applicable to values y : C'(a,z) that might be correctly returned when the in-
struction has been performed, yielding a proof that P(alz/y]). In other words,
if you know that °P holds in the current state, you have an instruction of which
you know that it results only in states in which P holds. (There may be no such
result states, in which case the instruction can be issued but not performed.)

A predicate of the form ®*P holds of a state in which, for any instruction

z : B(a) that might be correctly issued, there is a result y : C'(a,z) and a next
state alz/y] such that P holds. In other words, if you know that ®P holds in the
current state, you have a way of correctly performing any instruction that might

be issued, in such a way that P holds whatever the result state.
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Both these predicate transformers are obviously monotone, since the predicate
being transformed occurs only in a strictly positive position in its transform.

By application of the Knaster—Tarski theorem (for example as in [114], section
5.5.) to these monotone functions on the complete lattice Pow(A), both predicate
transformers have both least and greatest fixed points. Of these the greatest fixed
point of © and the least fixed point of ® are degenerate. They are the predicates
which are constantly true and constantly false, respectively. More interesting are
the least fixed point of © which I shall call Bar, and the greatest fixed point of ®
which I shall call Pos.

3.3.2 Bar, the least fixed point of °

For Bar, we have the following formation and introduction rules:

Bar : Pow(A)
bar : °Bar C Bar

which make the pair (Bar, bar) an algebra for the endofunctor °
For weak initiality, we require a recursion or fold combinator BarRec, satisfy-

ing the following typing and computational equation.

BarRec : (]G : (][ a: A) Bar(a) — Set,
g:(Ha A b B(a),
f:(Ie: Ca,b)) Bar(alb/c)).
f' (Il e Ca, b)) Glalb/c], f(c)))
— G(a, bar(a,(b,f))),

A
ar(a))
( )
BarRec(G g, a, t) =
(a,

case t of bar

(0,f)) — g(a, b, f, \e. BarRec(G, g, a[b/c], f(c)))

For brevity’s sake, it is useful to adopt the convex ‘lens’® bracket notation
popular among functional programmers for ‘catamorphisms’, which are initial
algebra morphisms. This notation is introduced in [9]. Using it, one writes
BarRec(G, g) in the form

(G,g): ([Ja: A t:Bar(a)) G(a,t)

8Some time after settling on the ‘lens’ terminology for the concept introduced in the next
chapter, which seems to me to be entirely appropriate, I discovered that it clashed with the
(notationally inspired) functional programming terminology.
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. GJ<C]/Q .. .state (destination)
L © ...lssue
b
state (origin)

Figure 3.1: The local structure of an interactive system

It should be noted that the arguments

b B(a)
(H(’ C(a, b)) Bar(a[b/c])
" (IIe: Cla, b)) Glalb/c], f(c))

of the function ¢ above can be expressed in the form

(b, Ae. (f(e). f'(¢))) : *(Aw. (2ot = Bar(z)) G(z, 1))(a)

so that if we allow ourselves the use of pattern—matching quantifiers, the type of

¢ can be written more compactly as follows.

g:(JTa: A, (b,Ae.(f(c),2(c))) :°(Nx. (D t: Bar(z)) G(z,t))(a)) G(a,bar(a,(b,f)))

The interpretation of the predicate Bar is that if you have a proof of Bar(a)
for a given state a, then your proof can be used as a program by the client of
an interactive system to drive the server inevitably into a deadlocked state. To
follow this program, do as follows. When in state a : A, calculate the canonical
form of the proof, which will be bar(a, (b,f)) where b : B(a) is an instruction,
and f : (J[]e : C(a,b)) Bar(alb/c]) is a function applicable to results which
the server may return. Issue the instruction b, and if a result ¢ : C(a,b) is
forthcoming, then proceed according to the program f(c).

A proof of Bar(a) has the structure of a certain kind of wellfounded tree,
with ‘white’ and ‘black’ nodes, as in the usual pictorial representation of games.
A white node represents a state (or position in a game), and a black node the issue
of an instruction. If you use the proof as a program, then subsequent interactions

will trace a path up the tree, that inevitably terminates in a ‘bad’ black node.

3.3.3 Pos, the greatest fixed point of *®

y For Pos, we have the following formation and co—introduction rules:

Pos : Pow(A)
pos : Pos C *Pos
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which make the pair (Pos, pos) an coalgebra for the endofunctor ®. It is convenient

to express pos in the following form.

pos = Aa,p. (Ab.p(a,p,b),\b.6(a, p,b)): Pos C *Pos
where p: ([Ja: A, p: Pos(a),b: B(a)) C(a,b)
5:(TTa: A.p: Pos(a),b: B(a)) Pos(alb/p(a,p, b))
The function p (which I shall call the output function) gives a result for any
given input, like the output function of a Mealy machine [92], and the function o
(which I shall call the dynamic function) gives what can be thought of as the next
internal configuration of the machine”. Perhaps one can call p and § extractors.
For a pos to be a final coalgebra, we require a coiteration® or unfold combi-

nator Pos,. For the sake of readability the equations that this combinator should

satisfy are given in the following discussion.

Pos, : (]G : Pow(A),
g9 ([[a:A,z:G(a),b: B(a)) C(a,b),
b:B G

ga'rf(ll_[a Az Gla),b: Ba)) Ga [b/gp(a z,0)]),

z: G(a))
— Pos(a)

I shall abbreviate g,, gs to ¢g. It is useful to adopt the concave ‘lens’ brackets
notation from the ‘Algebra of Programming’ community (for ‘anamorphisms’,

which are final coalgebra morphisms). Instead of Pos, (G, g) 1 shall write

(G,g):(J]a:A,z:G(a)) Pos(a)

The equations that follow require that [ G, ¢g) is an coalgebra morphism from
(G, g) to (Pos, pos), so that for each state a and proof z of G(a), there is an
element [G, g)(a,z) of Pos(a) which can be used as a program for a server to
avoid deadlock when starting in state a.

The first equation requires that the output function of [ G, g)(a,z) is given
by the output (g,) part of the coalgebra.

pla. (G, g)(a, )= gp(a, ) : ([T0: Bla)) C(a,b)

The second equation requires that the dynamic function of [ G, g)(a,z) is

given by composition with the dynamic (g5) part of the coalgebra.

6(a, (G, g)(a,z)) = Ab. (G, g)(a[b/g,(a,z,D)], g5(a, 2, D))
: (IT0: B(a)) Pos(alb/g,(a, z, b)])

9T would call it the next state function, but that is a different sense of state. Here we have
states of the server, there we have states of the interactive system, in the sense of ‘protocol’.

10Recent investigations by myself and Anton Setzer suggest that it would be preferable to
have a true corecursion rather than coiteration combinator. The computational behaviour of
coiteration is not fully satisfactory.
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The interpretation of the predicate Pos is that if you have a proof p of pos(a)
for a given state a, then your proof can be used as a program for the server of an
interactive system which starts in state a, as follows. Wait for an instruction b
to be issued. Apply p to this instruction, and calculate the canonical form of this
application, which will be a pair (¢, p’). Return ¢ as the result of the instruction,
and then follow the program p’. Following this program will ensure that in all
subsequent states, there is a way of correctly performing any instruction that is
correctly issued, and so of avoiding deadlock.

This interpretation of Pos, as a family of sets of deadlock avoiding programs
had occurred also to Martin—Lof, and to Thierry Coquand. I am grateful to
them for pointing out to me the coinductive nature of Pos. 1 have adopted
Martin—Lo6f’s names Bar for the least fixed point of © and Pos for the greatest
fixed point of °.

It should be pointed out that there are considerable challenges in providing
a foundation for coinductive types and predicates in wellfounded type theory, at

least in the absence of a general identity relation.

3.3.4 Two forms of sequential composition

In this section we define two kinds of sequential composition.

Suppose we are given two interactive structures as follows.

(I)l : Al — FamQ(Ag)
(I)g : Ag — FamQ(Ag)
Oy = Aa-(Bu(a), Ab.( 1( a, ) -a[b/C]))
By — Aa.(Bs(a), Ab. (C .
Then we can find ® = (&, &) : A; — Fam?(A3) such that
((Dl g (DQ)O = ((I)l)o °© (@2)0 : POU}(Ag) — PO’U)(Al)

The required components of ® are

B(a) = (21)°(B2, a)
C(a, (br, Acy. ba(c1))) = (Xa: 01(5 b1)) Ca(albi/ 1], ba(cr))
a[(b, Aci- ba(cr))/(c1, 2)] = albi/ei][ba(cr)/ o]

A dual construction * can be given, such that

((bl . (bg). = (q)l). ° ((I)Q). . POU}(Ag) — PO’U)(Al)
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In this case, the components of the rule structure ®*—representing composition are

as follows.

B(a) -
C(a, Aby. (c1(by), ba(by)))

a[Aby. (ci(b1), b2(b1))/ (b1, c2)]

(®1)*( Bz, a)
(2_ b1z Bi(a)) Ca(albi/ba(b1)], ba(b1))
alby/c1(b1)][b2(b1)/ 2

As a representation of the identity predicate transformer on a state space A

we may take the following interactive system skip:

B((I) = Nl,
C(a,ng) Ny,
a[ng/mo] = a

o

We have skip®(X) = skip®*(X) = X, so

or *) skip represents the identity predicate transformer. It serves therefore as a

that under either interpretation (by
unit for both forms of sequential composition.

3.3.5 Two forms of alternative composition

We now consider ways of combining interactive structures in which one or other
of the parties gets to choose between the two structures. Here I take the point
of view of the client, and so refer to the combination in which it is the client
who gets to choose as ‘angelic’, and that in which the server gets to choose as
‘demonic’.

Suppose that we have two interactive structures typed as follows.

D, Ay — Fam?(Ay)
Dy Ay — Fam?(Ay)
O, = AXa.(Bi(a), Ab. (Ci(a,b), Ac.alb/c]))
Oy = Aa.(Ba(a), Ab. (Cx(a,b), Ac.alb/c]))

The ‘angelic’ choice ® = (P LI §y) is defined as follows.

B(a) = Bi(s)+ Ba(s),

C(a,b) = casebof ib — Ci(a,b)
j bQ — Cg(a, bg),

alb/c] = casebof ib — a[b/(]

j by — alby/c]

In the client /server metaphor, the client gets two instruction sets from which to
choose. The server has to be able to respond in whichever is chosen. In the game
theoretical metaphor, the player ‘White’ (who goes first) chooses in which of the

two games the next interaction will occurs.
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It is easily seen that

(1 U Pg)°(X) = ®7(X)UP5(X),
(1 U Po)*(X) = PIX)N (X)) .

(Clearly this binary construction can be generalised to take the join of a small
family of interactive structures. In the degenerate case of an empty family, we
have the interactive structure called abort (by for example Back and von Wright

in [8]) which has

for which

abort’(X) = False
abort*(X) = True

Dually, we may consider a game built ‘demonically’ from two games, in which
the player who goes first offers a choice of two moves to his opponent. Let us call
this ® = (q)l I @2)

B(a) = DBi(a) x Ba(a),
O(a,(bl,bg)) = C’l(a, bl) + CQ((Z, bg),
al[(b, b2)/c] = casecof ic — a[bi/c]

j ¢2 — alby/ca]

It is easy to see that:

(@1 11D2)°(X) = (P1)°(X) N (P2)°(X)
(P11 ®)*(X) = (P1)%(X)U(

Again this binary construction can be generalised to take the meet of a small
family of interactive structures. In the degenerate case of an empty family we

have the structure called magic by Back and von Wright, defined as follows.

B((Z) = N17
C(a,ng) = Ny

There is some arbitrariness here, in that any inhabited set can be taken as the set
of instructions available to the client. The server can make no response to any of

instructions.

magic’(X) = True,
magic*(X) = Fulse
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3.3.6 Some basic interactive structures and spaces

In [8] Back and von Wright introduced a notion of contract regulating the be-
haviour of independent agents. They gave a certain algebra of ‘contracts’, called
refinement calculus. This calculus has its origins in the stepwise refinement
method for program construction advocated by Dijkstra [19] and Wirth [115].
They interpret contracts as predicate transformers. These are awkward to handle
directly in the predicative framework of dependent type theory. My idea is to
interpret them instead using the interactive structures.

In this subsection, we define interactive systems that correspond to the basic
contract statements of Back and von Wright [8] (especially section 11.3), namely

functional update, assertion, and assumption.

3.3.6.1 Functional updating

If f: A— Ais astate transformer then we can update the state deterministically

with a command update(f), for which Back and von Wright use the notation

(/)
update(f) : B(a) = Ny, C(a,ng) = Ny, alng/no)] = f(a)

In particular skip = update(\a. a).

3.3.6.2 Assertion

More generally, for F' a state predicate, we have the assertion command assert(F'),
for which Back and von Wright use the notation { /' }. This can be issued only
when F' holds, and its execution is a mere acknowledgement, leaving the state

undisturbed.
assert(l) : B(a) = F(a), Cla,f) = M alf/no] = a

Then
assert(F)°(X,a) = F(a)x X(a)
assert(F)*(X,a) = F(a)— X(a)

In particular, abort = assert(Fulse).

3.3.6.3 Assumption

If F' is a state predicate, we have the ‘assume’ command assume(F'). Considered

as an instruction, this can always be issued, but can be executed only when F
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holds, leaving the state undisturbed. Back and von Wright use the notation [ F'|

for assert(F).
assume(F) : B(a) = Ny, C(a,ng) = F(a), alno/f] = a
Then

assume(F)°(X,a) = F(a) — X(a)
assume(F)*(X,a) = F(a) X

In particular, magic = assume( Fulse).

3.3.7 Loops and recursion

From the previous subsections, we may suspect that there are operations on
interactive structures that correspond to many of the commands of Back and von
Wright’s refinement calculus. It is natural therefore to look for a construction
that corresponds to the formation of recursive commands. It turns out that there
is, and that the construction is a isotope of the inductive definition of ‘general
trees’ by Petersson and Synek, given in [84]. (We add “leaves” to the trees.) This
plays a central role in the analysis of the “programmer’s predicament” below.
Given a monotone predicate transformer 6 : Pow(A) — Pow(A), we define
its closure 0* : Pow(A) — Pow(A) inductively to be the least solution ¢ of the
following equation.
o) i Pow(A) — Pow(A)
P(X) = XUO(o(X))
It is easily seen that * is a closure operator on Pow(A), in the sense that for
arbitrary X; Pow(A), we have X C 6*X (so 0* is inflationary) and (6*)*X C 6*X
(so 0* is idempotent).
Suppose now that & = Aa.(B(a),Ac.(C(a,b),A\p.alb/c])) is an interactive

structure on a set S. For any ®, we can find

O® = Aa. (B®(a), \bt. (C*(a, bt), Acs. a[bt/cs]|®))

’

O* = \a. (B*(a), \tb. (C*(a, tb), Asc. a[th/sc|®))
such that

(®2)° = (@°)

(@.)O — (@.)* .

The construction _*® is defined as follows.

B® = (©°)*(True)

C*(a,ing) = M

C%®(a,j (b, Ac. bt(c))) = (>_c:C(a,b)) C®(a[b/c], bt(c))
ali ng/no|® = s

alj(b, Ae. bt(c))/ (e, es)|® = a[b/c][bt(c)/cs]
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The equations specifying B® and C'® should be understood as defining B® and
C'® to be their least solutions.

The elements of B®(a) can be thought of as programs in the same sense as
proofs of Bar(a), except that they may contain certain ‘escape points’, or special
instructions i ng which allow the server to evade deadlock. They need not contain
any such special instructions, and so all proofs of Bar(a) are inhabitants of B®(a).
If bt : B*(a), the elements of C*(a, bt) can be thought of as ‘escape routes’, by
which I mean sequences of server responses which lead to an escape point of bt.
If bt : B®(a) and cs : C%(a, bt), then a[bt/cs]® can be thought of as the state
obtaining at the end of the escape route cs.

The construction _*® seems to be only a curiosity'!, in view of the mixture

of white and black bullets which occur in the property above. It is defined as

follows.
B* = (®*)*(True)
C*(a,ing) = N
C[f'(a}j (]Ab- (c(b), tb(D)))) = (22b:B(a)) C*(a[b/c(b)], tb(b))
ali ng/ngl*™ =

alj (Ab. (c(b), 1b(0)))/(b, bs)]® = alb/c(b)][tb(b)/bs]

3.3.8 The programmer’s predicament

Suppose we are given two interactive structures as follows.

O, A — Fam?(A))
Dy Ay — Fam?(Ap)
O, = Aa.(Bi(a),Ae. (Ci(a, b), Ae.alb/c]))
Py = Aa.(Ba(s), Ac. (Ca(a, b), Ac. a[b/c]))

The two predicate transformers ®;°* and ®,° can be made to act jointly on the
argument places of a binary relation X : A; — Pow(A3) in essentially two inter-
esting ways, giving rise to two relation transformers which T write (®1, $2)®, and
(1, P2)*. The definitions are as follows:

o*, O : (A} — Pow(As)) — Ay — Pow(Ay)

(P1, P2)* (X, a1, a0) = ([[b1:Bi(ar)) (D2 bo: Ba(az))
(ITez: Colaz, b2)) (3o ca: Ci(ar, br))
X(ar[b1/ 1], az[ba/ o))

(P1,Po)* (X, a1,a2) = (D b Bl(al)) (ITb2: Ba(az))
ONCE 02](6@ 2) ) (ITer: Pi(ar, b))

az[ba/ ca])

Hn fact it is detritus surviving from efforts to check the delusion that (®*)® = (®*)*.
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It is obvious that both relation transformers ®* and ®* determined by a rule
structure ¢ are monotone, as the input relation occurs only positively in their

defining expressions.

The interpretation of a relation (®1, ®2)*(X) is that for any instruction that
might be issued in ®;, there is an instruction which can be issued in ®,, and a
way of mapping responses to that instruction back to responses to the original
instruction, so that the relation obtains between the resulting states in the two
systems. By analogy with the case of transition systems, I call a relation X : A; —
Pow(Ay) a simulation from @ to O, if it satisfies the inclusion X C (&g, $5)*(X).

The interpretation of a relation (@1, ®2)*(X) is that there exists an instruction
that may be issued in ®;, and a way of responding to any instruction which
might be issued in ®,, such that for any response to the original instruction the
relation obtains between the resulting states in the two systems. I call a relation
X 1 Ay — Pow(As) a anti—simulation from ®; to O, if it satisfies the inclusion
(Pq, Py)*(X) C X.

The predicament of a programmer is usually as follows: they have to write a
program (a collection of procedures) to present at one interface a certain ‘abstract’
behaviour, using only lower level or ‘concrete’ resources made available at a second
interface by the efforts of other programmers. The ‘value’ of such a program is a
certain increase in abstraction. In this section I suggest a way of modelling such
programs mathematically.

In the setting of interactive systems, we need a relation @ups =< Geone (Qaps
is within aen.) between the states of two interactive systems. The work of the
programmer (if it is successful) results in something that witnesses this relation.
A proof that a.ps =< deone can be thought of as an implementation of the abstract
state agps using the concrete state a..,.. The analysis I suggest is that the relation
= should be a simulation from ®,,, (the abstract interactive system) to ® .y~

(the closure of the concrete interactive system).

(H Qgbs - Aabsa Qeone - Aconc) QAgbs j Qeone —
(H babs . Babs(aabs) ) (Z bconc . Bconcw(aconc) )
(H Ceonc - Cconcoo(aconca bconc) ) (Z Cabs - Cabs(aabsa babs) )

aabs[babs/cabs] j a/conc[bconc/cconc]

In general, an element of a set aups = Geone (a ‘piece of work’) has the form

)\babs- (t(babs)a )\Cconc- (l(babs: CCOTLC)7 m(babsa Cconc)))
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where

~+

. Babs(aabs) - Bconcoo(aconc)
l : (H babs . Babs(aabs) )
Cconcoo(aconca t(babs)) - abs(aabsa babs)
m (H babs . Babs(aabs)a Ceonc - Oconcoo(aconca t(babs)) )
aabs[babs/l(babsa Cconc)] j aconc[t(babs)/cconc}

Here the component ¢ is a mapping from abstract instructions bgps : Baps(@aps)
to concrete programs t(bups) @ Beone™ (@eone) (i-€. instructions in the closure of
the concrete interactive system); the component [ is a mapping from a trace
D ¢ Ceone™ (Geone, t(baps)) of the results obtained by running such a concrete pro-
gram to a response to the original abstract instruction; and m maps the two
two inputs (the abstract instruction b,,s and the concrete trace copn.) to a proof
that the new abstract state aaps|baps/{(baps, Ceonc)] is Within the new concrete state
@cone[t(Dabs ) / Ceone)-

All models are wrong, in that a model (say, of parabolic motion for projec-
tile) is inevitably a compromise between mathematical tractability (the theory of
conic sections) and sordid reality (friction, turbulence, flocks of passing birds).
My suggestion for modelling program components is wrong, for example because
in reality a programmer is very often concerned with modules which respond
to ‘abstract’ requests by issuing several requests in parallel to more than one
‘concrete’ resource, while contriving to maintain the appearance of sequential be-
haviour at its abstract interface. These and other issues of practical importance
are simply not addressed. Worse, it isn't clear that the model is mathematically
tractable; on the contrary this issue has to be left hanging in the air, awaiting a
satisfactory account of coinduction in type theory. For one wants to define the
abstraction relation < as the greatest post—fixed point of the relation transformer
_*, and then show that the relation is at least a partial order (preferably, a cat-
egory of some kind) and moreover equipped with enough structure to make it a
convenient framework for calculating with and reasoning about implementations
which witness the abstraction relation.

As a converse issue, the programmer’s predicament is in fact very often (or
even mostly) that they have to demonstrate bugs in a module, rather than im-
plement new modules. To find bugs in a module, one writes a test harness that
provides an environment for it (both abstract and concrete) that drives it in-
evitably into a situation where the module either exhibits incorrect behaviour, or
fails to respond when it should. To model this kind of task, it may be useful to
consider the dual relation transformer _©, and its least pre—fixed points. An ad-

vantage here is that one is not concerned with coinduction, but induction, which
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is better understood in a type theoretical framework. On the other hand, in
contrast with the abstraction relation, which one would hope to realise as (some-
thing like) the hom—set relation of a category, with bugs (or programs which
cause them to be exhibited) it isn’t so clear what structure to aim for if there

were such a structure, it would probably be called an anti—category.

3.3.8.1 Composition of implementations

In the previous subsection I suggested an approach to defining a relation of ab-
straction between interactive structures, or more precisely between pointed in-
teractive structures. I pointed out that the suggestion suffers from the problem
that there is (as far as [ know) no adequately developed theory of coinduction in
a type—theoretical context which would allow investigation of its mathematical
properties to begin. If one puts this problem on one side, in the cheerful expecta-
tion that sooner or later we will understand how to deal with coinduction, there
are nevertheless reasons to expect that this relation is at least a partial order. I
indicate those reasons in this subsection.

As for reflexivity, surely the proof 1, that ¢ < a, where « is a state in an inter-
active system would satisfy the equation 1, = Ab. (b, Ac. (¢, 1ap/e)). We cannot
however take this to be a definition in wellfounded type theory. Operationally, the
proof copies a request from its abstract interface straight through to its concrete
interface, and copies the response from the concrete interface straight through
back to the abstract interface. This is sometimes known as the ‘copy—cat’ or
‘tit—for—tat’ strategy in categories of games, as in [1|[Example 2.2].

To prove transitivity of the relation < would amount to showing that if we
plug two modules together, so that the lower—Ilevel interface of the first is identical
with the higher—level interface of the second as indicated in the picture in figure
3.2 on the next page then the assembly of the two can be defined as a single
module. It is difficult to check this in detail; nevertheless it is plausible, as I hope
the following intuitive reasoning makes plain.

If we have a module that implements one interface « using another pu, then
we have a function which maps each instruction ¢ that might be issued over
the abstract interface a to a wellfounded tree t;, or ‘subroutine’ to be run over
the concrete interface p. Each node in such a tree ¢; carries an instruction for
the concrete interface p, and for each result which might be returned for that
instruction, there is a branch leaving the node. The tree ¢; may also contain exit
points, which play the role of instructions which cause control to return from

the subroutine represented by #;. Now if the concrete interface p is in its turn
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server client server client

_/

implemented with a yet lower—level interface w, we have for each node in the first

Figure 3.2: Plugging two modules together.

tree {; carrying an instruction j, another free t; whose exit points are mapped
to indices for the immediate subtrees of the node. So part of what we have to
show is that given a tree ¢;, and a function from the instructions which occur in
it to lower—level trees we can by recursion on trees define a ‘great big tree’, in
which the instructions occurring in the first tree have been ‘macro’—expanded
(or ‘inlined’, to use programming jargon) into entire trees, grafted together in
the appropriate way. We also have to show that the paths which lead to the exit
points in such a great big tree are concatenations of paths in the constituent trees,

and so can be mapped back, or to responses for the original abstract instructions.

I ruefully acknowledge that the last paragraph is rank hand—waving. A great
deal of work is required to substantiate the intuition of ‘inlining’ with which it
conjures. A severe problem is to strive for a more abstract and more compact
description which would allow the construction to be written down rigorously
in a manageable form. For all that, I suggest it is plausible that it can be car-
ried through — modulo the overarching problem of accounting for the coinductive

definition required to ‘tie the final knot’.

At the heart of the construction is a certain operation of grafting a forest onto

the exit points of a given tree ‘in the appropriate way’. This operation is relatively
straightforward to define. Suppose that ® = Aa. (B(s), Ab. (C(a, b), Ac. a[b/c]))

is an interactive structure on a set A. Then we define the grafting operation,
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together with an associated concatenation operation on paths as follows.

graft : (J] a = A, bt : B®(a)
(([Tes: C=(a,bt)) B*(a[bt/cs]?))) — B=(a)
concat : (] a: A, bt : B®(a),
f:(Jles: C®(a,bt)) B (a[bt/cs]®),
cs: C%(a, bt))
C*(albt/cs]®, f(cs))
— C%(graft(a, bt, cs, f))

graft(a, bt, f)
= case bt of
i No — f(no)
j (b, Xe.bt(c)) —j (b, Ae. graft(alb/c], bt(c), Xes. f((e, es))))
concat(a, bt, f, cs, cstail)
= case 0t of
ing — cstail
j (b, Xc.bt(c)) — case cs of
(¢, cs’) — (c, concat(a[b/c], bt(c),
MOt f(b, bt'), e, cstail))

3.4 Concluding remarks

In this chapter I have shown one approach to formalising the notions of transition
system and interactive system in type theory, together with a number of illustra-
tive constructions. Among these were counterparts of some of Cantor’s arithmetic
operations on linear orders (in the case of transition systems), and counterparts
of some of Back and von Wright’s operations on contracts expressed in their re-
finement calculus. Besides the intrinsic interest of these constructions, I wanted
to show how much could be done without a notion of equality on the states of
these systems, if only one is prepared to consider unconventional representations
of seemingly ‘obvious’ notions such as that of a binary relation on a set, or of a
subset of a set. In the course of this, I have run into (and to some extent, exposed)
what appear to be quite challenging problems, centering around the foundations
of coinductive definitions and corecursion in dependent type theory.

It is remarkable how fully the basic notions exploit the circumstance of working
in a dependent type theory. The basic structure of an interactive system can be

written as follows.

Set,

A — Set,

([Ta:A) B(a) — Set,
([Ta:A,b:B(a)) C(a,b) — A
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a:A b: B(a) c¢:C(a,b) alb/c]

sort constructor selector component sort
statement inference premise premise statement
neighbourhood  partition part new neighbourhood
game attack defence new state
interrogation question answer new state

interface call return new state

universe observation reading new state
knowledge experience  result new state

dialogue thesis antithesis  synthesis

Figure 3.3: Applications of interactive systems

One might well arrive at such a structure merely by reflecting on the general
syntactical form of a dependent context, in advance of considering what its appli-
cations might be. It is to my mind astonishing how rich the notion turns out to
be. The table in figure 3.3 on this page illustrates some possible interpretations.
We might well then ask what emerges if we are content with a simpler example

of a dependent context, such as the following.

A . Set,
B : A — Set,
¢ : (JJa:A)B(a)— A

This is nothing but a transition system. Pressing still further in the direction of

simplicity, one arrives at the structure

A Set,
b : A— A

This structure is called a dynamical system, in Lawvere and Schanuel’s book [58].
This trinity of ‘systems’ can be formulated in another way as coalgebras for the

first three iterates of the functor Fam(_), as follows.

a dynamical system

(D A:Set) A— A

A typical element has the form (A, Aa. b(a)).

a transition system

(X A:Set) A— (3 B:Set) B— A

.

'

Fam(B)
A typical element has the form (A, Aa. (B(a), Ab. ¢(a, b))).
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an interactive system

(22A:Set) A— (X_B:Set) B— (3 C:Set) C— A

Fam(A)

(. 7

Fam(F:z,m(A)))

A typical element has the form (A, Aa. (B(a), Ab. (C(a, b), Ac. d(a, b, c)))).

It is natural to ask what emerges if one pushes further in the direction of more
complex structures. Although it is of course possible to follow the general pattern
further, it seems that the structures that lie beyond have no real meaning.

A striking similar trinity of structures arises from an entirely different perspec-
tive in a paper by Claire Martin, Oege de Moor, and Paul Gardiner [34]. They
aimed to understand the connection between two frameworks for program seman-
tics, namely the categorical algebra of relations advocated for example in Bird
and de Moor’s book [9], and the use of predicate transformers introduced by Di-
jkstra [23]. They arrived at the following triple of preorder—enriched categories.
(A preorder enriched category (C,C) is a category with a preorder C defined on
homsets, with respect to which the categorical composition is monotonic in both

arguments. )

1. The category (Set,=) of sets and total functions. The objects are sets, and
the morphisms from A to B are total functions f : A — B. In this case,

the preorder is trivial.

2. The category (Rel, C) of relations, whose objects are sets, and in which the
morphisms from A to B are binary relations R C A x B. Morphisms are

partially ordered by inclusion.

3. The category (Pow, C) of monotonic predicate transformers. In this the ob-
jects are powersets Pow(A) where A is a set, and the morphisms are mono-
tonic predicate transformers, ordered pointwise, so that if p, ¢ : Pow(A) —
Pow(B), then p C ¢ is defined to mean that p X C ¢ X for all X C A.

In their terms, the structures of concern in this chapter have been endomaps in
these three categories, or rather data structures which represent these endomaps
(in the last case via the construction _°). They discovered an elegant systematic

connection between these three categories, which one can tabulate as follows.

Set = Map(Rel) ; Rel = Span(Set)
Rel = Map(Pow) ; Pow = Span(Rel)
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A map in the category Rel is a relation which is total and single—valued. In
general, Map refers to a construction which restricts the morphisms f : A — B in
a homset of an preorder—enriched category to have ‘weak’ inverses f* : B — A in
the sense that 14 C f*<f and f°f* C 15. Thinking classically, a relation between
A and B can be represented (in more than one way) as a pair of functions to
A and B respectively with a common source (for example, the projections from
the relation itself). Such a pair is called a span. In general, a preorder enriched
category satisfying a certain condition admits of a general construction Span
which defines a notion of morphism between such spans, and a preorder between
them. The construction can be seen as a generalisation of the construction of
the integers from the natural numbers. The condition is that the category has
pullovers, this being a weakening of the standard notion of pullback that refers
to the order—enrichment of homsets. (It is needed to define composition between
spans.) It happens that the category (Pow,C) does not satisfy this condition.
This may help to explain (up to a point) the apparent ‘holiness’ of the trinity of
dynamic, transition, and interactive structures.

To shed some rain on the notion of an interactive system, it should be pointed
out that Coquand has found!? one way in which to define the coinductive Pos
predicate (discussed in 3.3.3) for an interactive system in wellfounded type theory,
but only by assuming that a simulation relation is given between the states. This
enrichment leads to a notion close to the categorical notion of a covering system,
explained for example in exercise 5 of [62][page 524]. This may indicate that they
are not yet rich enough, and need to be equipped with simulation relations. There
is also the problem that there is no obvious way to define a notion of morphism

between bare interactive systems.

12In an unpublished note.
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Chapter 4

Lenses

The subject of this chapter is the justification of principles of transfinite recursion
in some weak predicative type theories. We construct a recursor for each term
t in a notation system for the Schiitte—Feferman ordinal I'y. A recursor is an
expression in an extension of type theory by a single fresh variable X typed as a
predicate of ordinal notations. The type of a recursor for ¢ is the statement that
if X is progressive with respect to the transition structure on notations induced
by the ordinals they denote, then X holds of t.

One might call this a justification of a schema of recursion on the structure
of proofs that a notation is accessible, based on these weak principles. The usual
justification of structural recursion uses impredicative notions. The idea here
is to replace the impredicative notion of arbitrary predicate by the notion of a
free, fresh predicate variable. We can then represent a proof of an impredica-
tive statement (universally quantified over arbitrary predicates) by a predicative
object in type theory with a generic predicate. So in a certain sense we are
reversing the usual order of justification between recursion principles and im-
predicative quantification. In our case, the only form of recursion we need is
induction on the structure of natural numbers. What we do need is closure of the
predicate—transformers expressible in the theory under a few operations involv-
ing substitution, implication, intersection of decreasing countable sequences, and
crucially a certain next—universe construction.

I shall speak a little loosely of recursors as proofs of wellfoundedness; more
precisely a recursor for an ordinal notation ¢ a proof that the segment of the
notation system below it is wellfounded, i.e. all notations for smaller ordinals are
accessible with respect to the ordinal predecessor structure between notations.

The main contribution here is the notion of ‘lens’, which may be some value
in systematising proofs of wellfoundedness in systems which are themselves ex-

plicitly type theories, or can be regarded as such by means of the Curry—Howard
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correspondence. So we are concerned here with establishing lower bounds for the
least countable ordinal inexpressible in a type theory. The question of establishing
upper bounds, interesting as it is, is regrettably not addressed here.

Very broadly speaking, the underlying idea is of a certain connection between
logic and arithmetic; a little more precisely, the logical constants (or type con-
structions) under which a type system is closed correspond closely to the arith-
metical functions which can be expressed in the system, where by arithmetic I
mean (not cardinal but) ordinal arithmetic. It may not be entirely absurd to
suggest that this idea can be traced back as far as Archimedes, with his problem
of devising a notation for the number of grains of sand required to fill the physi-
cal universe!. At any rate the idea is expressed in several passages in Gentzen’s
publications (for example, at the end of [36], where what I have referred to as
a ‘correspondence’ is called a ‘general affinity’). Another expression of the idea
occurs in Girard’s book on proof theory [38], in the slogan “One quantifier equals
one exponential”. In my opinion Girard’s slogan sacrifices precision for pizzazz.
What equals one exponentiation is one occurrence of a quantified conditional
statement, i.e. the statement form which we use to express closure of a predicate
under a function. As an addendum to Girard’s slogan, we can add less pithily

that “One universe layer equals one nesting of the Veblen hierarchy.”.

4.1 Ordinals

This section contains some general, elementary discussion of the notions of ‘ordi-
nal’, and ordinal notation systems. As there are many text-books which contain
a polished mathematical treatment of the notion of ordinal in the context of clas-
sical set-theory (for example [44], [86], [94], [42]), I will focus on the underlying
informal notions, and some aspects which are sensitive to issues of constructivity.
It is probably fair to say that the constructive theory of ordinals is quite undevel-
oped in comparision with the classical set theoretical treatment. The same can be
said of almost any branch of mathematics: constructive mathematics is hard and
few mathematicians see any point in doing it. In the case of the notion of ordinal,

there are special circumstances. It was deeply involved in the very conception of

! According to the heliocentric system of Aristarchus of Samos, it would take about 1063
grains. (Even by modern estimates, 22° would be more than enough.) In the Ionian notation
known to Archimedes, it would have taken an even more astronomical quantity of papyrus
simply to write the number down. In his book ‘The sand reckoner’, Archimedes invented a
notational system to write down the number feasibly, apparently a place—value system with a
base of a myriad, i.e. 108. If Archimedes did not invent iterated exponential notation, or realise
its connection with iteration of functions of higher type, he was arguably on the brink of it.
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classical set theory, and has played a central? role in the development of classical

foundations.

Origins The idea of transfinite ordinals seems to have arisen first in connection
with iteration of operations on subsets of the reals. In Cantor’s case® the operation
was formation of so-called ‘derived’ sets*, that play a role in connection with the
representation of functions by trigonometric series. We can form intersections
and unions of infinite families of such subsets, such as the family P, P’, P”, ...
of sets obtained by finite iteration of this operation starting with a given set P
of reals. Beside intersection and union, there are many other naturally arising
notions of infinitary limit for families of subsets of a set, and so it is natural to
consider iterative exponents beyond the usual finite ordinals. If the original need
for ordinals was to index iterates of an operation, then the essential property of
an ordinal is that it should be ‘built up from below’. This means that it should
be a fit argument for a function introduced by a scheme of structural recursion,
allowing the value of a function at an argument to depend on the family of values

it attains at the structural components of that argument.

Relational formulation One way to analyse the notion of structural compo-
nent is in terms of a binary relation between values of some kind, which obtains
when the first value contains the second as a structural component (perhaps tran-
sitively). From this perspective it is natural to consider objects which consist of
a base set S : Set, and a transitive relation R : S — Pow(S) on the base. (That
R s1 8o should be read as saying that s, is a structural component of s;, so that the
partial application R s denotes the predicate over S which holds of the structural
components of s.) A structure preserving mapping (a morphism) between (5, R)
and (S’, R') is a function from the first base set to the second which carries the
first relation into the second. The relations should be wellfounded, in the intu-
itive sense of being ‘built up from below’. (We shall consider how to formulate
a mathematical definition in a moment.) The first definition of the idea of an
ordinal, by Cantor, was in essence that an ordinal is an isomorphism class of
wellfounded objects of the above kind (though in fact Cantor required also that
the relation R should be linear). (The same general strategy was used to analyse

the idea of a cardinal, in this case as an isomorphism class in the category in

2Almost literally! The set-theoretical universe (the cumulative hierarchy of sets) is often
drawn as a cone, with a line up the middle that represents the ordinals.

3Two excellent references for Cantor’s work are [21], and [43].

4If P is a set of points the derived set P’ consists of the accumulation points of P.
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which the relations are equivalence relations.) One can then think of a particular
object in an isomorphism class a as a notation system for the predecessors of a.
An element of the base set is a notation denoting the isomorphism class of the

segment of the base below that element.

Formulations of wellfoundedness How should the notion of ‘built up from

below’ be formulated mathematically? The following are (classically) equivalent.

e All elements of S are accessible with respect to R (¢f 3.2.1), that is, belong
to every progressive subset of S, where P C S is progressive if {s|Rs C
P} C P. In essence, this expresses the validity of proof by induction over
the relation R.

e Every non-empty subset of S contains a R-minimal element, where s is
minimal in P C S if s € P and PN R s is empty. The equivalence of this
formulation with the one above can be seen as follows. I write () for the

complement —P of P C S, and $; < s for R 85 5.

P#{}=3s.PsAn{y:S|y<s=Py}={}

= { re—express in terms of Q }
Q#S=3s.Vy.y<s=Quy)N—-Qs
= { (A= B)=AAN-B }
Q#AS=3s. —[(Vy.y<s=Qy) = Qs
= { de Morgan }

Q#S=—-Vs.Vy.y<s=Qy)= Qs)

= { contraposition }
Vs.(Vy.y<s=Quy)=Qs)=Q==75
Note that if the relation < is linear, we can simplify the condition somewhat
to require that any non—empty subset of S should contain a least element;
this is commonly known as the least element principle. Conversely, the
least element principle implies that < is linear. A transitive relation which

is wellfounded and linear is commonly said to be a wellordering.

e For any f : N — S| there exists n : N such that the pair (f(n + 1),fn)
does not lie in the relation R. Intuitively, this is one way of saying that all
chains (finite or infinite sequences) that descend with respect to R are in
fact finite. The equivalence of this formulation with the one above can be
seen by considering what happens if S is not wellfounded with respect to
R. Then there is some non—empty subset of S without minimal elements.
This allows us® to define a sequence f : N — S where Vn : N. f(n+1) € fn.

5In the presence of a consequence of the axiom of choice known as the axiom of countable
dependent choice: see for example [86, page 142].

98



Conversely, given any such f, its range constitutes a non—empty set with

no minimal element.

Constructively, matters are more subtle. In the first place, the requirement that
a relation < is linear is most usually expressed using some form of 3—way dis-
junction, or trichotomy: Vz,y.2 < y Vo = yVy < z. Under a constructive
interpretation, this requires that we have an algorithm which applied to a given
pair of elements of S decides which of these three possibilities holds. This turns
out to be far too strong in general®. Moreover, the various formulations of well-
foundedness given above are not equivalent constructively. For example, the third
condition (that descending chains are finite) quantifies over the set of functions
f : N — S, while the first condition (that induction over R is valid) quantifies
over the type of predicates over S. The assertion that the third condition implies
the first is close to the content of Brouwer’s so—called ‘Bar theorem’ (see [26]),
which concerns a notion of infinitely proceeding sequence more extensive than
constructive functions with domain N.

Despite all these reservations, it is probably necessary at this point to give a

definition of ‘ordinal’.

Definition An ordinal is an isomorphism class of structures (S, <) where S is

a set, and < is a binary relation on S which is
e transitive: Vz,y,2:S. e <y—y<z—ozx<z2
e linear: Vz,y:S.z<yVe=yVy<zc
e wellfounded: Vf: N — S.dn:N. f(n+1) £ f(n)

It must be reiterated that this definition is quite unsuitable as a basis for a

constructive theory of ordinals.

von Neumann ordinals Some decades after Cantor’s pioneering investiga-
tions, the notion of set came to be understood in terms of the cumulative hier-
archy of iterations of the powerset operation. From this perspective, everything
is a set, and the binary membership relation € is defined between any pair of
sets. According to the axiom of regularity (formulated by Zermelo, and indepen-
dently Von Neumann), the membership relation is wellfounded. It is awkward
to deal with ordinals as equivalence classes, which are proper classes and not

sets. It would be much more convenient to fix on particular sets that serve as

61t is a reasonable requirement for ‘concretely presented’ ordinal notation systems.
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canonical representatives of these equivalence classes. It is natural to look for a
representation in which the transitive, linear and wellfounded relation is simply
the membership relation, so that each element of representative is actually equal
to the set of its predecessors. This was accomplished by von Neumann (roughly
4 decades after Cantor introduced the notion of ordinal), and it is nowadays
common to use the term ‘ordinal’ (or sometime ‘von Neumann ordinal’) for the
particular representatives identified by him. In this scheme, the finite ordinals

are identified with the following sequence of sets.

{}
{1}

HEAL)
B HH B

n+l = nU{n}

W O
I

The set of all such finite ordinals is called w. Each isomorphism class of well-
orderings contains exactly one von Neumann ordinal. A careful development of

von Neumann’s representation of the ordinals may be found for example in [94,
Ch4, sec 3].

Some varieties of ordinal For examples of ordinals one can take w, w + 1,
w X 2 (two copies of w, one after the other), w? (w copies of w, one after another),
w* (which may be identified with the ‘eventually majorises’ order between poly-
nomials with natural numbers as coefficients ), ¢ (which may be described as the

Lw w¥ ...), and other ordinals known

limit of the sequence 0,0’ = 1,w = w
from proof theory such as I'y (which we will encounter later in this chapter). Of
the examples just given, all but the second are limit ordinals, meaning ordinals
which contain zero and are closed under the successor operation. They are all
countably infinite, meaning that they all have the same cardinal as w. A reqular
ordinal is a limit ordinal k£ which is closed not only under zero and successor
but also under limits of ‘autonomous’ sequences meaning sequences indexed by
a predecessor of k. Examples of regular ordinals are w (the set of all finite ordi-
nals), Q (the first uncountable ordinal, which is equal to the set of all ordinals
that are finite or countable infinite), {2y (the first ordinal after (2 with a higher
cardinal), but not the ordinal €2, which is the union of the evident sequence €2,,.
Although this ordinal has a greater cardinal than its predecessors, it is the limit of
a (merely) countable sequence. However the ordinal €2, is regular. A (weakly)
inaccessible ordinal is a regular ordinal which is closed not only under zero, suc-

cessor and autonomous limits, but also under the step from an ordinal to the next
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greater regular. The notion of inaccessibility is somewhat more technical. In the
presence of the generalised continuum hypothesis, every weakly inaccessibile is
inaccessible. A full account of the different notions of inaccessibility that have
been considered by various authors may be found in [6].

The statement that inaccessible ordinals exist is independent of the axioms of
ZF-set theory. Yet it is difficult to imagine serious grounds for objecting to it as
an axiom, or indeed stronger axioms asserting the existence of yet larger ordinals.
It is not a question of whether one ‘believes in’ them, as one may or not believe
in Santa Claus, or the perfectibility of human beings. The reference [54] contains
an extensive survey of such axioms. These axioms may seem rather abstruse,
but their presence or absence in a formal system of set theory makes a difference
in quite concrete terms, for example to the set of Turing machines which can
be proved to terminate (a IIy statement), to the provability of TIY statements
arising even in mainstream mathematics”, and the provability of wellfoundedness

for notation systems for countable ordinals (a I statement).

Countable ordinals In proof theory, we are directly interested only in count-
able ordinals. These are either 0, of successor form S a (with a single immediate
component a), or a limit lim,, a, of a countable sequence a,, of ordinals which are
its immediate subcomponents. This is because a finitary formal system has only
countably many proofs, and so the longest initial segment of the ordinals which
it can represent (i.e. without gaps) with a formal proof of accessibility must
be countable. There is an excellent elementary introduction to ordinal theoretic
proof theory of arithmetic in [105][chapter 10].

From a computer science perspective, one reason to be interested specifically
in countable ordinals is that we can think of a countable ordinal as a program
that at each stage of its execution, does one of three things: either terminates,
executes an action of some kind (say, ‘beeps’), or reads the next (concrete data

structure encodable as a) natural number available on an input stream.

0 — Cease execution
Sa Perform a machine cycle
lim,, a,, Read input, and take respective branch

Arguably any finite communication can be encoded as a natural number; even
if infinite objects are communicated (such as a program), this is accomplished

by communicating some finite description of the infinite object, to be interpreted

" A number of such statements have been found recently by H. Friedman.
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by the recipient. As a paradigm for a broad class of terminating programs the

interest of countable ordinals should be clear.

Ordinals in Type Theory There are various approaches to the analysis of
ordinals in type theory. One approach is to model sets in the cumulative hierarchy
as wellfounded trees (elements of a W-type W (U, T'), where (U, T) is a suitably
capacious universe) under a recursively defined equivalence relation, and then
transfer (what one can of) the classical theory of ordinals to a constructive setting.

Another approach is to model the notion of a structural component by means
of a transition system, rather than a full-blooded relation. The immediate sub-
components of a data value are typically given as a family (exhaustively®), rather
than a predicate (separatively). A problem with this approach is that to de-
fine an ordinal as an isomorphism class one needs a notion of morphism between
transition systems, and of equality between morphisms. Without some further
structure (perhaps a simulation relation between states), transition systems do
not seem to support a notion of morphism. Nevertheless, one can directly repre-
sent arithmetical operations on wellfounded relations (such as the ordered sums
defined in sections 3.2.2 and 3.2.9) by corresponding operations on transition
systems (as demonstrated in the previous chapter).

A third approach which may hold some promise is to represent ordinals as
universes of a certain kind, paralleling the construction of the von Neumann
ordinals. Such an approach is currently being explored by Peter Dybjer.

In conventional set theory the ordinals form a proper class. One may wonder
whether, or to what extent it is possible to characterise the ordinals ‘once and
for all’ in type theory, rather than ‘number class by number class’. To deal with
ordinals (in general) in type theory a proper type of ordinals would seem to be
necessary, comparable to the type Set. However, although sets are decoded to
types by the (implicit) function El, ordinals should (one presumes) be decoded

to sets.

4.2 €0

This section contains a description of a notation system for ordinals up to Cantor’s
€0-
This ordinal played a key role in Cantor’s original study of ordinal arithmetic

[11]. He investigated addition, subtraction, multiplication, division, exponentia-

8See 3.1
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tion and logarithms, and was able to show that any ordinal a has a unique base

w expression in Cantor normal form, or CNF,,:

This gives rise to a radix-based ordinal notation system (generalising so-called
‘scientific notation’, e.g. 295 x 10™) for an initial segment of the countable ordi-
nals, with a decision procedure for linear comparison. (More generally, one can
take an arbitrary basis ordinal v > 2, with appropriate coefficients in the nota-
tion.) What makes the ordinal €, special is that it is the first nonzero ordinal for
which we do not in fact have @ > a;. (The e-numbers are precisely the ordinals

inexpressible ‘from below’ in CNF,,.)

4.2.1 A datatype of ordinal notations

Expressions in Cantor normal form are awkward to deal with as elements of
an inductively defined data structure. The definition of their order must be
given simultaneously with that of the datatype itself. This affects the definition
of functions by recursion on the structure of C/NF-notations, as the structure
involves proofs (albeit of decidable propositions). For some purposes it is better
to drop the normality condition, and tolerate more intensional notations in which
the chain of exponents of a sum of w-powers can ‘ascend’. As constructors, we
can use a single constant 0 and a single binary infix operator operator (_7.)
representing Aa, 3. + w®. In this section we use & for the set of arithmetic
expressions. (Later on we extend it, and call this &,, and the extension &,.) So

we have the following formation and introduction rules:

K : Set
0:7/&E
alpB: X where o,0: K

The notations are then just binary trees, such as the following table showing

their intuitive meanings on the left, in which I have taken the binary operator to
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be left associative.

1 = 070
2 = 070710
"= 0(10)"
w = 071
w+n = w(T0)"
wxn = 0(T1)"
wxnt+m = 0(11)"(10)"
wrxm = 0(Tn)"
WEx 4+ o+ W xng = 0(Tk)™...(TO)™
w' = 0Tw

4.2.2 Transition structure

There are really only four forms of the notations.
1. 0. The notation for zero.
2. aT0. The notation for the successor a + w® of a.

3. aT(8710). The notation for a limit ordinal of the basic form a + w’*!.
Such a limit is approximated by (among others) the increasing sequence of
ordinals

a,a+wl a+wf+ P al + WP,
= a.alBalB18,....a(18)",

(Recall that T is taken to be left associative.)

4. Anything else. This will be a notation for a limit of the form a + w?,
where A itself (i.e. of this form or the previous one). If we chase up the
rightmost branch of the tree, we will (after at least one hop) find a limit
of the first kind. If the sequence \,,n = 0,1,... approximates A, then the
sequence a+w™", ... approximates a +w?”. (This is because exponentiation

is continuous in the exponent.)
Guided by these considerations, we set up a transition structure on A&
Aa: B (Cla),Xi: C(a). ali])
B — Fam(E)

Here C'is a set valued function that gives the ‘cofinality’ of its argument, in the
form of an index set for its family of immediate predecessors. This is either { }

(no predecessors) for zero, a singleton set {0} for a successor, or the set N of
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natural numbers for a limit. The function C' is defined by the computation rules:

co) = {}
Clat0) = {0}
C(a1B) = N

(In this and in all such subsequent tables, each clause has an implicit ‘and none of
the above’, so that the order of the rows is significant.) These should be compared
with the computation rules for a universe which decodes an element of its domain
as a set.

The indexing function is defined by the following computational rules:

-]  (Jle:E) Cla) — E
(aT0)[0] = a

(aT(870)]0] = a

(@T(B10))[n+1] = 213, wherez = (al(870))[n]
(a1 p)n] = af(B[n)

These can be thought of as elimination and computation rules. (Normalisation
means that ... [n]’s can always be eliminated.)

It may be interesting that this notation system can be quite easily represented
in a functional programming language. Here is all one needs to do to code it in
Haskell. (It is an advantage here that Haskell accommodates without fuss data
structures that are lazily infinite. Note however that the notations themselves

are finite wellfounded structures.)

> infixl ‘W° -——a ‘W b=Wab
> data AE =N -- Nought, represents O
> | W AE AE -- W a b represents a + w’b

For each expression e, I define a (possibly infinite) list (pd e)

of its immediate predecessors.

> pd :: AE -> [AE]

> pd N = [

> pd (a ‘W N) = [a]

>pd (@ ‘W¢ (b ‘W¢ N)) = iter (‘W b) a

> pd (a ‘W b) = map (a ‘W) (pd b) -- continuity

The standard functions iter and map may be defined as follows.
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> iter £ x = x : iter £ (f x) -— corecursive

> map f xs = case xs of [1 -> []

> (x:xs’) -> f x : map f xs’

One may even represent the entire infinite (but in fact wellfounded) tree of ordinal
predecessors of a notation by means of a construction such as the following.
The definition is corecursive in form, and so at first sight the tree associated to
an expression may contain infinite paths. The point is that although it is not
immediately obvious, on analysis, so long as one restricts attention to notations

which are wellfounded as binary trees”, the tree of predecessors will turn out to
be wellfounded.

> data Tree x = Tree x [Tree x] -- so-called ‘rose’ trees

> ordTree :: AE x -> Tree (AE x)

> ordTree e = Tree e (map ordTree (pd e)) -- corecursive

The distinction between the syntactical structure of an ordinal notation, and
its ordinal structure may need some further clarification. The syntactical struc-
ture of a notation makes no reference to the transition structure on the notations.

As a syntactical entity, an expression in AE has the following binary tree structure.

> synTree :: AE -> Tree AE -- structurally recursive
Tree N []
Tree (a ‘W b) [syn a, syn bl

> synTree N

> synTree (a ‘W' b)

It is an ordinal notation, that is as an element of the transition structure expressed
in the Haskell code by the function pd that an element of AE can represent some-
thing infinite but wellfounded. The laziness of Haskell is exploited in the code
above partly to conveniently represent the immediate ordinal predecessors of a

th

notation by a potentially infinite list'”, and partly to represent the tree of ordinal

ordinal predecessors.
4.2.3 Notions pertaining to the transition structure

As is rather customary in mathematics, I shall not distinguish notationally be-

tween the transition system A, and the set A which it is base.

9That is, excludes infinite expressions such as let t = t ‘W t in t
190ne could use instead functions defined on the natural numbers. This would however only
be more cumbersome.
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When talking about predicates 1 usually mean predicates over A, that is to
say, set valued functions with domain A, or inhabitants of the type Pow(A). An
inclusion of P in @ is an element of the set ([[a: A) P(a) — Q(«). By taking
morphisms to be inclusions, and equality between morphisms to be constantly
true, we can make Pow(/&) into a category, in which isomorphism is exactly
extensional equality between predicates. There is further structure: a lattice
structure over A (intersection and union of set-indexed families of predicates), an
operation X — X(.)f of composition with a function on states, and exponentials
in the sense of a Heyting algebra. These last two closure properties allow us to
express that a predicate is closed under a section of a binary function, with a
predicate.

By a predicate transformer, [ mean an operation from predicates to predicates.
To put it a little fancifully, if a predicate is a set with an A-shaped hole in it,
then a predicate transformer is a predicate with a predicate shaped hole in it.
Concretely, a predicate transformer in a type theory is represented by a predicate
term which may contain a free predicate variable. A predicate transformer need
not be monotone. In fact the predicate transformers with which we shall be

concerned are not monotone.

4.2.3.1 Induced predicate transformer

Associated with any transition system is the predicate transformer

B : Pow(&) — Pow(A)
B(X,a) = ([Ii:C(a)) X(ali])

which I shall call the predicate transformer induced by the transition structure.
(It is the predicate transformer written _* in 3.2.1)
A predicate P : Pow(/AE) is progressive if B(P) C P. This means that we have

the following constants and operators.
e A constant 0, : P(0).
e An AE—indexed family of unary operators S,(«) : P(a) — P(a10)
e An A*—indexed family of infinitary operators

Ly(e, 8) : (ITn : N) P(a(T8)")
— P(a1(6710))

e An A*—indexed family of similarly infinitary operators

My (e, 8,7,0) - (ITn = N) P(aT(51(v19))[n])
— P(aT(B1(y19)))
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A predicate transformer which transforms progressive predicates into progres-
sive predicates is said to maintain progress. Not only does it transform predicates,
it transforms algebras (proofs of progressivity), by some construction from the
operations of the input algebra to operations on the output algebra. We shall
focus on predicate transformers which maintain progress. Observe that B itself
maintains progress, just because B is monotone.

An element of A is accessible if it is in the intersection of all progressive predi-
cates, and the transition system A is wellfounded if all its elements are accessible.
(This definition appeals to the impredicative notion of an arbitrary predicate over

[, or to put it another way, the definition of a set by a IT} condition.)

4.2.3.2 The internal order

Let ao < 3 be the relation (> i : C*(8)) o = B[i]*, where = is syntactical equal-
ity between expressions, and (CT, _[-]") is the transitive closure of the transition
structure (C,_[-]). I call this relation the internal order, and say that a is an
internal predecessor of 3, as it captures the idea that « actually occurs somewhere
inside (i.e. as an ordinal predecessor of) 3.

I shall not need to refer to it, but for n : N, let a <,, § be the relation which
holds between « and 3 if a < (3, and all transitions referred to in the proof are
less than n. Clearly, a < 3 if and only if for some n a <,, 3. The notation system
(&, <) is in fact the colimit in the category of linear orders of the chain (X, <,,)
with the obvious embeddings from (&, <,,) to (&, <,i1)-

The notation system has some good properties with respect to the internal

order relation.

lemma 1 If a is any notation of limit form, then for all i : N ai] <; a[i + 1].

4.2.4 Two proofs that A is wellfounded

There are (as far as I know) essentially two ways to prove /A is wellfounded.
The first proof uses recursion over the structure of proofs of accessibility, and so
appeals to a principle of generalised (that is, non—finitary) inductive definition.
This principle is unavailable to us in first order arithmetic, or a type theory of the
kind we are considering. The second proof uses instead a predicate transformer

under which the predicates expressible in first order arithmetic are closed.

4.2.4.1 By transfinite recursion

The first proof uses transfinite recursion on proofs of wellfoundedness. We simply
prove Wf(a) — Wf(B) — Wf(BTa) by recursion on the structure of the proof
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that Wf(a), with a nested recursion on the structure of the proof that Wf(3).

4.2.4.2 By closure of predicates under logical operations

Define the exponential depth of a notation as follows:

depth(0) = 0

depth(a18) = max(depth(a)+ 1, depth(B3))
A notation with depth < n + 1 has the form 075, T...78x , where [y,... [0
have depth < n. Intuitively, the depth of a notation is the number of levels of
superscripting if a1 3 is typeset as o + w”. The only expression of depth 0 is
0, the only expressions of depth at most 1 are the predecessors of w, the only
notations of depth at most 2 are the predecessors of w*, and so on.

Similarly, we define the implicational depth of a type built up by — from

atomic types with zero depth as follows.

depth(a) =0
depth(A — B) = max(depth(A) + 1, depth(B))

For the second proof, consider the predicate transformer
GX,a)=XCX-°(Ta)

This transforms a predicate X into the predicate (one deeper) which holds of «

if X is closed under the right section (T «).
lemma 2 G maintains progress.

proof: Suppose that X : Pow(/) is progressive. The proof that G(X) is
progressive is by cases.

Since X is progressive, it is closed under (10). From this it follows that
G(X,0).

Suppose that a has limit form, and that for all n G(X,a[n]), i.e. that X is
closed under (T a[n]) . Since X is progressive, it holds of a limit if it holds of all
its immediate predecessors. It follows that X is closed under (] «). It is crucial
here that (1) is continuous in its second argument.

As for successor form, suppose that G(X, a), i.e. Xis closed under (7 ). Then
X is closed under all finite iterates (T ), which have (pointwise) limit (T(a:T0)).
Since X contains a limit when it includes the sequence of its predecessors, we
have G(X,a10).

From this, we can construct in a very concrete way a proof of the accessibility
of an arbitrary notation in A, without any use of transfinite recursion, but instead

only that the universe of predicates is closed under the predicate transformer G.
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Zero

Immediate

B(X) C X F X(0)

Non—zero

i.h. for a, X lemma 2 for X i.h. for B, G(X)
B(X)CXFX(a) B(X)CXEFB(GX))CGX) B(GX))CGEX)FGX,pB)

BX)CXFX(alp)
Figure 4.1: Wrapping a & notation in the proof of its accessibility

theorem 1 All notations of exponential depth < (n+2) can be proved accessible
in type theory without universes, even if recursion over N is restricted to sets with
implicational depth below n. It is sufficient that the type structure can express that

a predicate of notations is closed under an unary function & — A&.

The intuition for the proof is that we can ‘clothe’” or ‘wrap’ an ordinal notation
with a proof that it satisfies an arbitrary progressive predicate. The idea is
illustrated in the picture in figure 4.1 on the current page. (There is a formal
proof in appendix B.)

We proceed from the root of the syntax tree of the notation. The root ex-
pression is wrapped with the ‘problem’ B(X) C X F X(_). If the notation
has the form a1 3, then a is wrapped with B(X) € X F X(_), and § with
B(G(X)) € G(X) F G(X,-). The latter problem can be reduced, by cutting
with the proof of lemma 2, to the problem B(X) C X F G(X,_). Eventually
we arrive, at the leaves of the syntax tree with notations has the form 0, with
problems of the form B(G™(X)) C G"(X) F G"(0), which are trivial to solve.
When the process is complete, we have constructed a proof that our notation is
accessible.

The predicate transformer G is an example of a lens for the function 07 a.
A formal definition is given later, but the idea is that a lens for a function f is
a predicate transformer /' which maintains progress, and satisfies F/(X) C X o f
for progressive predicates X. The term ‘lens’ was chosen to suggest (optical)
magnification; a lens is a device which helps us to see further into ‘the transfinite’.

There is a certain inevitability about Gentzen’s lens, which can perhaps be
put in the following way. Suppose we would like to prove that a binary function
on notation systems, written _{_, preserves accessibility. Then it would suffice to

have two predicate transformers ® and W (one for each argument of the function),

110



which preserve progressivity, and are such that if X is a progressive predicate,
then ®(X,a) and W(X, 3) together imply X (a t (). How might we attack this

problem? Let us make it easier for ourselves by defining
(X, ) = W(X) C X - (fa)

This takes care of the second property, by sheer cookery. As for preservation of
progressivity, let us again take the path of least resistance and define ¥ to be the

identity. So the definition of ® becomes even simpler:
(Dsimple(X) :{ 0’ | X g X ('I'Oé) }

What remains is to prove that @, preserves progressivity. This is the only
part of the problem which requires any insight into the nature of the { operator.
Of course, in some specific case, there may be a non—trivial ¥ which preserves
progressivity, and for which it is possible to prove that the more general ® (defined

as in the first equation above) preserves progressivity'!.

4.3 T,

In the previous section, we made use of closure of the type structure of a type
theory under the the predicate transformer G to find a lens for the function w®.
Using that lens, we showed how to construct in that theory proofs of accessibility
for successive terms of a sequence of ordinals approximating €.

In this section, we describe how to make use of closure of the type structure
of a system such as Martin-Lof’s under a step ‘to the next universe’ in order to
construct proofs of accessibility for terms approximating I'y. By ‘the step to the
next universe’, I mean the rules for forming from a given family of sets a family
which contains it as a proper subfamily and is closed under particular forms of [
and Y. By I'g I mean the first (non-zero) ordinal closed under not only § + w®
but also Veblen’s 2-place function ¢, (3), where ¢ is the function AS. €, and for
a > 0, ¢, enumerates the common fixed points of all functions ¢z with 8 < a.
Each new universe gives us another level of nesting of the ¢ function; thus with
no universes, we get to €y, with one to ¢¢,(0), with two to ¢4, 0)(0), and so on.
Although the construction makes intensive use of lenses, I have not been able to

see how to express it as a lens for (say) the function ¢, (0). Instead, the key step

1Tt should be clear how to generalise these considerations to operators of arity higher than
two. I am not certain that the definition of lens used in this thesis succeeds in ‘carving out’
exactly the right notion.
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in using a new universe is to encode the notion of a lens for a function ¢, as a
predicate, and to prove it progressive.

The results have been known since the 70’s'?2. However, to establish a lower
bound on the strength of the system, it was necessary (or at least convenient) to
use an indirect argument, proceeding by way of so-called ‘hatted’ theories I/D\o,
TD\l, ... axiomatising (not necessarily least) fixed points for certain monotone op-
erators on predicates, over classical logic. It is perhaps fair to say that despite
these technical results, no-one had much idea what a proof of wellfoundedness
carried out in this type theory would actually look like. In contrast, the con-
structions I am about to describe have been formalised as concrete programs or

‘A-terms’ in a proof checker!3.

4.3.1 Arithmetic expressions

We first need to extend the datatype of ordinal expressions with a further binary
operator. To 0 and a7 3 representing o + w” we add a3 representing ¢, 03,
where ¢, : 2 — (2 is the a—th Veblen derivative of ¢y(3) = €3, meaning that for
a > 0, ¢, enumerates the common fixed points of the set of normal (continuous
and strictly increasing) functions { ¢ : Q@ — Q| f < a }. (It is convenient to
start with €g rather than the more usual w” in order that a3 is always a limit,
and to avoid overlap with (T).) I call the resulting datatype A, or in this section
simply /.

Now the computation rules for the function which assigns to an arithmetic

expression the family of its immediate predecessors become:

expression vy C(a) ali] fori: C(y)
0 {} (undefined)

alo {0}  « .

al(310) N a(18)

atp N atg

010 N (07)i0

0f(310) N (01)((018)10)
@040 N (af)0
(@TOABT0) N (ami((@10)48)10)
af0 N ali] o
af(310) N alifi((@h )10
ot N afgl]

12In the case of one universe, the first results were obtained by Aczel in 1974.

13The system first used was the ‘Chalf’ system written (in C) by Dan Synek, based on ideas
and a prototype written (in Haskell) by Thierry Coquand. I am particularly indebted to Anton
Setzer help with this code during a week’s visit to Edinburgh in 1997. I have subsequently
‘ported’ the proof to the ‘Agda’ system; the code itself is contained in Appendix C.
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The definition of the (family—assigning) function is by recursion on the syn-
tactic structure of the arithmetic expression, and needs only a weak form of first
order primitive recursion.

The ordinal notation system can be coded directly as a data type in Haskell,

as mentioned in section 4.2.2. The code now becomes the following.

> infixl ‘W° -——a ‘W b=Wab

> infixr ‘V¢ -——a ‘V"b=Vab

> data AE =N —-— Nought, represents 0

> | W AE AE -- W a b represents a + w’'b
> | V AE AE -- V a b represents phi(a,b)

> suc :: AE -> AE

suc a=a ‘W*N

\4

pd :: AE -> [AE]

pd N

pd (a ‘W N)

pd (a ‘W (b ‘W' N))
pd (a ‘W b)

pd (N V¢ N)

(]

[a]

iter (‘W b) a

map (a ‘W) (pd b)

iterate (N ‘W) N

(N V¢ (a ‘W N)) iterate (N ‘W) t where t
pd ((a ‘W N) ‘V‘ N) = iterate (a ‘V‘) N

pd ((a ‘W¢ N) ‘V¢ (b ‘W' N))

iterate (a ‘V‘) t where t
map (V¢ N) (pd a)

map (‘V¢ t) (pd a) where t
map (a ‘V¢) (pd b)

suc (N ‘V¢ a)

suc (a ‘V¢ b)

pd (a ‘V¢ N)
pd (a V¢ (b ‘W' N))
pd (a ‘V¢ b)

suc (a ‘V¢ b)

V V V vV vV VvV VvV V V V V V V
3
[o})

Recall that a predicate P : A — Set is progressive if satisfies the following

condition, at each a : /.

((IT4: C(@)) P(ali])) — P(a)

It is easily checked that progressive predicates are closed under intersections of
set—indexed families. In categorical terms, a progressive predicate is (equipped
with a function which makes it) an algebra in the category of predicates and

inclusion maps over A, for the following endofunctor (i.e. monotone predicate
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transformer).

B(P)={a:&|([[i: C(a)) Pali) }
B(f :PC Q)= Mx: &, i: C(a).f(ali]): B(P) C B(Q)

The initial algebra of this functor is the accessibility predicate for the assignment
of predecessors pd. An element of a set Acc(a) for some a : & is a wellfounded
tree which represents the predecessor structure of a.

The existence of this least fixed point requires minimally the principle of
generalised inductive definition, iterated once, a principle which is unavailable to
us in the type theory we are considering. If we make use of this principle, it is
straightforward to establish the following lemma. The purpose of this section is
to show that we can establish each instance of the lemma in a type theory with
only ordinary (not generalised) induction, but instead an external sequence of
universes closed under ] and ) . We cannot expect to prove the lemma itself
in that theory; according to [33], its proof theoretic strength is exactly Gammag.

(As far as I am aware, no direct proof of this fact is known.)
lemma 3 All expressions in A& are accessible.

proof: Since A is inductively defined, we need to show that its constructors
preserve accessibility. It is immediate that 0 is accessible. We consider the con-
structors a T8 and a1} § in turn.

The structure of the proof that Acc(a) — Ace(B) — Acc(aT ) is recursion
on the proof that Acc(B3). The case 8 = 0 is trivial. In the successor case § =
~ 10, by ordinary numerical recursion we can strengthen the induction hypothesis
to Acc(a) — Acc(a(1v)") where n : N. It is crucial here that the induction
hypothesis ‘has an arrow’; the proof of Acc(ar) is an argument, not a parameter.
From this Acc(a) — Ace(aT(y10)) follows by closure of progressive predicates
under limits. The argument in the limit case is again by closure of progressive
predicates under limits. (This repeats the argument of section 4.2.4.1.)

The structure of the proof that Acc(a) — Ace() — Acc(af §) is recursion
on the proof that Acc(a), with nested recursion on the proof that Ace(3). There
are three forms of expression to consider. In each case, the nested recursion (on
() makes use of a slightly different observation for the zero and successor cases.

The limit case is always by continuity.

013 . The observation is that since (1) preserves accessibility, in particular (0 1)

and all its finite iterates preserve accessibility.
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(a70)MtB . The observation is that by hypothesis the function (a{}) and all its

finite iterates preserve accessibility.

aftf where C(a) = N . The observation is that by hypothesis the functions

(af[n] ft) preserve accessibility for all n : N .

4.3.2 The theory of lenses

In this section, we set out the basic theory of lenses. A machine—checked develop-
ment of the theory of lenses is given in appendix C. This is a fairly simple theory
of predicate transformers of a particular kind arising from the transition structure
on a notation system. We will be particularly interested in predicate transformers
defined by iteration, and so we need a set for this iteration to ‘happen’ in, which
is to say, a universe of small sets, closed under the necessary constructions.

The mathematical content of this theory is modest. The interest is that we
can define a really quite simple construction on lenses corresponding to Veblen’s
derivative operation without any use of transfinite recursion. Instead we assume
only that the universe satisfies some weak closure properties, principally closure
of predicates under intersections of certain countable sequences. The simplicity

of the construction is a virtue if one thinks of the task as a programming problem.

Definition A lens for a function ¢ : &£ — A is a predicate transformer which

1. preserves progressivity with respect to the transition structure on A. That
is, Prog(®(X)) for all progressive X : Pow(/E).

2. ensures ®(X) C X ¢ ¢ for all progressive X : Pow(/E).

In the following lemmas, It is (an ordinary form of) the iteration functional,
mapping a natural number and a set S to the set (S — §) — S — S. Ity is its

tail recursive variant.

It, Ity = N — ([[S:Set)(S—95)—S—S
It(0,8,f,s) =s

Itn+1,8,f,s) = f(It(n,S,f,s))
Ity(n, S, f) =It(n,S — S, Ag.g°f,id)

I shall omit the set parameter (i.e. the second parameter), as it can usually be

inferred.

lemma 4 1. If & and V¥ preserve progressivity, then so does ® oW,

2. If ® and ¥ are lenses for f and g respectively, then ® W is a lens for g°f.
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3. If ® is a lens for f then for any n : N, Itr(n,®) is a lens for It(n, f), and
It(n,®) for Ity(n,f).

The proofs are straightforward.

lemma 5 The intersection of any (countable) sequence of progressive predicates

18 Progressive.

The proof depends only on the fact that the predicate transformer (_)* (in the

notation of section 3.2.1) induced by the transition system is monotone.

lemma 6 If a function f on ordinal notations is the pointwise limit of the se-
quence f,, and ®,, is a lens for f,, for each n, then ® = AX,a. ([[n: N) ©,(X, a)

is a lens for f.

That ® preserves progressivity follows from the last lemma. That &(X) C X o f
for progressive X follows from ®(X) = (), ®,(X) C X o f, for all n, and the fact
that X is closed under limits. (The counterpart of this lemma in the formal proof

in appendix C is called SupLens.)

lemma 7 Given a lens ® for a function f, we can find a lens ®" for the identity
(i.e. such that any progressive predicate X is a prefived point of ®'), such that
for progressive X, ®'(X) is preserved by

1. f.
2. All finite iterates f™.
3. fv.

Proof: ®(X,a) = ([[n : N) It(n,® X a). Trivially ®'(X) C X. If
X is progressive, then ®"(X) is progressive for all n, so ®'(X) is progressive.
If a € &(X), then a € ®"F1(X) and so f(a) € ®*(X) for any n, so that
®'(X) is preserved by f for progressive X. This establishes the first part of the
lemma. (The counterpart of this lemma in the formal proof in appendix C is
called MkClens.) The second part of the lemma is a trivial consequence of the
first, and the third follows from the second since progressive predicates are closed
under limits. (The counterpart of the last part of the lemma in the formal proof

in appendix C is called ItClens.)

lemma 8 Given &', and f as in the last lemma, we can find
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1. alens ®" for the function Vf = Aa. (f ° (+1))*(f(0)).

2. a lens for the derivative f'(a) = Vf<.

It should be stressed that the proof of this lemma does not use transfinite recur-
sion, but depends only on the definitional equalities satisfied by f’.

Proof: For the first part, ®"(X) = ®'(X) o (Vf). It is simple to check that
®” preserves progressivity, and that ®”(X) C X o (Vf) for progressive X. (The
counterpart of this lemma in the formal proof in appendix C is called NablaLens.)

The second part of the lemma is proved by applying the first part to f«.
lemma 9 (Gentzen) We can find a lens for the function (T ) = (+w®).

Proof: AX,a. X C X °(4+w®). The proof of this lemma has already been given in

4.2.4.2. (Its counterpart in the formal proof in appendix C is called GentzenLens.)

lemma 10 1. We can find a lens for the function (01)).
2. If we have a lens for the function (a 1)), then we can find one for ((a70)1}).

3. If we have lenses for each of (ali] ), (where a is not of the form a10 or

0, i.e. is a limit), then we can find a lens for (af)).

Proof: For the first part, since (01) is the derivative of Aa.w®, we can just
apply lemma 8 to the Gentzen lens. The second part is a direct applications
of the second part of lemma 8. The third follows from lemma 8 and lemma 6.
(The formal counterparts of these arguments in appendix C are called ZeroLens,
SuccLens and LimLens respectively.)

So we have the induction hypotheses which would be sufficient to derive by
transfinite recursion a lens for any function of the form (a{}) — were we not

abstaining from transfinite recursion. Teetering on this brink, we notice:

lemma 11 If we have a lens for a function f, then the accessible terms (i.e.

those in the intersection of all progressive predicates) are closed under f.

Proof: Suppose a satisfies any progressive predicate; we want to see that f(«)
does too. Suppose ® is a lens for f. Given a progressive predicate X, we also
have that ®(X) is progressive, so holds of a. Therefore X holds of f(a). (The
formal counterpart of this argument is called LensLemmaV in appendix C.)

This is all the theory of lenses we need for present purposes. The rest has to

do with universes.
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4.3.3 Miniaturisation of the theory of lenses

The theory of lenses involves two universes: the ‘small’ universe of the predicates,
and the ‘big’ universe above it in which the theory itself is expressed, in which
we quantify universally over small predicates, and existentially over predicate

transformers. Our aim in this section is to demonstrate the following

theorem 2 1. If a and B are in the intersection of all small progressive pred-

icates, then so is a1 [3.

2. If a is in the intersection of all big progressive predicates, and 3 in the inter-
section of all small progressive predicates, then ay B is in the intersection

of all small progressive predicates.

The first part of the theorem has already been proved in 4.2.4.2. The proof
of the second part of the theorem is by cooking the definition of ‘big’, so that
the predicate Aa. Lens(a ) 0) is big. By lemma 10 in the previous section, it is
progressive. So if a is in the intersection of all large progressive predicates, there
is a lens for (aft). By lemma 11 in the previous section, the intersection of all
small progressive predicates is closed under (a1).

The definitions and propositions of the theory of lenses have a particularly

simple form, well illustrated by the notion of lens itself:
Lens(f: S — 8) = (3@ : Pow(S) — Pow(S))
(ITX : Pow(S))
B(X) € X — (B+®)(X) € ®(X) C (-)(X)

Inspection of the definitions and proofs of the theory of lenses shows that they
can be carried out if the universe of ‘big’ sets contains the universe of small sets

and is closed under
1. universal quantification over small predicates. (The J] quantifier.)
2. function spaces. (A special case of the [[ quantifier.)
3. universal quantification over /.
4. the predicate transformer B.
5. existential quantification over small predicates. (The sum quantifier.)

6. conjunction. (A special case of the ) quantifier.)
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Such a ‘miniaturisation’ is actually carried out in the package called small in
appendix C.

It is regrettable that I have had to require that the universes are closed under
>, as this weakens the result. My intuition has been that requiring universes to
be closed under the ) quantifier adds nothing to the proof—theoretic strength of
type theory, at least in the context of the weak systems with which I have been
concerned. The problem has been that the use of Y —types in some form (for
example, to express the notion of lens) has been in practice necessary to keep the
more bureaucratic details of the construction under control. Perhaps they can
be dispensed with ‘in principle’; however I wished actually to construct proofs of
accessibility in practice.

It is also regrettable that I have not been able to bring the formal proof into
a clean enough form to actually present it in this chapter (rather than merely to
allude to it). As well as a certain amount of tool support, and perhaps a formal
proof language designed for the purpose, the ‘literate’ presentation of formal

proofs seems to require a very high level of taste, or art.
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Chapter 5

Conclusions

This thesis has been concerned with dependent type theories. It has focussed on
three areas, all of them more or less loosely connected with the representation,
use and calibration of proofs of wellfoundedness in such theories. This concluding
chapter tries to draw these strands together, and gather up the loose ends.

The first main chapter was concerned with the representation of type theories
in a logical framework based on a name—free substitution calculus. The topic
here is the fundamental mechanisms on which the representation of inductive
definitions and recursion principles is based. One can perhaps compare this with
mechanics at the level of particle physics; the issues that arise here are rather
delicate. What exactly is the logical framework itself? What is it for? How
should it be structured? What kind of equational reasoning is involved in the
general representational mechanisms of the logical framework, and where is the
boundary between this general equational reasoning, and the computational rules
of a specific type theory represented in the framework? To what extent can we
expect to capture the notion of inductive definition formally within such a setting?

The second main chapter was concerned with the use of inductively defined
datatypes in programming, to model dynamic behaviour. The central models were
transition systems and interactive systems. Some twenty years after Martin—Lof
first suggested that type theory could be considered as a programming language,
we are perhaps beginning to suspect that this was not just an abstract possibility,
or a flight of philosophical fancy, but a fully serious suggestion. How then do we
write real programs in type theory, that ‘do things’? We learn from the last
chapter of [80] (entitled ‘Programming in Martin—L&f’s Type Theory’) how to
divide by 2, and how write a program to solve Dijkstra’s problem of the Dutch
national flag. I do not wish to criticise the focus on small problems, but how
are we to write a program to run a web server, or fly an aeroplane? How do we

write an editor, or a transaction monitor, or an operating system? To my mind
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the fundamental issue is one of understanding how to write interactive systems in
type theory. This is not just a technical problem, or a mathematical one, but to
some degree a conceptual problem; it may even be to some extent a problem of
having the courage to begin to think about the issues. It cannot be long before
good implementations of functional programming languages with dependent type
systems are within reach. What facilities for interactive programming , and ‘1/0’
(input—output) will be needed? My hope is that further investigation of models
of the kind described in this chapter will contribute to a the development of a
monadic I/O interface for such a programming language; perhaps one in which
the semantics of the I/O primitives can be precisely specified through their types.

The third main chapter was concerned with ‘quantitative’ investigation into
the proof theoretic strength of the principles of induction and recursion avail-
able in a specific type theory. The locus of this question is the old—established
subject of ordinal theoretic proof theory. The content of the chapter was a con-
struction of the provable ordinals in a weak form of Martin—Lof’s type theory,
having a sequence of cumulative universes closed under finitary inductive defi-
nitions, and the J] and »_ quantifiers. The issues have a much more technical
character than in the previous two chapters; the contribution here is the notion
of ‘lens” which T hope may serve somehow to organise the investigation of the
proof theoretic strength of stronger type theories. It is remarkable, and to my
mind rather unsatisfactory that proof theoretical investigations of constructive
type theories proceed by reducing them as quickly as possible to subsystems of
classical arithmetic, or forms of classical Kripke—Platek set theory. It is one thing
to conclude at the end of a sequence of ingenious proof—theoretical reductions
that the proof theoretic strength of a certain type theory can be identified by
such—and—such an ordinal; it is another to actually see its limits emerge by a

sequence of exhaustive constructions within the type theory itself.

5.1 Loose ends

I am aware of several shortcomings in the work presented in the previous chapters.
Some of these may have been avoidable; I may simply have been unaware of work
that is directly relevant, or failed to appreciate work of which I was aware, or
failed to pursue thoroughly my own ideas. On the other hand some shortcomings
may just be in the nature of things; I may have followed paths that lead more

or less obviously to dead ends, or require new ideas beyond my reach. On the
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grounds that failure can sometimes be as valuable as success', for which it is
necessary that they are in plain view, in this section I shall draw together some

of these shortcomings.

5.1.1 Logical framework

It is clear enough that there are a number of mechanisms which occur again and
again in the presentation of deductive systems, which centre round the notion of
a schema, form or pattern capable of being instantiated in one way or other to
obtain an axiom, construction, or inference step that may occur in one or more
contexts in a deduction or program. The suspicion or hope is surely justified
that it is possible to abstract from the panorama of logical and deductive systems
that have arisen in logic and computer science a certain core of general principles
that pertain to this notion, and the notions of instantiation and equality between
instantiations of different schemata that are connected with it. The idea of such a
general logic or meta—logic may have emerged first in the 1930’s in publications of
Post, Carnap and Tarski. With the rise of computer science, and the renaissance
in logic provoked by it, the idea has re—emerged in a new form, called ‘Logical
Frameworks’, as for example in [45] and the collections [51] and [52].

It is difficult to understand precisely what problem a logical framework is
supposed to solve. There seem to be at least two points of view about it.

The first is that one wants to represent as wide a variety of logics as possible, by
representing their judgements as types in the logical framework. So for example,
if one wants to represent a type theory there will (it seems) be types for each of

the judgement forms

A:Typel A=B:Typel
a:I'— A a=bb:I"—= A

The framework itself will be as weak as possible, and in particular ‘agnostic’
about computational equations, so that (ideally) one never encounters anything
called a logic (a modal, linear, or programming logic) that requires any extension
of or disturbance in the framework). A problem with such ambition is that a
theory of everything is in danger of being a theory of nothing. A framework
that is capable of representing (in a technical sense) logics in general is in danger
of being incapable of representing (in a practical sense) any particular one of

them. To the extent that I have been able to understand the ‘judgements as

'In this connection one can think of Cantor, who failed to settle the continuum hypothesis,
Frege, who failed to reduce mathematics to logic, Hilbert, who failed to reduce it to combina-
torial reasoning.
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types’ point of view it seems utterly impractical to actually attempt to use such
a framework as a setting in which to carry out constructions in a Martin—Lof
style type theory. The difficulties here are (apparently) of such a degree that
they cannot be dismissed as mere matters of presentation, to be overcome with
‘computer assistance’. This may well be a travesty of the ‘judgements as types’
point of view. There may be a wide spectrum of deductive calculi arising in
computer science for which the approach is very apt.

The second point of view is that one is interested not so much in formalis-
ing and implementing a framework for logics in general, but rather a framework
for logics belonging to a particular ‘open—ended’ family — such as for example
the family to which I have been referring by phrases such as ‘type theories in
Martin—Lof style’. It is often said that one may add to Martin—Lof’s system
(whatever that is) new data types according to general patterns of which par-
ticular data types such as the natural numbers, or the so—called ‘wellordering’
datatypes are instances. There is a lot of truth in this. Programmers have
hardly learnt yet how to exploit the positive data—types described for example
in [61][section 9.2.2]; indeed we have scarcely learnt how to make full use of the
data—types available in functional languages such as Haskell or ML. Yet it is
intrinsically impossible to describe formally a general framework (even allowing
undecidable type—checking) which will serve for all the inductive definitions (and
more generally reflection principles) that ‘we might ever need’. As soon as we
have such a purported description, we can diagonalise, to obtain a false nega-
tive. There is more to this than a recursion theoretic trick. For example, Anton
Setzer’s Mahlo universe, and his II3—reflecting universe have revealed delicate is-
sues in type—checking fixed—point definitions in T. Coquand’s implementations
of frameworks for ‘type theories in Martin—Lo6f style’, even though these are not
formal systems.

The principal shortcoming that permeates chapter 2 is therefore is that (not
to put to fine a point on it) I have failed to understand the very concept of a
logical framework. This may well be of course purely (and uninterestingly) a
problem peculiar to me. It may however indicate a need for a clearer exposition
of the basis of the concept by those who do have a firm grasp of it.

Other shortcomings include the following.

e | have chosen to present the logical framework as a dependent type the-
ory over a family of ground types representing a specific type theory. The
type theory over the framework contains not only [] types, but Y types
and even + and finite types { } and {x}. These types were characterised
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by universal properties, in a category theoretic sense. This implies that
the rules for equational reasoning at the framework level include not only
analogues of the n—rules for [[—types, but also the so called ‘fusion’ rules
described for example in [9][pages 48,141,42,72,39,37,40]. These seem to be
related to the ‘permutative contractions’ [104][page 139] discussed in proof
theoretical literature. The rules for equational reasoning are thus highly
extensional?. There are almost certainly many of difficult meta—theoretic
questions begged by including such type constructions. For example, is it
guaranteed that type checking is decidable? This problem has not yet re-
ceived a satisfactory solution (about which there is general consensus) even
in the simpler context of cartesian closed categories, let alone a dependently

typed framework.

e To start from a name free substitution calculus, and introduce notational
conventions and abbreviations in a wellfounded incremental fashion till one
can discuss the kind of constructions that arise in connection with in-
teractive systems is perhaps comparable to starting from the physics of
sub—atomic particles and trying to derive the kind of physics necessary to
design a shock—absorber for a bus. At any rate, I cannot claim to have

accomplished a smooth development.

e | have not been able to describe a uniform schema for inductive definitions

adequate for those needed in chapter 3.

e Still less have [ been able to describe a framework for coinductive definitions

such as those needed in chapter 3.

5.1.2 Transition systems, Interactive structures

The treatment of transition system contains constructions on transition sys-
tems analogous to Cantor’s operations of addition and multiplication of linear
wellorderings. (Multiplication is a special case of the sum of an ordered series, in
the same way that X is a special case of Y _.) Conspicuously, I have not offered a
counterpart of Cantor’s exponential construction, nor of any related construction
such as of the multiset ordering. I do not know whether this is because there is
some intrinsic difficulty; I simply became overwhelmed by the details, and gave
up.

It would have been appropriate to present analogues of the lens constructions

in chapter 4 for addition, multiplication and exponentiation of transition systems.

2In contrast to ‘extensional type theory’, this has nothing to do with rules for identity types.
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(These would establish that the operations preserve wellfoundedness, but without
the use of recursion.) | was unable to bring my efforts in this direction into a
presentable form.

It seems to be extremely difficult to show, without the use of generalised
inductive definitions that if one is given a wellfounded transition system, then
the natural transition system on multisets in the original order is wellfounded.
Yet (at least in the case of linear orders) if one starts with an order of type a,
then the order type of the multiset order is w®. So one would expect it to be
possible to show that the multiset order construction preserves wellfoundedness
in first order arithmetic, without the use of recursion on proofs of accessibility,
or any other form of transfinite recursion. I believe that this question has been
considered by Buchholtz, among other proof theorists, but so far with no success.

As regards interactive systems, it may be that one can give a satisfactory
model for terminating programs in a type—theoretical context. In terms of the
game metaphor one can perhaps model adequately strategies for the player who
starts first in a game to drive the player who responds into a deadlock. It is
much less clear how to model strategies for the responding player to evade dead-
lock. This is a specific case of the general problem of accounting for coinductive
datatypes and corecursive definitions in type theory. It is clear enough how to deal
with infinite streams [A]. They can be modelled adequately by functions N — A
in ordinary (wellfounded) type theory. The question is rather one of justifying

definitions such as that of the greatest fixed point on a predicate transformer

Pla) = (IIb: B(a)) (X2 c: C(a,b)) Plalb/c])
for an interactive system

A : Set,

B : A — Set,

C : (J]a:A) B(a) — Set,

d : ([[]e:A,b:B(a)) Cla,b) — A
In section 3.3.3 I have formulated rules which one expect to be justified for rea-
soning about such a predicate.

Corecursion is an enormously important facility in functional programming.

It seems to arise whenever the natural description of a solution to a programming
problem is in terms of a notion of state. It is inconceivable that one will be able to
regard dependent type theory as a framework for practical programming until the
foundations for corecursion are clear. The problem presents itself in a particularly
acute form in connection with modelling ‘the programmers predicament’ in section

3.3.8 on page 86.
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It should be added that there has been a good deal of work connected with
coinduction in type theory, particularly in the case of simple (non—dependent)

type theory and in impredicative type theories.

1. One problem is simply to formulate general schemes for introducing coin-
ductively defined datatypes together with their associated schemes of core-

cursion.

The problem is not so great, as one can be guided by ‘dualising’ standard
schemes for inductive definition. For examples of presentations of schemes
of inductive definition, one may cite Martin—Lo6f’s early paper [63] (given
in the context of a natural deduction presentation of the intuitionistic pred-
icate calculus), the scheme of inductive definition for strictly positive func-
tors given in Luo’s book [61], and perhaps most generally the presentation of
simultaneous inductive—recursive definition given by Peter Dybjer in [28].
Of course ideas from category theory are particularly relevant here. Just
as inductively defined types are analysed categorically as initial algebras
for endofunctors on suitable categories of types, so coinductive types can be
analysed with the dual notion of terminal coalgebras for such functors. Even
inductive—recursive definitions can be treated in this way, as endofunctors

on certain slice categories Type/D, where Type is a suitable category of
types.

In the context of dependent type theories, Eduardo Giménez [37] has in-
troduced an extension of the Calculus of Constructions with inductive and
co—inductive types. Mendler in [69] has also formulated such schemes in the
context of Martin—Lo6f’s type theory with predicative universes. Mendler’s

formulations are inspired by categorical considerations.

In the context of simple type theory, there has been a great deal of work,
and some quite interesting formulations have been proposed. In particular,
one may cite recent work by Uustalu and Vene, for example the papers [107]
and [108] . One problem has been to deal properly with the analogues of
the ‘side arguments’ in recursion schemes, that distinguish recursion from
mere iteration. Uustalu and Vene have managed (in [106]) to systematise a
variety of recursive schemes into a ‘cube’, analogous to Barendregt’s cube
of pure type systems. I know of no reason why it should not be possible to

extend their work to the context of dependent type theory.

2. When one has formulated general schemes of coinduction in dependent type

theory, a further problem is to work out the metatheoretical properties of
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such schemes. Of course, one would like to preserve normalisation proper-
ties, at least in the sense of that expressions constructed in adherence to one
of these schemes should evaluate to weak head—normal form. (This is pri-
marily in order to preserve the decidability of type checking for expressions

constructed in adherence to one of these schemes.)

The extension of Coq proposed by Giménez preserves strong normalisation
for a lazy computation relation. This extension considerably enlarges the
expressiveness of the system, enabling a direct translation of recursive pro-
grams, while keeping a relatively simple collection of typing rules. The proof

of strong normalisation is by a model construction using saturated sets.

3. The greatest problem of all is not to formulate schemes, or to analyse them
theoretically, but to understand them. In this connection, there is not a
lot of work which one can cite. There is a paper by Martin—Lof [68] which
does not deal directly with coinduction, but rather with non—standard type
theory, which is type theory together with a single constant co, for an infinite
natural number. Although it does not deal directly with coinduction, it
refers frequently to the ‘primordial’ example of a coinductive type, that of
the type S(A) of infinite streams of objects of a given type A. Another
very penetrating paper, which is frequently referred to in the literature?
but as far as I am aware has not been published, is T. Coquand’s “Infinite
Objects in Type Theory”. Coquand’s idea is to use constructors (rather
than destructors) to define coinductive types. In the case of streams this

means we have the constructor
push : ([Ja:A) S(A) — S(A)

We may use recursive definitions to define streams but they have to be
guarded by constructors. In a sense this is dual to structural recursion for

wellfounded types. For example, the definition

nats : N — S(N)
nats(n) = push(n, nats(s(n)))

is guarded because the recursion is ‘inside’ a constructor. If recursions are
guarded, normalisation is preserved provided that reduction does not take
place under a constructor (such as push). The restriction is quite natural,

and analogous to a restriction on reduction that is necessary in the case of

3For example it is referred to by Giménez as an inspiration for his work on Coq.

127



wellfounded types. For example, we can define the recursor on the type of

natural numbers by recursion.

R:([]P: Nat — Set) P(0) —
(([In: Nat) P(n) — P(s(n)) —
(IIn: Nat) P(n)
R=MAP,a,b,n.case n of 0 —a
s(m) — b(m, R(P,a,b,m))
For normalisation, it is clear that reduction must not take place inside the

case expression.

These ideas are explored further in C. Coquand’s thesis [17].

One way to understand coinduction is to model it in terms of induction and
exponential types. Thus, we have the sequence of (rather well—known) natural
isomorphisms

vX.AxX = (pX1+X)—A
vX. Ax X? = (uX1+2xX)— A4
vX. Ax X8 = (uX1+BxX)— A

The intuition here is that where we have a type of infinite objects (for example the
type vX. A x X of infinite streams of objects of type A), we may analyse it as a
function which when applied to a (finite, wellfounded) position in such an object,
returns the information to be found at that position. By extension, if we have an
infinite binary tree (an object of type vX. A x X?) it may be represented as an
A—valued function from strings of bits (an object of type (uX.1+2x X) — A).

This representation, or analysis, can be expressed by giving isomorphisms.

decode : (vX.Ax XPB)— (uX.14+ Bx X) — A)
encode : (uX1+BxX)— A)— (vX.Ax XP)

The isomorphism from the coinductive type to the exponential can be defined as

follows.
decode (a, f) = Abs. case bs of

10 — a

j(b, bs") — decode(f(b), bs")

The inverse of decode can be defined as follows.
encode f = (f(i0), encode(Abs. f(j(b, bs))))

It is tempting to think that a ‘position’ is always a finite list of some kind.

Something that may be a little surprising is the following isomorphism.

decode : (VF.AX.X x F2(X))(A) — (uX.1+ X?) — A)
encode : (pX.1+ X?%) — A) — (vF.X x F?(X))(A)
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Here the ‘positions’ are not lists, but finite binary trees. A suitable isomorphism

may be defined as follows.

decode((a,t),z) = casetof i0 —a
j(t1, &) — decode(decode(z, t), ty)
encode(f) = (f(i0), encode(Aty. encode(Aty. f(t1, t2))))

In fact, the isomorphism may be generalised considerably.

(VFAX. X x (F(X))% x ... (FFX))%)(A)
(- Co+ Crx X +...+ G x XF) — A

It is as if the ‘logarithm’ of (v F.AX. X% x (F(X))“ x ... (FF(X))%)(A) (to
the ‘base’ A) is (u X. Ch+ Cy x X +...4 Cp x X*). The ‘positions’ in the infinite
object are in this case objects of a polynomial data type.

In certain cases, as illustrated above in the context of simple type theory, we
can analyse or represent non—wellfounded objects in terms of functions defined on
wellfounded objects. It is however extremely challenging to extend this analysis to
dependent types. For example, how should be analyse the following coinductive
analogue of the W —type? The objects of this type are non—wellfounded trees in
which the nodes are labelled by objects from type A, and the branching index of
a node with label a : A is the type B(a).

vX.(Ya:A) XB@

The prospects of extending the analysis even further to such a coinductive type
as the predicate Pos discussed in section 3.3.3 seem at present quite remote.

Another problem with an analysis of infinite objects of the type illustrated
above, besides its somewhat limited scope, is that although there are (in general
several) isomorphisms between v types and exponential types of the kind illus-
trated above, the computational behaviour of objects which correspond under the
isomorphisms is quite different.

I am very grateful to Thorsten Altenkirch and Martin Wehr for discussion on
these matters. The insight that ‘positions’ in infinite structures are not always
lists is due to Altenkirch. He has extended the isomorphism beyond polynomial
data types to ‘regular’ data types that are additionally closed under a ‘i’ operator.

It should be mentioned that a quite different approach to the analysis of
infinite objects in type theory may be attempted by treating their types as inverse
limits. Such an approach is taken by Lindstrom in [59]. It depends heavily on a

generic notion of equality, not yet available in a framework such as half or Agda.
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5.1.3 Lenses

As regards shortcomings in chapter 4 about the notion of lens, those of which I

am aware include the following.

e It would have been far preferable to have given a ‘literate’ presentation of
the formal constructions on which chapter 4 is based. The raw code is

presented in appendix C.

e [ should like to have made a more extensive study of the kind of predicate
transformers which emerge when establishing lower bounds on the proof the-
oretic strength of type theories. In particular, I should like to have begun
to test the idea of ‘lens’ in elucidating lower bounds on the proof—theoretic
strength of type theories incorporating new kinds of universe rules that have
arisen in the past decade in the work of Setzer, Rathjen and Palmgren. (I
have however been able to conjecture lower bounds on the strength of the
system with an a single superuniverse, an external sequence of superuni-
verses, and other simple extended universes that are correct according to
results of Rathjen.) A problem here seems to be that the notion of lens is
not yet in a suitably general form; this is shown to some extent already in

the proof in appendix C; there is no ‘Veblen lens’.

o [ should have liked to be able to demonstrate a very simple technique for
directly establishing upper bounds on the proof—theoretic strength of type
theories, at least in the case of Godel’s T. There are perhaps grounds for
hope that such a technique may not be far away. (These are indicated in

appendix A.)

e As suggested in the final section of the introductory chapter, there is in
my opinion a genuine need to explain the interest of ordinal theoretic proof
theory in terms which are relevant to the beginning of this century, rather
than the the last one. I had hoped to have outlined an example of the kind
of explanation I believe to be necessary. I can only suggest that this kind
of proof theory, concerned as it is with the extent to which a given formal
system can accommodate proofs of wellfoundedness may shed some light
on the implications of choosing a particular type theory in which to write

interactive programs.

The naive idea which has from the beginning been at the back of my mind
was that the capacity of a theory to write (provably) terminating programs

must also manifest itself as a limitation on the complexity of (provably)
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non—terminating (or deadlock—avoiding) programs. In some sense, these
are graphs that are most naturally expressed using labels and (terminating)
programs associated with and yielding such labels. Perhaps (I had hoped)
it is possible to formulate precisely a notion of complexity for potentially
non—terminating programs, and establish a link with the more familiar (if
still rather mysterious) notion of proof—theoretic strength. Nailing this

down was beyond me.
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Appendix A

Arithmetical Combinators

A.l Introduction

There are many combinatorially complete sets of combinators. These are ‘in-
struction sets’ to which the A-calculus can be ‘compiled’. The most famous are
perhaps {S, K} and {B, C, K, W}. The latter set of combinators is sometimes
preferred because the first two of its combinators are affine (i.e. use their argu-
ments exactly once), the first three are ‘linear’ (i.e. use their arguments at most
once), and W alone uses an argument more than once. For these reasons, they
prove convenient for the analysis of systems of linear logic. Several authors have
observed that there is also a set of ‘arithmetical’ combinators { A, M, E, N }! aris-
ing from the Church numerals, which is combinatorially complete. For example,
this has been observed by Stenlund [101] page 21, Schwichtenberg [104] page 19,
Burge [10] page 35, Rosenbloom [93] page 122, Church [14] page 10, and Fitch (ac-
cording to Stenlund). These combinators share the advantage of { B, C, K, W'}
that they mesh well with concerns about linearity. However their arithmetical
combinators are improvable. In this appendix I define, and show the combinato-
rial completeness of, a set of combinators {(+), (x), ("), 0} which perhaps better
deserve to be called the ‘arithmetical combinators’, because they arise naturally
from a certain calculus of iterative exponents.

Over the last 50 years several systems of ordinal notations have been devised,
based upon functionals of higher type over the ordinals, in which this calculus of
iterative exponents plays a central role. The simplest of these is a notation system
for €y that uses ‘w-iteration’ functionals of finite type, that are easily defined in
Godel’s system T. It is natural to wonder whether the combinatorial completeness
of the arithmetic combinators provides a clue for a new way of establishing an

upper bound for the proof theoretic ordinal of this system. The final section of

ISurely, the last word in combinators!
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this appendix contains some remarks on this possibility.

A.2 The calculus of iterative exponents

Suppose we write application backwards, with the function after the argument, as
mathematicians sometimes do. The notation is usually called ‘algebraic notation’,
but I will refer to it as ‘exponential notation’, for reasons that will soon emerge.
Perhaps it is congenial if you visualise data as starting on the left and flowing
through successive functions towards the right.

Let us use _; "5 as an infix notation for application written backwards. (Jux-
taposition (- 1) is more often used in real life, or at least in functional languages,
so we need some visual clue to or sign of the reverse operator.) The symbol is
chosen to evoke ‘exponential’ associations, as we shall shortly introduce the fa-
miliar arithmetical operators x, 1, 4+, 0. We take all binary operators to be right
associative, so that for example a"b" ¢ is bracketed a”(b"¢), corresponding to the
left associativity of the juxtaposition operator.

In connection with the normal application notation the need soon emerges to
introduce the normal composition notation, with its unit 1. In connection with
exponential notation, for mirror-image reasons it is just as urgent to introduce
a multiplication operator _x_, which is the transpose of the usual composition
operator.

(feg)a = f(ga) a (gxf) = (a"g)f

la = a a1 = a
What is more, on the arithmetical side there is good use for the addition operator
_+_ and its neutral element 0. There does not seem to be any common notation
for their counterparts in the normal column, so I shall use the operator _°_, and

constant 0:

(fegla = facga
0a = 1

(g+f) = agxa'f
"0 - 1

Let us take the ‘¢’ rule for granted:
r a=1z"b
a=1>b

This is a mild form of extensionality, or perhaps exponentiality. Using it, we can

where z is fresh to a and b

prove from the definitions the following algebraic facts:

e (_x_,1) forms a monoid: i.e. _Xx_ is associative, and has 1 as a left and

right neutral element.
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-- ‘take over’ operators
import Prelude hiding ((x),("),(+))

—-— usual precedence
infixr 8 ~
infixr 7 *
infixr 6 +

m+n =\f >f "mx*xf " n
m* n =\f > "m) " n
m ™~ n =nnmn
nop f z =z

Figure A.1: Haskell code for the arithmetical combinators.

e (_+_,0) forms a monoid.

o _ x_ distributes over _4_ from the left:

ax(b+c) = axb+axc
a x 0 = 0

Curiously, these laws? are (roughly®) the main ones that continue to hold when
arithmetic is extended to arbitrary linear orderings (wellfounded or not). Other
laws that hold only in finite arithmetic fail. For example, the commutativity of
multiplication fails because it says that order of composition does not matter.

It is simple to translate arithmetical notation into Haskell. The code is in
figure A.1 on page 134. This gives us the possibility of using (+), (x), and (7)
as if they were ‘numbers’, that represent the arithmetical operations in the sense
that the following laws hold:

b a" (") = a’b
b a"(x) = axb
ba(+) = a+b

These are the ‘arithmetical combinators’ of Stenlund [101] page 21, Schwichten-
berg [104] page 19, Burge [10] page 35, Rosenbloom [93] page 122, Church [14]
page 10, and Fitch, except for a small point. All these authors define the mul-
tiplication combinator to be the transpose of (x), namely (°), which equals the
classic ‘B’ combinator. Their addition combinator is correspondingly different.
(Tt is _°_.) My definitions have the authority of Cantor, who appreciated expo-

nential notation, and said (after working with them for a while) that laws such

2I have seen such a structure called a ‘half-ring’. See [22].
3We do not have 1°a =1, nor 0 x a = 0.
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as:
a(f xg)="(a"g)"f

were ‘repulsive’ (abstofende in German) 4 .

A.3 Completeness

That the arithmetical combinators are functionally complete, means that we can
introduce A-abstraction as a facon-de-parler, and compile untyped lambda terms
into equivalent applicative terms (‘code’) with only the arithmetical combina-
tors. Because of the arithmetical setting, it is natural to use logarithmic notation
‘log, b instead of ‘Az.b’.

To compile into arithmetical combinators, first consider affine A-abstraction
log, b, where the bound variable z may have at most one occurrence in the body
b. The following cases are typical. I have used ‘section notation’, replacing a” (")

by (a”), and so on.

e log, z = 1. (1 can be defined as Junk”0, where Junk is anything, e.g. 0.)

log, (z°f) = f, if 2 does not occur in f. (The ‘n’ rule.)

log, (¢"z) =log, (z"(a")) = (a”), if  does not occur in a.

o log, (a;" -+ "ay;" M a) = (log, M) x a X (a;") X -+ x (a"), if z does not
occur in ay, . . ., a, a.
e log, a =0x (a”), if 2 does not occur in a.

Here is arithmetical code for the classical (Shonfinkel®) combinators C, B and

¢ = (x)x(()x)
B = (x)°C
K = 0C0C

The compilation of non-affine terms is handled by the first of the following

two ‘laws of logarithms’.

e log, (M x N) = (log, M) + (log, N).

41 learnt this from page 120 of Potter’s [86].

5T suggest that a correct definition of the multiplication combinator can be read into Wittgen-
stein’s Tractatus [116], at or around remarks 6.241, 6.02, and 6.021. Wittgenstein used expo-
nential notation in connection with iteration of operations, and in the 1910’s thought of numbers
@ la Church (to put it anachronistically).

SHe called them T, Z and C respectively.
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e log, 1=0.

As for the W combinator’, consider first it’s transpose:

W' = log, (log, (y"y"z))

A

Using the laws above for linear logarithms, one has W’ = log, ((y") x (y7)).
Then, by the first of the ‘laws of logarithms’ mentioned above,

W=()+() .

W=+ c.

Since C' plays such a key role in the translations of B, K and W, it may be
worth noting that
o C = (") x(ax)
b a"C = ax(b")
To compile a logarithmic expression into arithmetical code you can always do
it by ‘brute force’, that is by translating it first to affine form by introducing W
combinators and then by compilation of the resulting affine term. (In particular
cases you can sometimes do better, as is shown by the second of the two ‘laws of
logarithms’ shown above.)
The translation works just as well for the simply typed A-calculus. The types
of the arithmetical combinators are as follows.
() + A-(A—-B)— B
(x) : (C—-A)—-(A—-B)—C—B
+) - D—-C—-A)—-D—-A—-B)—-D—-C—B
0 A— B—B

It is noteworthy that all affine terms (that is, terms which do not contain (+)) are
well-typed. There is no way in which the Hindley-Milner type inference algorithm
can fail for such terms, since it is impossible that non-unifiable type schemas can
be inferred for two occurrences of the same variable.

The exponential function entails a certain shift in type. You can see this if
you think of numbers as iterating operations — for example, handing another coin
to a shopkeeper. Doing such a thing n + m times is just doing it n times, and
then m more. Doing a thing n x m times is doing m blocks in each of which it it
is done n times, as when handing over m piles which are each of n coins. Doing a

thing n™ times also involves doing something m times, but now the operation is

"Judging by Stenlund [101] p 22, the following definition is (essentially) due to F. B. Fitch.
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(even) higher order. It is the operation on a arbitrary concrete operation which
iterates it n times. (There is also a certain ‘gearing-up’ involved in the step from
addition to multiplication, since we have to think of the operation as something
that can be replaced by blocks or multiples of itself.)

The laws given above show how ‘logarithms’ interact with exponentiation,
and general multiplication (where the ‘base’ occurs in both factors). It may be
of some interest to see how it interacts with multiplication by ‘constants’. The

following are representative.
e log, (a x M) = (log, M) x (ax) if z does not occur in a.

e log, (M x a) = (log, M) x (x) x (a") if  does not occur in a.

log, (b+ a x ) = (ax) x (b+) if # does not occur in a or b.

log, (b+ 2 x a) = (x) x (a”) x (b+) if z does not occur in a or b.

e log, (axz+b)=(ax)x(+)x(b") if z does not occur in a or b.

e log, (z xa+b)=(x)x(a")x(+)x (b") if z does not occur in a or b.
Another observation that may have some interest is that the usual pairing

(a,b) =log, (c a b) comes out as (a”) x (b"), with projections (K ") and (07).

A.4 A clue for ordinal analysis of Godel’s T?

Systems of ordinal notations based on functionals of higher type over the ordinals
seem to have been studied first by W. Neumer, in a sequence of articles [73]
[74] [75] [76] [77], [78] [79] published in the 1950’s. The functionals that Neumer
was concerned with involved a kind of diagonalisation akin to Veblen’s derivative
operator. He called these functionals ‘facients’. Similar systems were developed
by Peter Aczel, who was influenced by Neumer’s papers, and certain ideas of S.
Feferman, reported in a paper [30] called ‘Hereditarily replete functionals over the
ordinals’). Aczel’s systems are described in [3]. Feferman’s ideas were developed
further by Weyrauch [113]. At this time, it was hoped that functionals of higher
type would prove a viable alternative to Bachmann’s use of higher number classes
in the development of notation systems for large ordinals. Bachmann’s approach
(involving explicit assignment of fundamental sequences) had been extended by
Pfeiffer and Isles to the very boundaries of human endurance. Unfortunately,
the ordinals obtained by the use of functionals of higher type were not large;

different ideas due to Aczel, Bridge, Bucholtz and Feferman soon emerged for
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the description of vast initial segments of the countable ordinals (still making use
of higher number classes). These set the basis for the ordinal notation systems
which are in use today. Interest in ordinal functionals of higher type apparently
subsided in the early 70’s.

Aczel’s paper [3] describes two hierarchies of functionals (with the same type
hierarchy): a ‘simple’ one in which the functionals express a form of w-iteration,
and a more powerful one in which the functionals express a form of diagonal-
isation, akin to Veblen’s derivative functional. The simpler hierarchy was the
inspiration for my conjecture at that time about the proof theoretic strength
of Martin-Lof’s system, as it seemed that it should in principle be possible to
formalise the hierarchy in that system. (In fact, his second hierarchy also sug-
gests what the ordinal should be if one were to extend the type theory by a
non-iterated generalised inductive definition: namely the ordinal ¢z, (0)(0) in the
notation used by Aczel, an ordinal somewhat above the Bachmann-Howard or-
dinal.) I also began to look for an ‘interpretation’ of Gddel’s T using iteration
functionals of finite type. Some initial investigations showed that the idea of
such an ‘interpretation’ could be carried through for primitive recursive arith-
metic with induction restricted to ground types, the corresponding system over
the constructive second number class, and indeed some artificial fragments of
Godel’s T. What I wanted was to find for the subject of proof-theoretic ordinal
analysis something comparable to the method of computability arguments at the
time developed by Tait, Howard, Girard, Martin-Lof, Prawitz, et al.. However 1
failed to find a suitable notion of ‘interpretation’ applicable to Godel’s T itself.

Recently, systems of functionals of finite type over the ordinals have again been
reconsidered by Danner [20] and Leivant, and in unpublished work of Simmons.
Their results have the same flavour as those of Schwichtenberg and Statman on
numeric functions representable in the simply typed lambda calculus. Interest in

ordinal functionals seems to be awakening again.

In view of the combinatorial completeness of the arithmetical combinators,
it is difficult to resist the notion that there may after all be a suitable sense of
‘interpretation’ in which Godel’s T can be interpreted in a system of w-iteration
functionals over the ordinals, in such a way as to give a simple analysis of its
proof theoretic ordinal. After all, we have an interpretation, even a compilation
of the simply typed A-calculus into a system of combinators based on four of the
five ingredients of Cantor Normal Form, namely 0, (+), (x), and (*). That leaves
only w, and surely there is some way of introducing a combinator with that name

so as to interpret the recursor R? To my intense frustration, a solution still evades
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me. The rest of this section indicates how I have approached the problem.

The approach I have taken is to consider extending the simply typed A-calculus
with streams; that is, I have added a unary type constructor written [A] for the
type of infinite streams of objects of type A, together with combinators for certain
pointwise operations on streams, and (crucially) a form of ‘cumulative product’

over streams of functions.

A.4.1 Construction and deconstruction

We add constants for pushing something on the front of a stream, and operators
_o and _ for taking the head and tail.

a:A as : [4]
(a,as) : [A]

a: [A] as : [A]
ap : A as’ 1 [A]
(a,as)y = a
(a,as) = as

A.4.2 Pointwise operations

We add a constant ! (‘bang’) for a form of infinite repetition, and operators ["],
[x] and [+]. The operator [*] represents pointwise application of a stream of
functions to a stream of arguments, while [x] and [+] are similarly pointwise

liftings of x and +.

a: A
al : [A]
w4 fsi[A— B
as|"|fs : [B]
as : [A — B bs: [B — (]




These constants are postulated to satisfy the following equations.

(al)o = a (al) = al
(as["]fs)o aso” f5, (as["]fs) = as'["]fs
(as[x]bs)y = asy X bsg (as[x]bs) = as'[x]bs’
(as[+]bs)o = aso+ bsg (as[+]bs) = as'[+]bs
A.4.3 Cumulative product
fo i [A— Al
[fs: [A — A

This combinator is stipulated to satisfy the following equations.
(HfS)O =1
(Lfs)" = (fso!) [x](1Lfs")

The motivation behind the equations for IIf may become apparent if one con-

templates the equation

H(fo, fi, for ) = (Lfo, o X fr o X i X fo,. . 0)

and bears in mind that f X g equals g ° f.
Note that if we order the arguments of the recursion combinator (in Godel’s

T) as follows:
R:(N—-A—-A)—>N-—-A—-A

with equations
R(b,0, a) = a
R(b,S(n),a) = b(n,R(b,n,a))

then we can rewrite the equations in the form

R(b,0) =1
R(b,S(n)) = R(b°S,n)°b(0)
= b(0) x R(S x b,n)

In view of these calculations, it is natural to suppose that the II operation
will be what one needs to interpret the recursion combinator.
A.4.4 Cumulative sum
It is natural to propose also (or at least hold in reserve) a cumulative sum operator.
fs:[A— B — B]

Yfs:[A— B — B
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This combinator would satisfy the following equations.

(EfS)O = 0
(Bfs)" = (fsoD[+](2f5)

Surely if anything deserves to be called w it is 3(1!).
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Appendix B

Formal proofs of accessibility of ¢

In 4.2.4.2 a proof of accessibility of notations for ordinals below ¢y was described
in intuitive terms. In this appendix there is a formal proof, expressed in the
language accepted by the type checker ‘Agda’, designed and implemented by the
Programming Logic group at the Department of Computing Science, Goteborg
University and Chalmers University of Technology, Goteborg, Sweden. A web
page for the system can currently (April 2000) be found using the following URL.

http://www.cs.chalmers.se/"catarina/agda.

Agda is quite similar to the programming language ‘Cayenne’, devised by Lennart

Augustsson, and currently accessible via the following URL.
http://www.md.chalmers.se/ augustss/cayenne/index.html

It is possible to create Agda scripts using a structured editor called ‘Alfa’; that
can display the material in a variety of styles and notations.

The proof was originally written using an earlier experimental type checker
from Chalmers called ‘half’. Agda has a number of sophisticated features which
are not, used here.

Concerning the proof, which is quite small, there are two points to note.

e There is no use of transfinite recursion. The only uses of recursion are over
the (finitary) datatype of notations, and the iterator and recursor over the
natural numbers. (It should be possible to code the notations as natural

numbers; I have not tried it.)

e The proof of the final theorem requires closure of the universe of sets under
the predicate transformer G. On the other hand, each instance of the theorem

(for a specific ordinal notation) can be proved without the use of a universe.

142



10

20

30

T

[2000-04-07 21:18:43]
Proof of accessibility of a system of notations

for epsilon_O .

{- Datatype of notations for epsilon_0 -}
AE :: Set =data 0 | W (a :: AE) (b :: AE)

{- some less barbarous notation, so we can use infix -}
w (a :: AE) (b :: AE) :: AE=WG_ a b

{- zero -}

zeroAE :: AE = 00_

{- succ -}

succAE (a :: AE) :: AE = a ‘w‘ zeroAE

{- Some auxiliary data structures -}

{- empty set -}

NO :: Set = data

{- ex falso quodlibet -}

efq (X :: Set) (x :: NO) :: X = case x of {}

{- singleton set -}
N1 :: Set = data nO
{- its element -}

star :: N1 = n0O@_

{- natural numbers -}
Nat :: Set = data Z | S (p :: Nat)

{- some less barbarous notation -}
zero :: Nat = Z@_

succ (p :: Nat) :: Nat = S@_ p

{- recursion on Nat -}
Rec (X :: Nat -> Set) -- predicate
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(x :: X zero) -- basis

(f :: (n :: Nat)-> X n -> X (succ n)) -- step
(n :: Nat) :: X n
= case n of (Z) ->x

(Sp) > f p (Rec X x f p)

{- iteration of operations on AE -}
It (f :: AE -> AE) (n :: Nat) (a :: AE) :: AE
= Rec (\(_::Nat)-—>AE) a (\(_::Nat)->f) n

{- Cofinality of a notation -}
C (x :: AE) :: Set

= case x of (0) -> NO
(W _ b) -> case b of
(o) -> N1

(W _ _) -> Nat

{- Immediate predecessors of a notation -}
pd (a :: AE) (t :: C a) :: AE

= case a of
(0) -> case t of {}
(W a1l a2) -> case a2 of
(0) -> at

(W bl b2) -> case b2 of
(0) > It (\(x::AE) > x ‘w® bl) t al
W _ ) —>al ‘w (pd a2 t)

AE -> Set
Pred -> Pred

Pred :: Type
PT :: Type

{- PT induced by transition structure -}
B :: PT = \(X :: Pred) -> \(a :: AE)->
(t :: Ca) >X (pd at)

{- Progressivity of a predicate -}
Prog (X :: Pred) :: Set = (a :: AE) > B X a ->X a
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{- Accessibility of a notation with respect to
a given predicate -}
Acc :: PT = \(X :: Pred) -> \(a :: AE) -> Prog X -> X a

{- Gentzen’s PT -}
80 G :: PT = \(X :: Pred) -> \(b :: AE) —>
(a :: AE) > X a > X (a ‘w' b)

{- G preserves progressivity -}
lemma (X :: Pred) :: Prog X -> Prog (G X)
= \(p :: Prog X) —>
\(b :: AE) —>
\(h :: B (GX) b) —>
\(a :: AE) —>
\(xa :: X a) —>

90 let arg :: B X (a ‘w’ b)
= case b of
(0 -> (\(t::N1) -> xa)
(W bl b2) >

case b2 of
(0) -> let f :: AE -> AE
= \(x :: AE) > x ‘w‘ bl
itf (n :: Nat) :: AE

=1t £fna
in Rec (\(n::Nat) -> X (itf n))
100 xa (\(n::Nat) -> h star (itf n))

W _ ) > (\(t::Nat) -> h t a xa)
in p (a ‘w° b) arg

{- All notations are accessible -}
{- RECURSIVE over AE, with a large predicate -}
theorem (a :: AE) (X :: Pred) :: Acc X a

= \(pX :: Prog X) —->

case a of
) -> pX zeroAE (\(t::NO)->efq (X (pd zeroAE t)) t)
110 (W a’ b’) -> theorem b’ (G X)

(lemma X pX) a’ (theorem a’ X pX)
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Appendix C

Formal development of theory of
lenses

In 4.3.2 the basic theory of lenses was sketched. In this appendix there is a

formal development of this theory, expressed in the language accepted by the

type checker ‘Agda’. (See appendix B for further information on this system.)
The material is split into several files, listed in separate sections. There is at

least one non-presentational problem with it of which I am aware.

e [ have used a notation system different from the one described in chapter
4. The system is perhaps ‘morally’ the same as the one in the body of the
thesis, but the problem of justifying its use remains. I have used a different
version because of its simplicity. It seems that use of the ‘official’ system of
notations (set out in section C.4) would precipitate an explosion in the size

of the code.

The crucial thing is that the use of transfinite recursion has been avoided,
except for three instances used in setting up the notation system. In the
proofs of accessibility, there is no use of transfinite recursion. This has to
be verified by inspection. (It might have been possible to arrange the code

so as to obtain greater assurance of this.)

Of course, the presentation is not particularly lucid, and the code style not at
all what I would wish. (It was ported rather rapidly from another proof checker

which had ‘stopped working’.)

C.1 Basic amenities

The following file defines some basic notions, many (but not necessarily all) of

which are used throughout the code.
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10

20

30

{- logical constants, and common amenities -}

package Amenities where

Fam (A :: Type) :: Type
=sig{ I ::8et ;i ::1I->A1%

Fam_map (A, B :: Set) (f :: A -> B)
:: Fam A -> Fam B
= \(h::Fam A) ->

h.TI

\@G::I) > f (h.i 1)

struct 1

i

Pow (A :: Type) :: Type
= A -> Set

Pow_map (A, B :: Set) (f :: A -> B)
:: Pow B -> Pow A
= \(X :: Pow B) —>
\(a :: A) —>
X (f a)

Rel (A, B :: Type) :: Type
= A -> Pow B

Pi (A :: Set) (B :: Pow A) :: Set = (a::A) -> B a
arr (A :: Set) (B :: Set) :: Set
=Pi A (\(L::A) > B)
op (A :: Set) :: Set = A ‘arr‘ A
op2 (A :: Set) :: Set = A ‘arr op A

implies :: Set -> Set -> Set = arr
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40

60

70

Si (A :: S

and (A, B ::

=Si A
and?2 (A ::

et) (B :: Pow A)
= sig fst ::

A ; snd ::
Set) :: Set
(\(_::A) -> B)

Set) (B :: Set)

= (A ‘and‘ B) ‘and‘ C

andIn (A, B ::

= \(a::

struc

andElimL (A
= \(h::
andElimR (A
= \(h::

sigIn (A ::

(a ::

A) -> \(b::B) -
t fst

snd = b
, B :: Set)
and A B) -> h.f
, B :: Set)
and A B) -> h.s

a

:: Set

B fst

(C ::

>

st

nd

Set) (B :: Pow A)

= \(a::A) > \(b::B a) ->

struc

sigOutL (A ::
(B ::
(h ::

t fst = a

snd =D

Set)
Pow A)
Si A B)

o A

= h.fst

sigOutR (A ::
(B ::
(h ::

Set)
Pow A)
Si A B)

:: B (sigOutL A B h)

= h.snd

split (A ::
(c ::
(h ::

Set) :: Set

Set) :: A->B -> A ‘and‘ B

0 A ‘and B —> A

:: A ‘and® B —> B

A) -=>B a->8S8i AB

Set) (B :: Pow A) (C :: Pow (Si A B))
(a :: A) > (b ::

Si A B)
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:: Ch
= ¢ (sigOutL A B h) (sigOutR A B h)

times :: Set -> Set -> Set = and
pair :: (A, B :: Set) -> A -> B -> A ‘and‘ B

80 = andIn
pO :: (A, B :: Set) -> A ‘and® B -> A = andElimL
pl :: (A, B :: Set) -> A ‘and‘ B -> B = andElimR
{-—— additive things --------—-—-———- }

or (A, B :: Set) :: Set
= data inl (a :: A) | inr (b :: B)
orInl. (A, B :: Set) :: A -> A ‘or‘ B
= \(h::A) -> inl@_ h
90 orInR (A :: Set) (B :: Set) :: B -> A ‘or‘ B
= \(h::B) -> inr@_ h
orElim (A, B, C :: Set)
(A->C) > @B->C ->A ‘or* B->C
= \(ha::A -> C) -> \(hb::B -> C) -> \(hO::or A B) —>
case hO of
(inl a) -> ha a

(inr D) -> hb b

plus :: Set -> Set —> Set = or
100 copair:: (A, B, C :: Set) ->
(A->C) > (B ->C) > A ‘plus* B > C
= orElim
i0 :: (A, B :: Set) -> A ‘and‘ B -> A = andElimL
il :: (A, B :: Set) -> A ‘and‘ B -> B = andElimR
{-——- extremal things -------—--—-———- }

{- empty set, absurdity -}
NO :: Set = data

110 falsum :: Set = NO
{- ex falso quodlibet -}
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efq (X :: Set) (x :: NO) :: X = case x of {}

{- singleton set, vacuity -}
N1 :: Set = data n0O

verum :: Set = N1

star :: N1 = n0@_

The following file defines the set of natural numbers, their constructors, and

the constant for recursion on the natural numbers.

C.2 Natural Numbers

package Naturals where
{- the datatype -}

Nat :: Set = data Z | S (p :: Nat)
zero :: Nat = Z@_
succ (p :: Nat) :: Nat = S@_ p

{- A convenient abbreviation. Note, we
cannot use it to speak of sequences of Types. -}
Seq (A :: Set) :: Set = Nat -> A

{- recursion on Nat -}
Rec (X :: Nat —> Set)

(x :: X zero)
(f :: (m :: Nat) -> X n -> X (succ n))
(n :: Nat)
:: Xn
= case n of
(Z) -> x

(Sp) >fp (Rec X x f p)

{- iteration on Nat: f°n -}
It (X :: Set) (f :: X > X) (n :: Nat)
:: X > X
= \(x::X)-> Rec (\(_::Nat)->X) x (\(_::Nat)->f) n
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{- tail recursive version -}
ItT (X :: Set) (f :: X > X) (n :: Nat) :: X > X
30 = It X -> X)
(g :: X > X) > \::X) > g (f x))
n

A\ :: X)) > %)

C.3 Next Universe construction

The following file defines the operation which erects a universe over a given family

of sets.

1  ——#include "amenities.agda"

-—#include '"naturals.agda"

{- package defining the ordinary kind of ‘universe over’

operator. -}
{- There is a parameter for the type of ordinal terms -}

package UniverseOver (0T :: Set)
10 (U :: Set)
(T :: U-> Set) where
open Amenities use NO, N1, Pi, Si

open Naturals use Nat, NatIt = It, NatItT = ItT
mutual

set :: Set
=datau | t (x :: U)
| pi (d :: set) (p :: el d -> set)
20 | si (d :: set) (p :: el d -> set)
| nOcode | nicode | natcode
|

otcode

el :: set -> Set
= \ (x :: set)

|
\4
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otcode

natcode ::

nOcode

nlcode

groundU ::
groundT ::
= \(x ::

pi (a ::

si (a ::

arr (a ::

and (a ::

op (a ::

pin (p ::
piot(p ::

case x of
(w) > U
(t x) > T x

(pi d p) > Pi (el d) (\(x :: el d) -> el (p x))
(si d p) > 8Si (el d) (\(x :: el d) -> el (p x))

(nOcode) -> NO
(nlcode) -> N1
(natcode) -> Nat
(otcode) -> 0T

:: set = otcode@_

set = natcode@_
:: set = nOcode@_
:: set = nlcode@_
set = ul@_
el groundU -> set
el groundU) -> t@_ x
set) (p :: el a -> set) :: set = pi@_
set) (p :: el a -> set) :: set = si@_
set) (b :: set) :: set = pi a (\(_ ::
set) (b :: set) :: set = si a (\(_ ::
set ) :: set = a ‘arr‘ a
Nat -> set) :: set = pi natcode (\(n ::

0T -> set) :: set

C.4 Official notation system

pi otcode (\(a ::

ap
ap

el a) —> b)
el a) —> b)

Nat) -> p n)
0T ) -> p a)

The following file contains the ‘official” definition of the notation system for I'y; it

is not used. It is included here so that the reader will understand why I have used

instead (in C.5) another notation system. The sheer size of the definition of the

transition structure is horrible, as is the idea that its structure might be repeated

again and again in the code. It may be that the complexity is only apparent, not

real; there might be a simple idea or coding trick which would render use of the
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‘official’ notations feasible.

There is another problem beside that of sheer size, that may be more serious.
An advantage of the approach I have taken® is that I have been able to deal
directly with sequences of functions on the ordinal notations, rather than with
syntactical structures representing those sequences. It is not entirely clear to me

how to re-code the proof to use a more conventional system of ordinal notations.

-—#include "amenities.agda"

--#include "naturals.agda"

package AEdef where
open Amenities use NO, efq, N1, op

open Naturals wuse Nat, NatIt = It

{- Datatype of notations for gamma 0 -}
AE :: Set
= data O
| W (a :: AE) (b :: AE)
| V. (a :: AE) (b :: AE)

{- an abbreviation -}
ItAE :: (f::op AE) -> (n::Nat) -> op AE = NatIt AE

{- some less barbarous notation, so we can use infix -}
w(a :: AE) (b :: AE) :: AE = W0_ a b
v (a :: AE) (b :: AE) :: AE=V0_ a b

{- zero -}
zero :: AE = 0@

{- succ -}

succ :: op AE = \ (a :: AE) -> a ‘w‘ zero
{- (naught plus) omega-to-the ... -}
wexp :: op AE = w zero

IThe idea for this approach comes from a seminar on ordinal notations given by Martin-Lof
in the early 1970’s.
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30 {- w with its arguments transposeded. (Convenient.) -}
wt (a, b :: AE) :: AE=w b a

{- Cofinality of a notation -}
C (a :: AE) :: Set

= case a of
(0) -> NO
(W _ b) -> case b of
(0 -> N1
(W _ _) -> Nat
40 (V _ _) -> Nat

(V _ _) -> Nat

{- Immediate predecessors of a notation.
This enormous definition seems a repellent
waste of time, energy and paper. Instead, in the lens
constructions I have used one or two instances
of transfinite recursion to define the veblen hierarchy
on a set Ord of ‘abstract ordinal notations’.
where 0 :: Ord, S :: Ord -> Ord, L :: (N —> 0rd) -> Ord.

50 The question may be asked: isn’t this cheating?
I'm (almost) sure it is essentially sound.
-}
pd (x :: AE) (t :: C x) :: AE
= case x of
(0) -> case t of {}
(W a b)
-> case b of
Q@ —> a
(W bl b2)
60 -> case b2 of

0 > {-a+w(bl + 1) -}
ItAE (wt b) t a
W _ )
> a ‘w'pdbt
v _ D
> a ‘w'pdbt
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(V__.)->a ‘wWopdbt

(V ab)
-> case a of
70 (0) => {- phi 0 b -}
case b of
(0) -> {- phi 0 0 -}
ItAE wexp t zero
(W b1 b2)
-> case b2 of
(0) -> {- phi 0 (b1 + 1) -}
ItAE wexp t (succ (a ‘v bl))
W _ D)
> a ‘vipdbt
80 v _ 2

> a ‘vipdbt
(V__)->a‘“v (pdbt)
(W a1l a2)
-> case a2 of
(0) -> {- phi (a1l + 1) b -}
case b of
(0) -> {- phi (a1 + 1) 0 -}
ItAE (v a) t zero
(W bl b2)
90 -> case b2 of
(0) > {- phi (al + 1) (bl + 1) -}
ItAE (v a) t
(succ (a ‘v‘ bl))
W _ )
> a ‘vipdbt
v _ 2
> a ‘vipdbt
v _ D
> a ‘vipdbt
100 W _ )
-> case b of
() > {-phi 10 -}
pdat ‘vib
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(W b1 b2)
-> case b2 of
(@) -> {- phi 1 (b1 + 1) -}
pd at ‘v¢ succ (a ‘v bil)
W _ D)
> a ‘vipdbt
110 v _ D
> a ‘vipdbt
v _ D)
->a ‘vipdbt
v _ D)
-> case b of
(0) >pdat ‘vib
(W b1 b2)
-> case b2 of
(0) >pd at ‘v succ (a ‘v‘ bl)
120 W _ )
> a ‘vipdbt
v _ D)
> a ‘vipdbt
v _ D
->a ‘vipdbt
v _ 2
-> case b of
(@) >pdat ‘vib
(W bl b2)
130 -> case b2 of
(0) -> {- phi a (b1 + 1) -}

pd a t ‘v¢ succ (a ‘v¢ bl)

w _ 2
->a ‘vipdbt

v _ D
->a ‘vipdbt

v _ D)
> a ‘vipdbt
Pred :: Type
140 = AE -> Set
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{- predicate transformer -}
PT :: Type
= Pred -> Pred

{- PT induced by transition structure -}
Below :: PT
= \(X :: Pred) -> \(a :: AE) ->
(t :: Ca) > X (pd at)

{- Progressivity -}
Prog (X :: Pred) :: Set
= (a :: AE) -> Below X a > X a

C.5 Unofficial notation system

This section contains the system of ordinal notations used in the formal develop-
ment of the theory of lenses. T shall call these ‘formal ordinals’. In essence, this

consists in adding the following constants.
e Ord : Set, for a set of ordinals,

e constructors zero : Ord, succ : Ord — Ord, limit : (Nat — Ord) — Ord.

(There is no recursor.)

e function constants v, w, and V : (Ord — Ord) — Ord — Ord (written
nabla in the code), and ¢ : Ord — Ord, together with certain computa-
tion rules. These rules are instances of general (transfinite) recursion over

ordinals.

To take V : (Ord — Ord) — Ord — Ord first, its computation rules are as
follows.

V(f,a) = case a of zero — f(zero)
suce(a’) = f(succ(V(f, o))
limit(§) — limit(An. V(f,&(n)))
This is a key part of the definition of the Veblen hierarchy. (We have for example
that ¢o41 = V(¢,"). Note that V is a ‘type 2" functional. Formally, its definition

uses ‘type 0’ transfinite recursion at Ord.?

In fact, V(f, @) = (f ° succ)*(f(zero)).
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As for w, which denotes Ao, 8.« + w®, the most convenient way to give its
computation rules is to give instead those for its (less familiar) transpose wt =

Aa, B.w(B, ). 1 write the first argument to wt as a subscript, and use currying.

wt, = case a of zero — succ
succ(a) — (wty)¥
limit(§) — AB. limit(An. wie(B3))

The notation (_)“ denotes w—iteration of functions: f“(a) = limit(An. f"(a).
This kind of iteration can be defined using only recursion on the natural num-
bers, without transfinite recursion. Note that the definition of wt uses ‘type 0’
transfinite recursion at Ord.3

As for v, which denotes Aa, 8. ¢, () (based on Aa.e€,) its computation rules

are as follows. I write the first argument as a subscript and use currying.

v, = case a of zero — V(. wt,zero)®
succ(a’) — V(vy®)
limit(&) — V(AB. limit(An. ven)3))

1  --#include "amenities.agda"

-—#include "naturals.agda"

{- This package is concerned with the Cantor and

Veblen hierarchies, in the context of formal ordinals -}
package Ordinals where
open Amenities use
10 Pi, implies , and,

N1, NO

open Naturals use
Nat, It, Rec, Seq

Ord :: Set = data O
| S (a :: 0rd)

| L (Is :: (n :: Nat)->Ord)

20 {- Some less barbarous notation -}

3In fact, wtg = ()P succ.
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0@0rd
succ :: Ord -> Ord S@0rd
limit :: (Nat -> 0rd) -> Ord = L@Ord

zero :: Ord

{—-—- The transition structure on Ord ---}

{- Cofinality -}
C (a :: 0rd) :: Set

= case a of
(0)) -> NO
(S a’) -> N1

(L 1s) -> Nat

{- Predecessor -}
pd (a :: 0rd) (t :: C a) :: Ord

= case a of
(0) -> case t of { }
(S a’) > a’

(L 1s) > 1s t

Op :: Set = 0rd -> Ord

{- Composing operations -}
Comp :: Op —> Op —> Op
=\(f :: Op) > \(g :: Op) > \(a :: Ord) —>
f (g a)

{- Iterating operations, to get a sequence -}
OpIt :: Op -> Seq Op
= It Ord

{- pointwise limit of a seuence of operations -}
OpLim :: Seq Op —> Op
= \(fs :: Nat -> Op) -> \(a :: Ord) ->
limit (\(n :: Nat) -> fs n a)
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{- omega iterating an operation -}
OpItw :: Op -> Op
= \(f :: Op) -> OpLim (OpIt f)

{- uses transfinite recursion (in second argument). -}
w :: Ord -> Ord -> Ord
= \(a :: Ord) ->
\(b :: Ord) ->
case b of
(0) -> succ a
(8 b’) —> OpItw (\(x :: Ord) -> x ‘w* b’) a
(L 1s) -> limit (\(n :: Nat) -> a ‘w‘ (1s n))

{- The function a — w"a -}

wexp :: Op = w zero

{-\a > (f.(+1))"a (f 0) : an essential part of derivative -}
{- uses transfinite recursion. -}
Nabla :: Op -> Op
=\(f :: Op) -> \(a :: Ord) ->
case a of

)] -> f zero

(S a’) -> f (succ (Nabla f a’))

(L 1s) -> limit (\(n :: Nat) -> Nabla f (1s n))

{- derivative of a normal function -}
deriv :: Op -> Op
= \(f :: Op) -> Nabla (OpItw f)

{- derivative of a sequence of normal function -}
derivl :: (Nat -> Op) —-> Op

= \(sf :: Nat -> Op) -> Nabla (OpLim sf)
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{- Veblen hierarchy -}
{- uses transfinite recursion -}
v :: Ord -> Ord -> Ord
= \(a :: Ord) ->
100 let { pds :: Seq Op =
case a of
(0) -> 0pIt (w a)
(8 a’) -> OpIt (v a’)
(L 1s) -> \(n :: Nat) -> v (1s n)
} in Nabla (OpLim pds)

veb :: Op
= \(a :: 0rd) -> v a zero
110 {-——- The landmark ordinals --——---———--——-— }
epsilon0 :: Ord = veb zero

GammaO :: Ord = limit (\ (n :: Nat) —>

It Ord veb n zero)

C.6 The theory of lenses

1  --#include "amenities.agda"
--#include "naturals.agda"
--#include "ordinals.agda"

--#include "nextU.agda"

{- This file, together with the files mentioned
above, contains a proof of accessibility for GammaO,
hence a sequence of proofs of accessibility, one for
each term in the fundamental sequence for GammaO.
10
Each proof can be expressed
in a type theory in which there is a next universe

operator (ie. an external sequence of universes).
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mapping a family of sets to the least family containing
it as an internal subfamily which is closed under certain
operations (pi, sigma, Nat).

(Admittedly it needs close inspection to see this.)

Closer inspection should reveal that we can construct
a proof of accessibility for all notations, and

with a number of universes depending on the

levels to which the veblen hierarchy is nested.

(But this is a little complex to set up.)

The main result is called Corollary and is the
last definition of the file.
-}

open Ordinals use
Ord, zero, limit, succ,
C, pd,
OpIt, OpItw, OpLim,
Nabla,
W, wexp, epsilonO,
v, veb, GammaO,

deriv, derivl

open Amenities

use N1, star,

NO, efq,
Si, and,
op, op2,
Pow, Fam

open Naturals
use Nat, Seq,
It, Rec

package small( FS :: Fam Set ) where
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ot ::

Us ::
Ts ::

Set

Set

= Ord

=FS.I

Us -> Set = FS.1i

{- small sets -}

open UniverseOver Ot Us Ts use

Next ::

Pi,
pin, piot

set,

el,

otcode,

arr,

Fam Set = struct

I = set

i=-=el

{- large sets -}

open UniverseOver Ot set el use

SET =

EL = e

0T =
ARR =
PI =
PIN =
PIOT=
SI =
AND =

set,

1,
otcode,
arr,
pi,
pin,
piot,
si,

and

{- The type of real predicates -}

Pred ::

Type = 0t -> Set

{- The Set of small predicates -}

pred ::

Set = 0t -> set

{- The Set of big predicates -}
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PRED :: Set = 0t -> SET

90 {- the representation of pred
in SET. We
have EL PRED = pred; so PRED

represents or reflects pred. -}
predcode :: SET = otcode@SET ‘ARR‘ u@SET
{- that X is a subset of Y -}

subset (X, Y :: pred) :: set
= piot (\(a :: Ot)-> X a ‘arr‘ Y a)

100
{- That "is a subset of" is transitive -}
subsetTrans (p, q, r :: pred)
:: el ((p ‘subset‘ q) ‘arr’
((q ‘subset‘ r) ‘arr‘ (p ‘subset‘ 1)))
= \(pq :: el (p ‘subset‘ q)) —>
\(qr :: el (q ‘subset‘ r)) ->
\(a :: 0t) —>
\(pa :: el (p a)) —->
qr a (pq a pa)
110
{- That "is a subset of" is reflexive -}
subsetRefl (p :: pred)
:: el (p ‘subset‘ p)
= \(a :: 0t) -> \(pa :: el (p a)) -> pa
{- Intersection of a sequence of predicates. -}
capn (Xs :: Seq pred) :: pred
= \(a :: 0t) -> pin (\(n :: Nat) -> X¥s n a)
120 {- That capn gives a lower bound for

sequences of predicates
-}
capnLemQut (ps :: Seq pred)
:: el (pin (\(n :: Nat) -> capn ps ‘subset‘ (ps n)))
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= \(n :: Nat) —>
\(a :: 0t) —>
\(psa :: el (capn ps a)) -> psa n

{- That capn is a greatest lower bound
130 for sequences of predicates
-}
capnLemIn (ps :: Seq pred) (q :: pred)
:: el (pin (\(n :: Nat) -> q ‘subset‘ (ps n))
‘arr‘ (q ‘subset‘ capn ps))
= \(gps :: el (pin (\(n :: Nat) -> q ‘subset‘ ps n))) —>
\(a :: 0t) —>
\(ga :: el (q a)) —->
\(n :: Nat) —->

ges n a qa
140
{- Operation on a predicate which precomposes it with
an operation. -}
sub (X :: pred) (f :: op Ot) :: pred
=\(a :: 0t) > X (f a)
{- Property of a predicate that it is closed
under an operation -}
clunder (X :: pred) (f :: op 0Ot) :: set
= X ‘subset‘ (X ‘sub‘ f)
150
{- predicate transformer induced by
a family of operations
= a binary operation -}
clunder2 (X :: pred) (f :: op2 0t) :: pred
= \(a :: 0t) -> X ‘clunder‘ f a
{- PT induced by transition structure -}
B :: pred -> pred
= \(X :: pred) ->
160 \(a :: 0t) —>

case a of
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(0) -> nlcode@set
(8 a’) > X a’
(L 1s) -> pin (\(n :: Nat) -> X (1s n))

{- That B is monotone. -}

BM (p :: pred) (q :: pred)
:: el ((p ‘subset‘ q) ‘arr‘ (B p ‘subset‘ B q))
= \(pq :: el (p ‘subset‘ q)) ->

170 \(a :: 0t) ->
case a of
(o)) > \(x :: N1) > x
(8 a’) -> pq a’
(L 1s) -> \(a’ :: el (B p (1imit 1s8))) —>

\(n :: Nat) -> pqg (Is n) (a’ n)

{- Progressivity of a predicate -}
prog (X :: pred) :: set
= piot (\(a :: 0t) -> B X a ‘arr‘ X a)
180
Prog (X :: pred) :: Set
= el (prog X)

B’ :: PRED -> PRED
= \(X :: PRED) ->
\(a :: 0t) —>
case a of
(0) -> nlcode@SET -- t@SET (nlcode@set)
(s a’) > X a’
190 (L 1s) -> PIN (\(n :: Nat) -> X (1s n))

PROG (X :: PRED) :: SET
= PIOT (\( a :: 0t ) -> B’ X a ‘ARR X a)

{- Accessibility of a notation.

Quantifies over pred. -}

Acc (a :: 0t) :: Set
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= (X :: pred) ->

el (prog X ‘arr‘ X a)

AccO :: Acc zero

= \(X::pred) -> \(a::Prog X) -> a zero star

AccS (a :: 0t) :: Acc a -> Acc (succ a)

= \(h :: Acc a) —>
\(X :: pred) ->
\(pX :: Prog X) —->
pX (succ a) (h X pX)

AccL (fs :: Seq 0t) :: ((n ::
= \(h :: (n::Nat) —> Acc (fs n)) —>

\(X :: pred) ->
\(pX :: Prog X) —>

Nat) -> Acc (fs n)) -> Acc (limit fs)

pX (1imit fs) (\(n::Nat) -> h n X pX)

acc_code (a :: 0t) :: SET

= PI predcode (\(X :: pred) ->
t@SET (prog X ‘arr‘ X a))

ACC (a :: 0t) :: Set
= (X :: PRED)—>

EL (PROG X ‘ARR‘ X a)

{- That if a predicate is closed under an operation, then

it is also closed under all iterates of that operation. -}

closurelemma (X :: pred)
(f :: op Ot)

(clf :: el (X ‘clunder‘ £f))
:: el (pin (\(n :: Nat) -> X ‘clunder‘ OpIt f n))

= \(n :: Nat) ->
\(a :: 0t) —>
\(xa :: el (X a)) ->
Rec ( \(k :: Nat) ->

el (X (OpIt f k a)) )
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xa ( \(n’ :: Nat) ->
\(h :: el (X (OpIt £ n’ a))) —>
clf (OpIt £ n’ a) h) n

240
{- That the intersection of a sequence of progressive
predicates is itself progressive. -}
capnProg (ps :: Seq pred)
:: el ((pin (\(n :: Nat) -> prog (ps n)))
‘arr‘ prog (capn ps))
= \ (psp :: el (pin (\(n :: Nat) -> prog (ps n)) )) —>
let L :: pred = B (capn ps)
body (n :: Nat)
:: el (B (capn ps) ‘subset‘ ps n) =
250 let M :: pred = B (ps n)
stepl :: el (capn ps ‘subset‘ ps n)
= capnLemOut ps n
step2 :: el (B (capn ps) ‘subset‘ B (ps n))
= BM (capn ps) (ps n) stepl
in subsetTrans L M (ps n) step2 (psp n)
in capnlemIn ps L body
{----—— predicate transformers ----------- +
260 PT :: Set = op pred
PT’ :: SET = predcode ‘ARR‘ predcode
PTid it PT = \(x :: pred) —> x
{- composition of predicate transformers -}
PTcomp :: op2 PT = \(f :: PT) -> \(g :: PT) —>
\(x :: pred) -> £ (g x)
{- iteration of predicate transformers. -}
ItPT :: PT -> Seq PT = It pred
270

{- pointwise intersection of sequences of PTs. -}
PTlim :: Seq PT —> PT
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= \(pts :: Seq PT) -> \(a :: pred) ->
capn (\(n :: Nat) -> pts n a)

{- preservation of progressivity by a PT -}

PProg (F :: pred -> pred) :: Set
= (X :: pred) ->
280 Prog X -> Prog (F X)

{- same thing reflected as a SET -}
PPROG(F :: pred -> pred) :: SET
= PI predcode (\(X :: pred) ->
t@SET (prog X ‘arr‘ prog (F X)))

{- Composition preserves preservation of progressivity -}

PProgComp
290 (F :: PT ) (pF :: PProg F)
(G :: PT ) (pG :: PProg G)
:: PProg (PTcomp F G)
= \(X :: pred) ->
\(p :: Prog X) ->
pF (G X) (pG X p)

{- Identity PT preserves progressivity. -}

PProgld :: PProg PTid
300 = \(X :: pred) -> \(h :: Prog X) -=> h

{- Iteration preserves preservation of progressivity. -}

ItPProg (F :: PT) (pF :: PProg F)
(n :: Nat)
:: PProg (ItPT F n)
= \(X :: pred) -> \(pX :: Prog X) ->
Rec (\(k :: Nat) -> Prog (ItPT F k X))
pX (\(k :: Nat) -> \(h’ :: Prog (ItPT F k X)) —>
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310 pF (ItPT F k X) h’) n

{- Given a sequence of predicate transformers,
if they each preserve progressivity,
then so does their pointwise limit -}
PProgLim ( pts :: Seq PT)
(pp :: (m :: Nat)-> PProg (pts n) )
:: PProg (PTlim pts)
= \(X :: pred) ->
\(p :: Prog X) ->
320 capnProg (\(n :: Nat) -> pts n X)
(\(n :: Nat) -> pp n X p)

{- Gentzen’s PT -}
G :: PT
= \(X :: pred) ->
X ‘clunder2‘ (\(a, b :: 0t) -> b ‘w° a)

GentzensLemma :: PProg G
= \(X :: pred) ->
330 \(p :: Prog X) ->
\(x :: 0t) ->

\(h :: el (B (G X) x)) —>
\(a :: 0t) —>
\(xa :: el (X a)) —>

let arg :: el (B X (a ‘w' x))
= case x of
(o)) -> xXa
(8 a’) —>
let f :: 0t > 0t

340

\(x :: 0t) > x ‘w¢ a’

itf :: Nat -> Ot

\(k :: Nat)-> It Ot f k a

in Rec (\(n :: Nat) -> el (X (itf n)))
xa (\(n :: Nat) -> h (itf n))

(L 1s) > (\(n :: Nat) -> h n a xa)

in p (a ‘w’ x) arg
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LensLemmaG (a :: 0t) (acca :: Acc a)
(b :: 0t) (accb :: Acc b)
350 it Acc (w a b)
= \(X::pred) ->
\(pX::el (prog X)) ->
accb (G X) (GentzensLemma X pX) a (acca X pX)

{- A protolens is a predicate transformer that

preserves progressivity -}

ProtolLens :: Set
= Si PT PProg
360
{- Coded as a large set -}
PROTOLENS :: SET = si@SET PT’ PPROG

ProtolLensId :: ProtolLens
= struct
fst

PTid
PProgld

snd

ProtoLensComp :: op2 ProtoLens
370 = \(f :: ProtolLens) ->
\(g :: ProtoLens) —->
struct

fst

PTcomp f.fst g.fst

snd = PProgComp f.fst f.snd g.fst g.snd
{- Finite iteration of proto-lenses -}
ProtoLensIt :: ProtolLens -> Seq Protolens
= \(pl :: ProtoLens) ->
\(n :: Nat) ->
380 It ProtoLens (ProtoLensComp pl) n pl

{- The notion of Lens -}
Lens (f :: op 0t) :: Set
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= Si ProtoLens (\(pl :: Protolens) ->
(X :: pred) -> Prog X ->
el ((pl.fst X) ‘subset‘ (X ‘sub‘ £f) ))

{- Coded as a large set -}
LENS (f :: op Ot) :: SET
390 = si@SET PROTOLENS (\(pl :: ProtolLens) ->
PI predcode (\(X :: pred) ->
t@SET (prog X ‘arr‘ (pl.fst X ‘subset‘ (X ‘sub‘ £))) ))

{- The accessible notations are closed under any operation that

possesses a lens. -}

LensLemmaV (f :: op Ot)
(1f :: Lens f)
(a :: 0Ot)
400 i1 Acc a => Acc (f a)
= \(h :: Acc a) —>
\(X :: pred) —>
\(pX :: Prog X) —->
1f.snd X pX a (h (1f.fst.fst X) (1f.fst.snd X pX))

{- The identity function possesses a lens -}

LensId :: Lens (\(x :: 0t) —> x)

= struct
410 fst = ProtolLensId
snd = \(X :: pred) ->

\(pX :: Prog X) —>
\(a :: 0t) —>
\(xa :: el (X a)) —> xa

{- Closure of lenses under composition. -}
LensComp (f :: op Ot) (1f :: Lens f)
(g :: op Ot) (1g :: Lens g)

420 :: Lens (\(a :: 0t) —> £ (g a))
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= struct

fst = ProtoLensComp 1lg.fst 1f.fst
snd = \(X :: pred) -> \(pX :: Prog X) —->
\(a :: 0t) ->
\(a’ :: el (fst.fst X a)) —->
1f.snd X pX
(g a) (1g.snd (1f.fst.fst X)
(1f.fst.snd X pX) a a’)
430 GentzensProtolens :: ProtolLens
= struct
fst = G
snd = GentzensLemma
GentzenLens :: Lens wexp
= struct
fst = GentzensProtolens
snd = \(X :: pred) ->

\(p :: Prog X) —>
440 \(a :: 0t) ->
\(h :: el (G X a) —>

h zero (p zero star)

{- A closure lens for an operator f is a protolens (F,..
such that F X subset X on progressive
predicates X (i.e. a lens for the identity
function), and such that if X is a progressive

predicate, then F X is closed under f. -}

450 CLens (f :: op 0t) :: Set
= Si ProtolLens (\(pl :: ProtolLens) ->
and ( (X :: pred) ->
el (prog X ‘arr‘ (pl.fst X ‘subset X )))
( X :: pred) ->
el (prog X ‘arr‘ (pl.fst X ‘clunder‘ £))))
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{- We can make a closure lens from a lens.
The idea is quite simple, though in a way
460 the key to the whole construction.
Just take the limit-by-intersection of the finite
iterates of the predicate transformer.
-}
MkClens ( f :: op Ot ) :: Lens f -> CLens f
= \(1 :: Lens f) —>

let
pt :: PT = 1.fst.fst
pp :: PProg pt = 1.fst.snd
dr :: (X :: pred) -> Prog X —>
470 el (pt X ‘subset‘ sub X f)
= 1.snd
pt’ :: PT

= PTlim (ItPT pt)
pp’ :: PProg pt’
= PProgLim (ItPT pt) (ItPProg pt pp)
cllt :: (X :: pred) ->
(p :: Prog X) —->
el (pt’ X ‘subset‘ X)
= \(X :: pred) —>
480 \(_ :: Prog X) ->
\(a :: 0t) —->
\(x :: el (pt’ X a)) —>
x Naturals.zero
cl2 :: (X :: pred) —>
(_ :: Prog X) —>
el (pt’ X ‘clunder‘ f)
= \[X :: pred) —>
\(pX :: Prog X) —>
\(a :: 0t) ->
490 \(x :: el (pt’ X a)) —>
\(n :: Nat) ->
dr (ItPT pt n X)
(ItPProg pt pp n X pX)

a
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(x (Naturals.succ n))
in struct

fst = struct

fst = pt’

snd = pp’
500 snd = struct

fst = cl1

snd = cl2

{- Given a closure lens for an operator,
we can get another one for the omega-iteration

of that operator. -}

ItClens ( £ :: op Ot )
:: CLens f -> CLens (OpItw f)
510 = \(cl :: CLemns f) —>
let pl :: Protolens
cl.fst
pt :: PT
pl.fst
pp :: PProg pt
pl.snd
pf :: (X :: pred) -> Prog X —->
el (pt X ‘subset‘ X)
= cl.snd.fst
520 cls :: (X :: pred) -> (p :: Prog X) —>
el (clunder (pt X) f)

= cl.snd.snd

cls’ :: (X :: pred) -> (p :: Prog X) —>
el (pt X ‘clunder‘ OpItw f)

= \[X :: pred) ->
\(pX :: Prog X) —>
\(a :: 0t) ->
\(x :: el (pt X a)) ->
pp X pX (OpItw f a) (\(n :: Nat) ->

530 closureLemma (pt X) f (cls X pX) n a x)

in struct
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fst = pl

snd = struct
fst = pf
snd = cls’

{- Given a sequence of lenses for a sequence of functions,

we can form a lens for their pointwise sup. -}

540 {- Really uses only that progressive implies closed -}
SupLens (fs :: Seq (op 0t))
(Is :: (n :: Nat) -> Lens (fs n))
:: Lens (OpLim fs)
= let
pts (n :: Nat) :: PT
(1s n).fst.fst

pps (n :: Nat) :: PProg (pts n)
(1s n).fst.snd
drs (n :: Nat)

550 i (X :: pred) ->
Prog X —>
el ( (pts n X) ‘subset‘ (X ‘sub‘ fs n))
= (1s n).snd

pt :: PT = PTlim pts

pp :: PProg pt = PProgLim pts pps

dr (X :: pred) (pX :: Prog X)

el (pt X ‘subset‘ (X ‘sub‘ (OpLim fs)))
= \(a :: 0t) -
\(xa :: el (pt X a)) ->
560 pX (OpLim fs a)
(\(n :: Nat) ->
drs n X pX a (xa n))

in struct
fst = struct
fst = pt
snd = pp
snd = dr
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{- If we have a closure lens for f, then
570 we can get a lens for Nabla f.
It may be unhygienic that there is a case
distinction here.

-}

NablaLens (f :: op Ot)
(cl :: CLens f )
:: Lens (Nabla f)

= let
pt :: PT = cl.fst.fst
580 pp :: PProg pt = cl.fst.snd
pf :: (X :: pred) -> Prog X —>
el (pt X ‘subset‘ X)

= cl.snd.fst
cls :: (X :: pred) > (p :: Prog X) —->
el (pt X ‘clunder‘ f)
= cl.snd.snd
pt’ :: PT
= \(X :: pred) -> pt X ‘sub‘ Nabla f
pp’ :: PProg pt’
590 = \[X :: pred) ->
\(pX :: Prog X) —>
\(a :: 0t) ->

\(h :: el (B (pt’ X) a)) ->
case a of
(0) -> cls X pX a (pp X pX a star)

(8 a’) -> cls X pX (succ (Nabla f a’))
(pp X pX (succ (Nabla f a’)) h)
(L 1s) > pp X pX (Nabla f a) h
dr’ (X :: pred) (pX :: Prog X)
600 :: el ((pt’ X) ‘subset (X ‘sub‘ (Nabla £)))
= \(a :: 0t) -> pf X pX (Nabla f a)
in struct
fst = struct
fst = pt’
snd = pp’
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snd = dr’

{- The following predicate is pivotal. -}
LensPredicate (a :: Ord) :: SET
610 = LENS (v a)

SuccLens (f :: op 0t) (1f :: Lens f)
:: Lens (deriv f)
= NablalLens (OpItw f)
(ItClens f (MkClens f 1f))

LimLens (fs :: Seq (op 0t))
(1fs :: (n :: Nat) -> Lens (fs n))
:: Lens (derivl fs)
620 = let f :: op Ot = OpLim fs
in NablalLens f (MkClens f (SupLens fs 1fs))

ZeroLens :: Lens (deriv wexp)

= Succlens wexp Gentzenlens

{- We are now back outside the "small" package. The file
concludes with a proof of the accessibility of
Gamma_0 -}
630

{- Next universe operator. -}

NextU (FS :: Fam Set) :: Fam Set
= (small FS).Next

{- Accessibility relative to a family of sets -}
acc (FS :: Fam Set) :: Ord -> Set
= (small FS).Acc
640 ACC (FS :: Fam Set) :: Ord -> Set

= acc (NextU FS)
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650

660

670

{- The set of lenses relative to a family of sets -}
Lens (FS :: Fam Set)(f :: Ord -> Ord) :: Set
= (small FS).Lens f

PRED (FS :: Fam Set)
1 Set
= (small (NextU FS)).pred

{- The predicate wrt FS that Lens (v a) -}
lenspred (FS :: Fam Set)

:: PRED FS

= (small FS).LensPredicate

PROG (FS :: Fam Set)
:: Pow (PRED FS)
= (small (NextU FS)) .Prog

{- That the above predicate is progressive -}
lenspredprog (FS :: Fam Set)
:: PROG FS (lenspred FS)
= \(a::0rd) >
case a of
(0) -> \(_::N1) —->
(small FS).ZeroLens
(S a’) -> (small FS).Succlens
(v a’)
(L 1s) -> (small FS).LimLens
(\(n::Nat) -> v (1s n))

{- The key lemma which shows how for each
layer of the veblen hierarchy, you can

use another universe -}

LemmaV (FS :: Fam Set)
(a :: Ord)
(acca :: ACC FS a)
(b :: Ord) -> acc FS b -> acc FS (v a b)
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680 = let vl :: Lens FS (v a)
= acca (lenspred FS) (lenspredprog FS)

in (small FS).LensLemmaV (v a) vl

{- Just for completeness, we pull out
of the package above the corresponding

lemma for the function w. -}

LemmaG (FS :: Fam Set)
(a :: Ord)
690 (acca :: acc FS a)
(b :: 0rd) -> acc FS b -> acc FS (w a b)

= (small FS).LensLemmaG a acca

{- RECURSIVE
The main theorem.
To express the recursion by use of NatRec, we

would need a superuniverse closed under NextU -}

Theorem (FS :: Fam Set) (n :: Nat)
700 :: acc FS (pd GammaO n)
= case n of
(Z) => (small FS).AccO
(S p) -> LemmaV FS
(pd GammaO p) (Theorem (NextU FS) p)
Zero (small FS).AccO

Corollary (FS :: Fam Set)

:: acc FS GammaO
= (small FS).AccL (pd GammaO) (Theorem FS)
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