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Abstract

Curry’s system for F-deducibility is the basis for static type inference
algorithms for programming languages such as ML. If a natural
“preservation of types by conversion” rule is added to Curry’s system, it
becomes undecidable, but complete relative to a variety of model
classes. We show completeness for Curry’s system itself, relative to an
extended notion of model that validates reduction but not conversion.
Two proofs are given: one uses a term model and the other a model built
from type expressions. Extensions to systems with polymorphic or
intersection types are also considered.

1 Introduction

Curry’s system for F-deducibility is one of the simplest systems for type
inference for the untyped λ-calculus [3,10,11,18]. It is a decidable system
that can be considered as the basis of static type inference algorithms for
languages such as ML [27]. These algorithms are static, in that the type
of a term is calculated without any reductions being carried out. To this
end, the calculation is syntax-directed, in that the types of terms are
found as a function of the types of their immediate subterms.

Curry’s system has, however, a certain defect from a semantical point
of view: it is not complete with respect to any immediately obvious
semantics. Hindley remarks in [18] that one would expect that, in any
decent semantics, interconvertible terms would have the same
interpretation. A certain equality rule is then valid, that if two terms
are interconvertible then they have the same types. Adding this rule
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yields a proper extension of Curry’s system. Hindley and others [4,18,19]
proved that completeness indeed holds for the extended system with
respect to any of various classes of models; these differ only in how
type expressions are interpreted (the simple semantics, the F-semantics
and the quotient-set semantics). Unfortunately, this extended system
does not seem to support any static type inference (or type checking)
algorithms; furthermore, type inference is not total recursive (and type
checking is undecidable).

A. Meyer asked whether, nonetheless, a semantic analysis of Curry’s
system is possible; clearly such an analysis necessitates the use of a
wider class of models than those considered by Hindley. We present
here one such analysis based on the notion of a model of reduction.
This terminology was first introduced in [22], but what is called a model
of reduction here is called a model of expansion there; the reason for
such a – prima facie confusing – switch is discussed below.

Models of reduction arise if one considers an analysis of the equality
rule into two rules, a reduction  rule and an expansion  rule. The
reduction rule states that if a term has a type and the term reduces to
another then the latter has the same type; the expansion rule states that
if a term reduces to another and the latter has a type then so does the
former. According to the Subject Reduction Theorem, the first rule is
an admissible1 rule for F-deducibility. However the second rule is not;
indeed, as is shown below, adding it produces a system as powerful as
that obtained by adding the equality rule.

This analysis of the equality rule into two is carried out formally in
section 2. We expect a notion of model that verifies the reduction rule,
but not necessarily the expansion rule. To this end, in section 3, models
of reduction are taken to be partially ordered and model reduction (by
an inequality) but not necessarily conversion (by an equality). Types are
modelled as sets that are upper-closed in the ordering; then the
reduction rule is indeed modelled, but not necessarily the expansion
rule. The idea of modelling reduction by a partial order is, per se,
hardly new. In the context of combinatory logic, Meyer, Bunder and
Powers [26] considered an asymmetric combinatory logic, with such
axioms as Kxy ≤ x and Sxyz ≤ xz(yz). For the λ-calculus the idea was
largely anticipated by Girard in [16]. In the categorical literature, order-
enriched categories [23] and the more general 2-categories [32,33] have
been considered.  In the context of universal algebra, Meseguer [25]
considered categorical, preorder and partial order interpretations of a
“rewriting logic” for conditional rewriting modulo a set of equations;
he proves soundness and completeness results relative to all three
classes of interpretations.

In section 4, following an idea of Mitchell [28], we consider a
generalisation of the simple notion of type interpretation, for the

1      We may informally understand a rule to be admissible in a formal system if, for any
instantiation of the schematic variables that occur in the rule, the conclusion of the rule
is provable in the formal system provided its premises are.
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system of simple functional types, and give two completeness proofs.
One, after the manner of Hindley, uses a term model. The other, after
the manner of Barendregt, Coppo and Dezani-Ciancaglini, uses a
model built from type expressions; it is very simple, being nothing but
the powerset of the set of type expressions. The model of the λ-calculus
in [30] was obtained as a modification of this structure. The same
structure was known at about the same time to R.K. Meyer who dubbed
it the “Fool’s Model”; it is a model of asymmetric combinatory logic
[5,26]. The simple semantics and the F-semantics are also considered.

In section 5 completeness results for the more complex polymorphic
type discipline are obtained. There are results for both the general
notion of type interpretation and also for a version of the simple
notion. Again both term model and “type-expression model” proofs of
completeness are given. Here only certain sets of type expressions are
used, being those satisfying a certain infinitary condition; consequently,
application is not continuous. Finally, in section 6, we consider the
intersection type discipline of Coppo et al [6,9]. Here completeness has
already been obtained for the simple semantics [4,17] and the F-
semantics [12]. We obtain completeness for two more general classes of
type interpretations, where there is a pleasing correspondence between
the type-expression models and the set-theoretic models of Plotkin and
Engeler [30, 14].

It would be interesting to have a formal definition of a notion of a
static type inference system. Such a system provides the basis for static
type inference (or type checking) algorithms. It is desirable that the
system admits a reduction rule. That implies that the types of terms
after reduction can be forecast; for programming languages it follows
that type-checked programs will not suffer type errors. On the other
hand, the expansion rule should be neither present, nor derivable2, in
such systems. Systems where an expansion rule is present (or
derivable) explicitly allow dynamic type inference, in the sense that a
term can have any type attributable to one of its reducts, that is to type a
term one can “look ahead” in its computation.

One would expect that all the systems considered in this paper are static
(with the exception of the extensions of Curry’s system by expansion or
equality rules). Formal evidence to this effect can be provided by
theorems such as the Subject Construction Theorem for simple types
(see Theorem 9B1 in [10] and Theorem 14D2 in [11]), Mitchell’s
characterisation of his pure typing system for the polymorphic type
discipline [28] and Lemma 2.8 for the intersection type discipline of
Barendregt, Coppo, and Dezani [3].  These show that the systems are
syntax-directed, in that the types inferred for a term are a function of
the types inferred for their immediate subterms. Note that there is,
unfortunately, no guarantee for such systems that type inference is
total recursive - let alone efficient, nor that type checking is (efficiently)

2      We may informally understand a rule to be derivable in a formal system if there is a
proof of the conclusion from the premises, without instantiating the schematic
variables occurring in the rule.
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decidable. For example, the equality rule is admissible in the systems
for intersection types, and therefore typability of closed terms is
undecidable. In the case of the polymorphic discipline, the decision
problem of typability is an outstanding open problem [15].

It would also be of interest to extend the semantic analysis to other type
disciplines. The combination of the polymorphic type discipline with
the intersection type discipline of Coppo et al is of immediate interest,
and one can also consider, for example, existential and union types and
recursive types [1,6,7,24]. In a different direction, it would be interesting
to extend the language to include other features such as, perhaps, a
recursion combinator. Continuing in this way, it would be particularly
interesting to see a treatment of a programming language equipped
with an operational semantics (rather than notions of reduction and
conversion) and a fixed denotational semantics (rather than a range of
models). While the first difference may not be very significant, having
a fixed model may well be. Moreover, the fascinating issue is raised of
refining the techniques of the denotational semantics of programming
languages to produce models sensitive to reduction.

Several technical questions are raised below: what the proper notion of
quotient-set semantics may be, what should be the categorical notion of
a type interpretation, whether there is a continuous type-expression
model of reduction of universal types that would support a proof of
completeness, and whether the simple containment relation on
polymorphic type expressions is decidable. The problems of finding
complete systems for models of β-reduction and F-semantics in the
cases of either polymorphic types or intersection types are also left
unsolved.
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2 Curry’s System for F-deducibility

Let us begin with syntactical and notational matters. Generally
speaking, the notation and terminology of Hindley in [18] will be
followed, but with a few differences and additions. We write “type
expressions” rather than “type schemes”. Type assignment statements
are written in the form M:β rather than βM. The letters Γ, ∆ are used to
vary over finite bases. When writing Γ, x:α for Γ ∪ {x:α}, it is assumed
that x is a subject of no type assignment statement in Γ. Throughout,
we do not distinguish α-equivalent lambda expressions. On occasion
we use vector notation, writing, for example,     

r
x  for lists of variables.

We will make free use of evident conventions; for example if     
r

M is the
list M1,...,Mn and     

r
x  is the list x1,...,xn then we write the multiple

substitution [M1/x1, ... , Mn/xn]N as [    
r

M/    
r
x]N. It proves convenient to

adopt the convention that such multiple substitutions are allowed
even when two of the variables in     

r
x  are identical; in that case, the term

in     
r

M that is to be substituted is taken to be the one corresponding to
the rightmost occurrence of the variable. With this convention the
formula

[    
r

M/    
r
x] [    

r
N/    

r
y ]L =α [    

r
M/    

r
x , [    

r
M/    

r
x]    

r
N  /    

r
y ]L

holds unrestrictedly.

There is a convenient sequent-style presentation of F-deducibility for
the λ-calculus [28]. This uses sequents of the form Γ  |− M :α; there are
three rules, and we call this system of rules �λ→ (in [3] Barendregt calls it
λ→ − Curry, and uses the notation λ→ − Church to refer to the simply typed λ-
calculus).

(Var)  Γ |−x:α (if x:α is in Γ)

(→I)          
Γ , x:α |− M:β

 Γ |− λx.M:α→β

(→E)         
Γ |− M:α→β  ,  Γ |− N:α

Γ |− MN:β

Then F-deducibility is deducibility in the system λ→.; that is, the relation
Γ |− F M:α is defined to hold iff Γ |− M:α is provable using these rules.

The equality rule discussed in the Introduction depends on a notion of
conversion. In the case of β-conversion the rule is:

(EQβ)        
Γ |− M:α , M=βN 

Γ |− N:α
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Now, by the Church-Rosser Theorem, we can split this rule up into
two, a β-reduction rule (→→β), and a β−expansion rule (←←β):

(→→β)    
Γ |− M:α , M→→βN 

Γ |− N:α

(←←β)  
Γ |− N:α , M→→βN 

Γ |− M:α

The Subject Reduction Theorem can be read as stating that (→→β) is an
admissible rule of the system λ→; it is therefore not surprising that the
whole strength of (EQβ) rests with (←←β).

Proposition 1 (EQβ) is an admissible rule of the system λ→ plus (←←β)
Proof  We have to show that if M=βN and Γ |− M :α is provable in the
system λ→ plus (←←β) so is Γ |− N:α. Under these assumptions Γ |− M :α is
provable in the system λ → plus (EQβ). Therefore by the Equality
Postponement Theorem [18] there is a term M' with Γ |−F M':α and
M'=βM. So M'=βN, and therefore by the Church-Rosser Theorem there
is a term N' with M' →→ β N' ←←β N. So, applying the Subject Reduction
Theorem we get Γ |−F N':α and, finally by (←←β) we get that Γ |− N :α is
provable in the extended system. ■

There are two other admissible rules for the system λ→ that will prove
useful:

(Weakening)  
Γ |− M:β

Γ , x:α |− M:β

(Strengthening)  
Γ , x:α |− M:β

Γ |− M:β
  (provided x is not free in M)

The Subject Reduction Theorem also holds for βη-reduction, and we
can introduce rules (EQβη), (→→βη) and (←← βη) like those above. The
Equality Postponement Theorem holds for βη-conversion, and so we
find that (EQβη) is an admissible rule of the system λ→ plus (←←βη).
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3 Models of Reduction

From the analysis of the equality rule (EQβ) it seems reasonable to
model (→→β), but not (←←β). The rule (→→β) might be read as stating that if
type-theoretic information holds also of M, and if M→→ βN, then the
information holds of N. So, if we follow Scott and model information
by a partial order, we would want the denotation of M to be less than
that of N. We will therefore work with an ordered variant of the
notion of a syntactical λ-model [2, §5]. To this end, following an idea of
Mitchell [29], we first define interpretations, and only then consider
models.

An ordered lambda interpretation of the λ-calculus is a triple:
P = < >P, ⋅,     ⋅   ( ⋅)

where P is a partial order, and ⋅ is a binary monotone operation over P
of application, and  ⋅ (⋅) is a mapping from (α−equivalence classes of)
expressions and environments to P such that the following four
conditions hold:

(i)  x (ρ) = ρ(x)
(ii)  MN (ρ) =  M (ρ )⋅  N (ρ)
(iii) if  M (ρ(x := a)) ≤  N (ρ(x := a)), for all a in P,

then  λx.M (ρ) ≤  λx.N (ρ)
(iv) if ρ|̀FV(M) = ρ′|̀FV(M) then  M (ρ) =  M (ρ′)

The lambda interpretations of Mitchell in [29] correspond to the case
where P is discretely ordered. We may now define a (syntactical) model
of β-reduction to be an ordered lambda interpretation in which:

(v)  λx.M (ρ)⋅a ≤  M (ρ(x := a))

holds. If we took equality in (v) we would obtain an ordered version of
the usual notion of a syntactical λ-model [2]. Models of β-reduction are
models of β-expansion in the sense of [22]; it may be that the authors of
that paper took the view that β-reduction should correspond to a
reduction in the order. Other authors take reduction, or rewriting, as
increasing the order [16,23,25,32,33].

It is worth discussing further why reduction should be viewed as
increasing information. There is the type-theoretic argument given
above: by the Subject Reduction Theorem, reduction increases the
number of types statically determinable. If, for example, one models
types by subsets the denotation of a term (in a model) is in the
intersection of the denotations of all the statically determinable type
expressions. Reduction decreases  this subset, thereby increasing
information, as there is less uncertainty as to which element the term
denotes. There is also a related argument that the point of computation
is to gather information, namely what the result of the computation is.
Reduction increases information about the form of the computation of
the result, and may give information about the form of the result itself.
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In working with interpretations there is an important principle of
substitution to the effect that substitution commutes with
interpretation:

(Sub)  [N/x]M (ρ) =  M (ρ(x :=  N (ρ)))

Lemma 1 (Sub) holds in any ordered lambda interpretation.
Proof  Let P be an ordered lambda interpretation. We consider first the
case that x does not occur free in N, and proceed by induction on the
structure of M. The cases where M is a variable or an application
present no difficulty, so suppose that M has the form λy.L where we
may assume without loss of generality that y does not occur free in N.

Let ρ' = ρ(x := N (ρ)). Then we have that:
[N/x]M (ρ) = λy.[N/x]L (ρ)

= λy.[N/x]L (ρ')
for x cannot occur free in λy.[N/x]L as it is not free in N. Therefore by
(iii) it is enough to prove that

[N/x]L (ρ'(y := a)) = L (ρ'(y := a))
for all a in P. For this we calculate as follows:

[N/x]L (ρ'(y := a)) =  L (ρ'(y := a)(x := N (ρ'(y := a))))
(by induction hypothesis applied to L)

     =  L (ρ'(y := a)(x := N (ρ)))
(by (iv), since neither x nor y occur free in N)

     =  L (ρ'(y := a))
In case x does occur free in N, we can proceed as in [2, § 5.3.3]. Let z be a
variable which is not free in N or M and then we may calculate that:

[N/x]M (ρ) = [N/z][z/x]M (ρ)
= [z/x]M (ρ(z := N (ρ)))

(by the above, since z does not occur free in N)
= M (ρ(z := N (ρ))(x :=  z (ρ(z := N (ρ)))))

(by the above, since x does not occur free in z)
= M (ρ(z := N (ρ))(x := N (ρ))) (by (i))
= M (ρ(x := N (ρ)))

(by (iv) since z does not occur free in M). ■

This improves the proof of (Sub) in [2] where the equality version of
(v) is also assumed. The possibility of this lemma was suggested to the
author by work of Jacobs, Margaria and Zacchi [21]. There is a multiple
substitution consequence of (Sub):

 [    
r
N/    

r
x]M (ρ) =  M (ρ(    

r
x  :=      

r
N  (ρ)))

Here a rightmost convention is adopted to resolve conflicts in the
interpretation of ρ(    

r
x  :=     

r
a ), in case the same variable occurs more than

once in     
r
x .

Environments can be ordered by the pointwise ordering, where ρ ≤ ρ′ iff
for all variables x, it is the case that ρ(x) ≤ ρ′(x). Then one has a further
useful property of ordered lambda interpretations:
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Lemma 2 In every ordered lambda interpretation  N (ρ) is monotone
in ρ.
Proof  Let N be a term, and let ρ, ρ′ be an ordered pair of environments.
We have to show that  N (ρ) ≤  N (ρ'). To this end, we proceed by
structural induction on N. The cases where N is a variable or an
application are easy, so let us consider the case where it is an abstraction
of the form λx.M. Now let     

r
y  be a non-repeating list of the free variables

of λx.M, and let     
r
z  be another non-repeating list of variables of the same

length as     
r
y , not containing x and having no variable in common with

    
r
y . Let ρ" be ρ'(    

r
z  := ρ(    

r
y )).

Then for any element, a, of the interpretation:
    [    

r
z/    

r
y ]M (ρ"(x := a)) =  M (ρ"(x := a)(    

r
y :=     

r
z (ρ"(x := a))))

(by the multiple substitution version of (Sub))
=  M (ρ"(x := a)(    

r
y  :=ρ(    

r
y )))

=  M (ρ(x := a)) (by (iv))
≤  M (ρ'(x := a))

(by induction hypothesis)
=  M (ρ"(x := a)) (by (iv))

So by (iii) we get that  λx.[    
r
z/    

r
y ]M (ρ") ≤  λx.M (ρ"), and so:

   λx.M (ρ)  =   λx.M (ρ")(    
r
y  :=ρ(    

r
y )) (by (iv))

=   λx.M (ρ")(    
r
y  :=     

r
z (ρ"))

=  [    
r
z/    

r
y ]λx.M (ρ")

(by the multiple substitution version of (Sub))
≤   λx.M (ρ")

(by what we have previously proved)
=   λx.M (ρ') (by (iv)). ■

Models of β-reduction do indeed model β-reduction. It is useful to have
available a formal system to axiomatizes β-reduction. The system has
judgements of the form M ≤ N and the following axioms and rules:

M ≤ M

M ≤ N , N ≤ L
M ≤ L

M ≤ M′, N ≤ N′
MN ≤ M′N′

M ≤ N
λx.M ≤ λx.N

(λx.M)N ≤ [N/x]M
Clearly M ≤ N is provable in this system iff M →→β N.

Proposition 2 If M →→β N then  M  ≤  N .
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Proof  The proof is by induction on the size of the proof in the formal
system. All cases are evident except for the last where one calculates
that:

 (λx.M)N (ρ) =  λx.M (ρ )⋅  N (ρ)  by (ii)
≤  M (ρ(x :=  N (ρ))) by (v)
=  [N/x]M (ρ) by (Sub). ■

The class of models of β-reduction is not only sound for β-reduction,
but is also complete for it, as a term model argument shows. This
model,

Rβ= < >R, ⋅,     ⋅   ( ⋅)
is constructed from equivalence classes of terms. Let

[M]  =  { N| M →→β N →→β M }
and then take

R = { [M]|M a λ-term }
and partially order it by putting:

[M] ≤ [N] iff M →→β N
Finally, define application by:

[M]⋅[N]  =  [MN]
and the interpretation function by:

 M (ρ)  =  [[    
r
L/    

r
z]M],

where     
r
z  is a list of the free variables of M, and where [    

r
L] is ρ(    

r
z).

It is clear that this is a good definition, that application is monotone,
and that conditions (i),(ii),(iv) all hold. Let us verify the others. For
condition (iii), suppose that  M (ρ(x := a)) ≤  N (ρ(x := a)), for all a in
R. Now let     

r
z  be a list of the free variables in λx.M or λx.N, and set ρ(    

r
z)

equal to  [    
r
L]. Let y be a variable not free in λx.M or λx.N or any term in

    
r
L . Then taking a to be [y] we get, by the assumption, that:

[ [    
r
L/    

r
z ,y/x]M ] ≤  [[    

r
L/    

r
z ,y/x]N]

Therefore:
 λx.M (ρ)  =  [[    

r
L/    

r
z]λx.M]

    =  [λy.[    
r
L/    

r
z ,y/x]M]

    ≤  [λy.[    
r
L/    

r
z ,y/x]N] (by the above)

    =    λx.N (ρ)

Finally for (v) we calculate:
 λx.M (ρ)⋅[N] = [(λx.[    

r
L/    

r
z]M)N]

(where     
r
z  is a list of the free variables of λx.M, and where [    

r
L] is ρ(    

r
z))

≤ [ [    
r
L/    

r
z , N/x]M ]

(we can assume without loss of generality that x is not a free variable of
any term in     

r
L)

=  M (ρ(x := [N] ))

There is a particularly useful environment ρ0 defined by ρ0(x) = [x]. It
has the property that for any term M,  M (ρ0 ) = [M].
Completeness Theorem 1 If  M  ≤  N  holds in all models of β-
reduction then M →→β N.
Proof  Use the term model and take the denotations of M and N in the
environment ρ0. ■
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Turning to βη-reduction, define a (syntactical) model of βη-reduction  to
be a model of β-reduction such that

(vi)  λx.Mx (ρ) ≤  M (ρ) (x not free in M)
Now βη-reduction can be axiomatized by adding the scheme

λx.Mx ≤ M (x not free in M)
to the above rules, and one sees that syntactical models of βη-reduction
do indeed model βη-reduction. There is a term model Rβη defined
analogously to Rβ, using βη-reduction rather than β-reduction. This
term model can be used to yield the expected completeness result for
βη-reduction and syntactical models of βη-reduction.

An interesting question is how the present work fits in with the cate-
gorical viewpoint. In a cartesian closed category, a model of the λ-
calculus is provided by an object which has the space of its
endomorphisms as a retract [2]. There is an analogous version of the
models of reduction considered here. A category is order-enriched if
each hom-set is equipped with a partial order structure so that com-
position is monotonic; it is a cartesian closed order-enriched category, if
it is order-enriched and cartesian closed and the natural isomorphisms
associated to the products and exponentials are monotonic. Then a
categorical model of β-reduction is provided by an object X in such a
category and morphisms F: X → XX, and G: XX → X such that F•G ≤ id; a
categorical model of βη-reduction is provided if, in addition, G•F ≤ id. It
is intended to publish the details of the correspondence between the
two notions of models of β-reduction elsewhere.

The ordered categorical notion was considered in the case of the
category of complete partial orders and continuous functions in [22],
and for the full subcategory of qualitative domains in [16]; 2-categorical
notions were considered by Seely in [33]. Using the setting of cartesian
closed order enriched categories, one can describe a systematic way to
construct models of β-reduction (or of βη-reduction): given a model
X,F,G of β-conversion (or βη-conversion) in such a category, decrease F
or G, for example by pre- or post-composing with a projection. Again,
in the category of complete partial orders (for example)  consider the Dn
used in the construction of the D∞ model. There Dn is a projection of
Dn+1, which is DnDn,  and so is a model of βη-reduction (see [2] for more
details of such model constructions). Finally, in [16], Girard showed
how infinite models of βη-reduction can be approximated by finite
ones.
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4 Type Interpretations

We model types as subsets of the domains of models of reduction.
Fixing a model of β-reduction P as above, say that a type interpretation
is a pair

Ty = < >Ty,→
where Ty is a collection of upper closed subsets of P, and → is a binary
“arrow” function over Ty such that:

(Arrow 1) For any X,Y in Ty, and a in X→Y, (a⋅X) is a 
      subset of Y.

(Arrow 2) For any X,Y in Ty, if  M (ρ(x := a)) ∈ Y 
      whenever a ∈ X then  λx.M (ρ) ∈ X→Y.

Define operations on upper-closed subsets of P by:
(X→SY) = { a (a⋅X )  ⊃ Y  }

(X→FY) = { λx.M (ρ) | ∀a ∈ X. M (ρ(x := a)) ∈ Y } ↑
(Here a⋅X  is {a⋅bb ∈ X},  and Z↑ is {b|∃a ∈ Ζ.a≤b}, the upper closure  of Z.)
Then the above conditions can be re-phrased as:

(X→FY) ⊃ (X→Y) ⊃ (X→SY)

We say that an interpretation is s imple  (respectively is an F -
interpretation) if the arrow operation is →S (respectively →F).

Lemma 3 Let P be a syntactical model of β-reduction; let Ty be a
collection of upper closed subsets of P; and let → be a binary function
over Ty. For any a in P set ε(a) = λy.xy (ρ(x := a)) (where ρ is any
environment). Then for all X,Y in Ty:

1. ε(X→SY) ⊃ (X→FY)
2. If P is a syntactical λ-model then X→FY = (X→SY) ∩ F, where F
is ε(P).
3. If P is a syntactical model of βη-reduction, and < >Ty,→  is a
type interpretation then (X→FY) = (X→SY)

Proof  1. Suppose that a is in (X→SY). Then for any b in X, a⋅b is in Y. But
a⋅b is xy (ρ(x := a)(y := b)), and so ε(a) is in (X→FY).

2. In one direction, suppose that a is in (X→ FY) and so has the form
λx.M (ρ), where M (ρ(x := b)) is in Y whenever b is in X. So for any b

in X, a⋅b is in Y, as it is equal to M (ρ(x := b)) since P is a model of β-
conversion. Further,

a = λx.M (ρ) = λx.(λx.M)x (ρ) = λx.zx (ρ(z := λx.M (ρ)))
(the last by Lemma 1) and so a is also in F. In the other direction, if a is
in F, then ε(a) = a and so, by Part 1, if a is in (X→SY) it is in (X→FY).

3. In one direction, if a is in (X→SY), then ε(a) is in (X→FY), by Part 1. But
ε(a) ≤ a as P is a syntactical model of βη-reduction; therefore as (X→FY) is
upper-closed, a is in it. The other direction is part of the assumption
that Ty is a type interpretation. ■

In case P is a syntactical λ-model the two arrow conditions are particular
cases of those of Mitchell [28]. He did not consider types as necessarily
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being sets. Rather, in his “inference model” of polymorphic types, a set
of types was given together with an arrow function operating on the
types, and an assignment of sets to them. Here an account of types
entirely in terms of sets is preferred; while this makes no difference as
regards simple types, it does for both polymorphic and intersection
types. Previously to Mitchell’s work, other authors had considered two
particular interpretations, the simple semantics and the F-semantics.
The simple semantics consists of all subsets of P with X→ SY as the
arrow operation; the F-semantics has instead X→ FY as the arrow
operation; that these are available follows from Lemma 3.2.

Unfortunately these semantics do not seem to be available for models
of β-reduction in general. The problem is that it does not seem to be
true in general that X→FY is a subset of X→SY, and that is needed for the
proof of soundness below. So it is possible that taking all upper closed
subsets for Ty and taking →S, say, as the arrow operation will not yield a
type interpretation. We will obtain a completeness result for both
simple interpretations and F-interpretations in which not all subsets of
P are in Ty; here Lemma 3.3 will prove useful as it shows that for
syntactical models of βη-reduction, all notions of type interpretation
coincide.

It is interesting to contrast this situation with, on the one hand, the
case of completeness of (EQβ), and, on the other hand, with that of
completeness of polymorphic typing with (EQβ). In the former case,
completeness holds for interpretations where all subsets are allowed as
types; in the latter, while there are interpretations with all sets allowed
as types, the class of such models fails to be complete (for trivial
reasons).

In previous work (see [18,28] in particular) an extended notion of type
was considered, where types were taken as equivalence relations over
subsets or, which amounts to the same thing, as partial equivalence
relations (the symmetric transitive relations). To formulate such a
notion here, one would expect a relation between the order on the
models of β-reduction and the partial equivalence relations (just as we
ask that, as sets, types be upper closed). For lack of such a condition we
do not pursue this notion further. Finally, a categorical setting has been
claimed for models of reduction. One wonders what the corresponding
notion of type would be.

Given a type interpretation, a valuation of the type variables, or type
environment, is a function, V, assigning elements of Ty to type
variables. Any such can be extended to all type expressions by putting
V(α→β) = V(α)→V(β). Then a statement M:α is satisfied by ρ,V if  M (ρ)
is in V(α). We write Γ |=  M:α to mean that whenever any ρ,V satisfy
every statement in Γ, then they also satisfy M:α.

Soundness Theorem 2 If Γ |−F M:α then Γ |=  M:α.
Proof  The proof is by induction on the size of the proof of Γ |− M:α.
Choose ρ,V and assume they satisfy every statement in Γ. The case
where x is a variable is trivial, and the case where it is an application is
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handled by the first arrow condition. If M has the form λx.N then α has
have the form β→β′, and there is a shorter proof of Γ, x:β |− N:β′. Now
we can apply the second arrow condition. Choose a an element of V(β).
Then ρ (x := a),V satisfy every statement in Γ,  x:β and so by the
induction hypothesis, they satisfy the statement N:β′, which is to say
that  N (ρ(x := a)) is in V(β′). So by the second arrow condition we can
conclude that  λx.N (ρ) is in V(β)→V(β′), which is just that ρ,V satisfy
the statement M:α, as required. ■

The requirement that types be upper closed implies that the following
rule is sound for type interpretations:

(LEQ)  
Γ |− M:α  ,  M ≤ N

Γ |− N:α

(where M ≤  N is to be interpreted as M  ≤ N  in a model of β -
reduction.) This rule can be seen as our replacement for the equality
rule

(EQ)       
Γ |− M:α , M=N 

Γ |− N:α

which we do not want for type inference systems. The strength of the
rule (LEQ) depends on the strength of the formal system for
judgements of the form M ≤ N; for example, with the above system for
β-reduction, the Subject Reduction Theorem for β-reduction is
equivalent to the admissibility of the rule. Since the proof of soundness
does not depend on the assumption that types are upper closed, we
could drop the assumption, enabling us to consider types as
equivalence relations along the lines of Mitchell [28]. However that
seems against the spirit of our approach, one is anyhow left with the
problem of finding a notion of types as equivalence relations that
validates (LEQ), and, finally, the work below on simple type
interpretations for the polymorphic type discipline does make use of
the assumption of upper closure.

The term model We are going to give two proofs of completeness. For
the first we begin by describing a type interpretation for the term model
of β-reduction Rβ given above, relative to a given finite basis Γ, and term
A. Let B be a basis extending Γ, such that the only type statements in B
with subject a free variable of A are those in Γ, and such that for each
type expression α there are infinitely many statements in B of the form
x:α. Write B |−F M:α to mean that Γ′ |−F  M:α,  for some finite subset Γ′  of B.
Define:

Xα  =  { [M] | B  |−F  M:α }
(by the Subject Reduction Theorem this is a good definition),
and then put:

Ty  =  { Xα|α a type expression }
(Note that Xα = Xα′ implies that α = α′. For, take a variable x with x:α in
B; then [x] is in Xα; then [x] is in Xα′ and so B |−F  x:α′ and so x:α′ is in B
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and so α = α′, as required.) Now one can unambiguously define the
arrow operation by:

Xα→Xβ  =  Xα→β
which concludes our description of the type interpretation.

To see that the first arrow condition holds, suppose that [M] is in Xα→β
and [N] is in Xα. Then B |−F  M:α→β and also B  |−F   N:α. It then follows
that Γ′  |−F  M:α→β and Γ′′ |−F  N:α, for suitable Γ′, Γ′′. By the Weakening
rule, we have Γ′ ∪ Γ′′|−F  M:α→β and Γ′ ∪ Γ′′ |−F  N:α. Hence by the (→E)
rule Γ′ ∪ Γ′′ |−F  MN:β, showing that [MN] is in Xβ, as required.

To see that the second arrow condition holds, suppose M (ρ(x := a)) is
in Xβ whenever a is in Xα. Suppose that     

r
z  is a list of the free variables

of M other than x, and [    
r
L] is ρ(    

r
z). Choose y:α in B where y is not free in

M or any term in     
r
L , and put a = [y]. It follows that B |−F  [    

r
L/    

r
z , y/x]M:β.

Therefore it follows by (→ I) that B |−F  λy. [    
r
L/    

r
z , y/x]M:α→β, and we

have that B |−F   [    
r
L/    

r
z]λy.[y/x]M:α→β. So as y is not free in M we get that

 λx.M (ρ) ∈ Xα→Xβ as required.

A particular valuation V0 of the type variables will be useful. It is
defined by: V0(t) = Xt. Clearly, V0(α) = Xα, for any type expression α.
Completeness Theorem 3  If Γ  |=  M : α holds  in every model of β -
reduction and every type interpretation, then Γ |−F  M:α.
P r o o f   Suppose that in every model of β -reduction and type
interpretation, Γ |=  M:α. Choose the model of β-reduction to be the
term model and choose the type interpretation as above, with this Γ
and with A taken to be M. Then ρ0,V0 satisfies every statement in Γ
and so it also satisfies M:α, and so we have [M] in Xα. Thus Γ′ |−F  M:α
for some Γ′  ⊃ B. By applying the Strengthening rule followed, if
needed, by Weakening we finally obtain that Γ |−F  M:α as required. ■

The type interpretation used for the completeness proof is simple. To
prove this one just has to show that Xα→SXβ is a subset of Xα→Xβ. To
this end, suppose that for all a in Xα that [M]⋅a  is in Xβ. Let x be a
variable such that the statement x:α is in B, and put a = [x]. Then we get
that B |−F  Mx:β. Now it may easily be proved that if Γ |−F  NL:β, then there
is an α′ such that Γ |−F   N:α′→β and Γ |−F   L:α′. Applying this to the above
case we see that Γ |−F  x:α′, and so the statement x:α′ is in Γ, and so as x:α
is too, α′ = α, and so it is true that Γ |−F  M:α→β, as required.

βη-reduction By using R βη  instead of R β , and working with the
analogous simple type interpretation one proves a somewhat stronger
completeness theorem, where the models are of βη-reduction, and (by
Lemma 3.3) the type interpretations are simple, or F-interpretations (or
even both!).
Completeness Theorem 4 Ιf  Γ |=  M:α holds in every syntactical model of
βη-reduction and every simple type interpretation (or F-interpretation),
then Γ |−F M:α.
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A type-expression model The collection of type expressions actually
forms a model of βη -reduction which can be used to show the
completeness of the system λ → with respect to both simple
interpretations and F-interpretations. Take P to be P(Type) partially
ordered by subset, where Type is the set of all type expressions.

Application is defined by:
a⋅b = { β | for some α in b, α→β is in a }

And  ⋅  (⋅) is defined by the inductive clauses:
 x (ρ) = ρ(x)
 MN (ρ) =  M (ρ )⋅  N (ρ)
 λx.M (ρ)={ α→β | β ∈  M (ρ(x := α)) }

Here and below we confuse {α} with α.

This defines an ordered lambda interpretation. The only not
completely obvious point is that the interpretation respects α -
equivalence; we omit the verification. For condition (v), calculate that:

 λx.M (ρ)⋅a  =  { α→β | β ∈  M (ρ(x := α)) }⋅a
  =  { β | for some α in a, β ∈  M (ρ(x := α)) }
 ⊃   M (ρ(x := a))

(by the monotonicity of  M (ρ) in ρ). To see that the type-expression
model is a syntactical model of βη-reduction, let us calculate that for
λx.Mx with x not free in M:

  λx.Mx (ρ) = { α→β | β ∈  Mx (ρ(x := α)) }
= { α→β | ∃ α′∈{α}. α′→β ∈ M (ρ(x := α)) }
= { α→β | α→β ∈  M (ρ(x := α)) }

     ⊃ M (ρ) (as x is not free in M)

According to a claim made above this interpretation can be viewed as a
structure XX →X→XX in some cartesian closed order-enriched category.
It is more pleasing, however, to do this directly in a naturally available
category, and here we take the category of complete partial orders and
continuous maps. The partial order P is such a complete partial order -
indeed it is an algebraic complete lattice. Application is continuous and
yields F: P→  PP as F(a)(b) = a.b; the continuous function G: PP →  P is
defined by:

G(f) = { α→β | β ∈ f(α) }
and one can show that:

 λx.M (ρ)=G(λα:P.  M (ρ(x := α)))
(making use of the typed λ-calculus).

For the type interpretation define:
Xα  =  { a | α ∈ a }

and then put:
Ty  =  { Xα|α a type expression }

Noting that Xα determines α since {α} is the only singleton in Xα, we
can define the arrow operation by:

Xα→Xβ  =  Xα→β
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We have to check that the arrow conditions hold. For the first, suppose
that a is in Xα→β and b is in Xα. Then α→β is in a, α is in b and so β is
in a⋅b and we see that a.b is in Xβ . For the second suppose that
whenever a ∈ Xα then  M (ρ(x := a)) ∈ Xβ. Then β ∈  M (ρ(x := α))
and so α→β ∈  λx.M (ρ) showing that  λx.M (ρ) ∈ Xα→β as required.
Note that by Lemma 3.3 this is both a simple type interpretation and an
F-interpretation.

To show completeness we will need an appropriate environment and
type environment. For the environment, for any finite basis Γ define
an environment by:

Γ̂(x) = { α | x:α ∈ Γ }
The next lemma is – roughly speaking – to the effect that the
denotation of a term is the set of types that can be inferred of it. This is
characteristic of type expression models.

Lemma 4 Let M be a term. Then M (Γ̂) = { α | Γ |−F M:α }
Proof  The proof is by induction on M. There are three cases. First, if M
is a variable x, then:

M (Γ̂) = { α | x:α ∈ Γ }
  = { α |  Γ |−F x:α }

Second, if M is an application NL, then
NL (Γ̂) = N (Γ̂) ⋅ L (Γ̂)

     = { γ | Γ |−F N:γ }⋅{ α | Γ |−F L:α }
(by the induction hypothesis)

         = { α→β | Γ |−F N:α→β }⋅{ α | Γ |−F L:α }
(by the definition of application)

   = { β | Γ |−F NL:β }
Third, if M is an abstraction λx.N, then

λx.N (Γ̂) = { α→β | β ∈ N (Γ̂(x := α)) }
 = { α→β |  Γ, x:α |−F N:β }

(by induction hypothesis since Γ̂(x := α) is (Γ,x:α)^)
 = { α→β |  Γ |−F  λx.N:α→β }
 = { γ |  Γ |−F  λx.N:γ }. ■

This lemma corresponds, roughly, to part 2 of the Key Theorem in [26].
To make this remark precise requires developing the combinatory logic
version of the present work; this is left as a (very pleasant!) exercise for
the reader.

Now the type environment is defined by V1(t) = Xt, and one has that
V1(α) = Xα. For the second proof of Completeness Theorem 4, assume
that Γ |=  M:α. Note that Γ̂, V1 satisfies every type statement x:α in Γ as
{α} ∈ Xα. So Γ̂, V1 satisfies M:α, which means that Μ (Γ̂) is in Xα, and
so Γ |−F M:α by Lemma 4.

Since this proof of the Completeness Theorem makes no use of the
Subject Reduction Theorem, and since rule (→→ βη) is sound for any
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model of βη-reduction and type interpretation, we now have a semantic
proof of the Subject Reduction Theorem for βη-reduction. In fact a
direct proof for the system λ→ is very simple, but perhaps the technique
would have applications in a more complex setting.
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5 Polymorphic Type Inference

A system for polymorphic type inference is obtained by adding uni-
versal quantification ∀t.α to type expressions (see [3,13,15,16,28,34,36] for
information on this system and further references). We do not dis-
tinguish α-equivalent type expressions – those which differ only in the
names of bound variables. There are also evident notions of FTV(α),
the free type variables of α, substitution [σ/t]α and multiple substitution
[  
r
σ /    

r
t ]α. A natural basic system for inferring polymorphic types was

given by Mitchell [28]. It is obtained by adding to λ→ the following two
rules:

(∀Ι)  
Γ |− M:α

 Γ  |−  M:∀t.α
 

(provided that t does not appear free in any type in Γ)

(∀Ε)  
Γ |−  M:∀t.α

Γ |− M:[β/t]α

The relation of generic instantiation, α ⊃

g β, is defined to hold iff α and
β have the respective forms ∀    

r
s .δ and ∀    

r
r .[  

r
σ /    

r
s]δ, where no variable in

    
r
r  is free in ∀     

r
s .δ. In [28] it is shown that α ⊃

g β  holds iff x:α |− x:β  is
provable, and that generic instantiation is decidable. The following rule
is admissible (as is easy to show using the two rules for universal
quantification):

(SubTypesg)       
Γ |− M:α , α ⊃

g β 

Γ |− M:β

The Subject Reduction Theorem for β-reduction and Weakening and
Strengthening continue to hold. However the Subject Reduction
Theorem does not hold for βη-reduction [28]; for example, the sequent
y:∀t.α→β |−  λx.yx:α→∀t.β, is provable, but the sequent y:∀t.α→β |−  y:α→∀t.β
is not, as α→∀t.β is not a generic instance of ∀t.α→β.

One might well expect that the basic system would play a role anal-
ogous to that of λ → but a new phenomenon enters into play, which
concerns an equality rule, at the level of type expressions rather than
expressions:

(EQTypes)       
Γ |− M:α , α=β 

Γ |− M:β

In the case of λ → there were no non-trivial valid equalities between
type expressions; here there are. If types are to be interpreted as sets, and
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universal quantification is to be interpreted as an intersection, then -
for example - ∀t.α and α will receive the same interpretation (where t
does not occur in α). Such quantifications are termed vacuous. We
consider an extension of the basic system with the rule (EQTypes)
together with the following rules and axioms for the equality of types:

α = α

 
α = β
β = α

α = β , β = γ 
α = γ

α = β , α' = β' 
α → α' = β → β'

α = β  
∀t.α  = ∀t.β

∀t.α  = α (t ∉ FTV(α))

∀s.∀t.α = ∀t.∀s.α

Let us call this system “λ→∀” and for the notion of F∀-deducibility, the
relation Γ |−F∀  M:α is taken to be that Γ |− M :α is provable using this
system of rules. Let us also define α  =F∀  β to hold just when α  = β is
provable. The system yields different typings than the basic system; for
example, if t ∉ FTV(α), then λx.x has type ((∀t.α) → β) → (α → β) in this
system, but not in the basic system. Note that it is the fourth of the
rules, the congruence rule for arrow, that makes the difference; if
omitted, the resulting system is equivalent to the basic system.

Both Weakening and Strengthening hold for λ →∀ by straightforward
inductive proofs. To show that the Subject Reduction Theorem for β-
reduction holds we relate to the basic system of Mitchell. For any type
expression α , let α* be the type expression obtained from α by first
removing all vacuous quantifications, and then permuting iterated
quantifications so that in every subterm of the form ∀s.∀t.β, the first
occurrence of s in β is ����� to the left of the first occurrence of t in β. This
provides a normal form for the above system for proving equality of
type expressions in that first, for any type expression α, α =F∀ α* and
second for any type expressions α and β, it holds that α =F∀ β iff α* and β*
are α-equivalent. In the following proposition the (⋅)* transformation is
applied also to bases; this is taken to mean that it is applied to the type
expressions occurring in the bases.



21

Proposition 3 The sequent Γ |− M:α is provable in λ →∀ iff it is provable
in the basic system that Γ* |− M:α*.
Proof  The implication from left to right is proved by a straightforward
induction which we omit. The converse follows from the fact that
provability in λ →∀ is invariant under substitution of provably equal
type expressions, whether in the assumptions (use (EQTypes) “at the
top of the proof”), or in the conclusion (apply (EQTypes) directly). ■

The relation of modified generic instantiation, α ⊃

mg β, is defined to
hold iff α* ⊃

g β*. From the above remarks on generic instantiation and
Proposition 3, one sees: that α ⊃

mg β holds iff x:α |−F∀ x:β; that modified
generic instantiation is decidable and that in the system λ→∀ the follow-
ing rule is admissible:

(SubTypesmg)       
Γ |− M:α , α ⊃

mg β  

Γ |− M:β

Similarly, one sees that the Subject Reduction Theorem for β-reduction
holds for the system, but that Subject Reduction does not hold for βη-
reduction. Finally if α ⊃

mg  β ⊃

mg α, then α and β are α-equivalent; this
fails for generic instantiation - for example, take ∀t.α and α, with t not
free in α.

A type interpretation is now a triple
Ty = < >Ty,→,    ⋅   ( ⋅)

where < >Ty,→  is an interpretation as above and  ⋅  (⋅) is a mapping
from type expressions and valuations of the type variables to types such
that:

 (i)  t (V) = V(t)
 (ii)  α→β (V) =  α (V) →  β (V)
 (iii)  ∀t.α (V) = ∩ { α (V(t := X)) | X ∈ Ty }

Note that we have to take these as conditions rather than as an in-
ductive definition, for in the third case it is needed that the intersection
is indeed in Ty. This definition can be viewed as a special case of the
definition in [28] where types represent sets of elements of the model
rather than necessarily being such sets. We omit the verification of this
claim, which would involve embedding Ty in a model of the typed λ-
calculus. (See [13, 35] for other applications of Mitchell’s idea of
inference models.)

Proposition 4 Type interpretations have the following properties:
(iv)  ∀t.α (V) =  ∀t′.[t′/t]α (V) (t′ is not free in ∀t.α)
(v) if V|̀FTV(α) = V′|̀FTV(α) then  α (V) =  α (V′)
(vi) if for all X in Ty,  α (V(t := X)) =  β (V(t := X))

then  ∀t.α (V) =  ∀t.β (V)
(Sub)  [β/t]α (V) =  α (V(t :=  β (V) ))
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Proof  The proof is straightforward, and is omitted. ■

As before, a statement M:α is satisfied by ρ,V if  M (ρ) is an element
of  α (V), and what Γ |=  M:α means is defined accordingly.
Soundness Theorem 5  If Γ  |−F∀ M:α then Γ |=  M:α.
Proof  The proof is by induction on the size of the proof that Γ |− M:α.
Choose ρ,V and assume they satisfy every statement in Γ. The rules of
system λ→ are dealt with as in the proof of Theorem 2. In the case of
(∀I), α has the form ∀t.β, and there is a shorter proof of Γ |− M:β, where
t does not occur free in any type in Γ. Therefore by (v), for any type X it
is the case that ρ,V(t := X) satisfy every statement in Γ and so satisfy
M:β. Thus  M (ρ) is in β (V(t := X)); so by (iii), ρ,V satisfy M:α.

In the case of (∀E), we have that for some β,σ the type expression α has
the form [σ/t]β and there is a shorter proof of Γ |− M:∀t.β. So by
induction hypothesis,  M (ρ) ∈  ∀t.β (V). But

∀t.β (V) ⊃ β (V(t :=   σ (V)))  (by (iii))
 =   [σ/t]β (V) (by (Sub))

showing that ρ,V satisfy M:[σ/t]β. Finally the soundness of the rule
(EQTypes) follows from the easily proved fact that, if α =F∀ β then it
follows that  α (V) =  β (V). ■

The term model A completeness proof can be based on the term model
of β-reduction Rβ. For a type interpretation, given any finite basis Γ and
term A define a basis B as above, and with the analogous un-
derstanding of B  |−F∀ M:α. Define:

Xα  =  { [M] | B |−F∀ M:α }
as before, again making use of the Subject Reduction Theorem and
take:

Ty  =  { Xα|α a type expression  }
To see that Xα determines α, suppose that Xα ⊃

 Xβ. Taking a statement
of the form x:α in B, we get that B |−F∀ x:β, and hence, by Strengthening,
that x:α |−F∀ x:β, and so α ⊃

mg β. Conversely, if α ⊃

mg β then Xα ⊃

 Xβ. For
if B |−F∀ M:α then B |−F∀ M:β by (SubTypesmg). Therefore Xα ⊃

 Xβ holds
iff α ⊃

mg β, and it follows that Xα = Xβ iff α and β are α-equivalent.

Now the arrow operation can be defined by:
Xα→Xβ  = Xα→β

The arrow conditions hold, with the same proof as before, making use
of Weakening. It remains to define α (V), and we put:

α (V) =       X[
r
σ/

r
s ]α

where     
r
sis a list of the free type variables of α and     X r

σ  = V (    
r
s). We have

to verify conditions (i),(ii) and (iii). The first is trivial. For the second,
we may calculate that:

 α→β (V) =       X[
r
σ/

r
s ](α →β )

(where     
r
s  is a list of the free type variables of α→β and     X r

σ  = V(    
r
s))

    =  (      X[
r
σ/

r
s ]α )→(      X[

r
σ/

r
s ]β )

    =   α (V)→  β (V)
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The verification of the third condition is split into two inclusions. In
one direction,
             ∀t.α (V) =       X[

r
σ/

r
s ]∀t.α

(where     
r
s  is a list of the free type variables of ∀t.α and     X r

σ  = V (    
r
s), and

where we may assume that t differs from all the variables in     
r
s  and does

not appear free in any type expression in   
r
σ )

   = { [M] | B  |−F∀  M: ∀t.[  
r
σ /    

r
s]α }

  ⊃ { [M] | B |−F∀  M: [ β/t] [  
r
σ /    

r
s]α }  by (∀E)

   = { [M] | B |−F∀  M: [ β/t ,   
r
σ /    

r
s]α }

   =       X[β/t ,
r
σ/

r
s ]α

   =  α (V(t :=  β (V)))

In the other direction, suppose [M] is in α (V(t := X)) for all types X. Let
    
r
s  be a list of the free type variables of ∀t.α, and suppose     X r

σ  = V (    
r
s).

Choose t′ different from all the variables in     
r
s , and not free either in α,

or in any type expression in   
r
σ , or in any β where x:β is a statement in B

whose subject x is free in M. Take X to be Xt′. Then
Γ′ |−F∀  M:[ t′/t ,   

r
σ /    

r
s]α

for some Γ′ a subset of B. Applying Strengthening as necessary, we can
assume that the subject of any statement in Γ′ is a free variable of M.
Hence by (∀I)

Γ′  |−F∀ M: ∀t′.[ t′/t ,   
r
σ /    

r
s]α.

But ∀ t′.[ t′/t ,   
r
σ /    

r
s]α is α-equivalent to [  

r
σ /    

r
s]∀ t.α, and so Μ is an

element of  ∀t.α (V), as required.

Finally, with ρ0 and V0 defined as before, one obtains:
Completeness Theorem 6  If  Γ |=  M: α holds  in every model of β-
reduction and every type interpretation, then Γ |−F∀ M:α.
Proof  The proof is just like the term model one for the system λ→. ■

A type-expression model There is also a completeness proof via a type-
expression model of β-reduction. Say that a ∀-filter over the set of
polymorphic type expressions is a subset F such that:

(1) if α ∈ F and α ⊃

mg β then β ∈ F

(2) if [β/t]α ∈ F for all type expressions β, then ∀t.α ∈ F
Here the universal quantifications are treated as the (infinite) con-
junction of their substitution instances; this idea appears already in a
filter definition discussed in [21].

For any set F of type expressions let F↑∀ be the least ∀-filter containing
F. For singletons, we have that {α}↑∀ = {β| α ⊃

mg β }. Clearly this is the
least set satisfying (1); to see that it satisfies (2), suppose that α ⊃

mg [γ/t]β
for all type expressions γ. Then, in particular α ⊃

mg [s/t]β, where s is a
type variable not occurring free in α or ∀t.β, and so α ⊃

mg ∀s.[s/t]β (as is
easily shown) which is α-equivalent to ∀t.β. Finally, sets which have
the form { α | Γ |−F∀ M:α } are ∀-filters. That (1) holds follows by using
(SubTypesmg). For (2), suppose that [β/t]α is in { α | Γ |−F∀  M:α } for all
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type expressions β, take β to be a type variable not appearing free in any
type expression in Γ or in ∀t.α, and apply the rule (∀I).

Now for the model of β-reduction we take P to be the set of ∀-filters,
ordered by subset. As such, it is a complete lattice where meet is
intersection. Application is defined by:

a⋅b = { β | for some α in b, α→β is in a }↑∀
And  ⋅  (⋅) is defined by the inductive clauses

 x (ρ) = ρ(x)
 MN (ρ) =  M (ρ )⋅  N (ρ)
 λx.M (ρ)={ α→β | β ∈  M (ρ(x := α↑∀)) }↑∀

As before, this defines an ordered lambda interpretation with the only
not completely obvious point being that the interpretation respects α-
equivalence; we again omit the verification.

The clause for abstraction can be made more explicit:
Lemma 5
   λx.M (ρ)  =  {∀    

r
s .(α→β) | for all   

r
σ , [  

r
σ /    

r
s]β ∈  M (ρ(x := [  

r
σ /    

r
s]α↑∀)) }

Proof  To see this holds, note first that, on the one hand, the right hand
side is clearly contained in the left hand side, as that satisfies (2), and on
the other, it contains { α→β  | β  ∈  M (ρ(x := α↑∀)) }. It therefore
suffices to show that the right hand side is a ∀-filter.

To see that (1) is satisfied, suppose     
r
s ,α,β, are such that for all   

r
σ , [  

r
σ /    

r
s]β

is in  M (ρ(x := [  
r
σ /    

r
s]α↑∀)); suppose too that we have   

r
τ , of the same

length as     
r
s , and     

r
r  with no variable free in ∀    

r
s .α→β. We wish to show

that ∀    
r
r .[  

r
τ /    

r
s](α→β) is in the right hand side. To this end we choose any

  
r
σ  of the same length as     

r
r  and have to show that [  

r
σ /    

r
r] [  

r
τ /    

r
s]β is an

element of  M (ρ(x := [  
r
σ /    

r
r] [  

r
τ /    

r
s](α↑∀))), which is an immediate

consequence of the first supposition.

To see that (2) is satisfied suppose that for all β, [β/t]α is in the right
hand side. Let α have the form ∀    

r
s .(γ→δ). If t occurs in     

r
s , then α is in the

right hand side (since then α = [β/t]α for any β) and so ∀t.α is in the right
hand side, as (1) is satisfied. If t does not occur in     

r
s , then we take an

arbitrary β and an arbitrary   
r
σ  of the same length as     

r
s  and prove that

[β/t,  
r
σ /    

r
s]δ ∈ M (ρ(x := [β/t,  

r
σ /    

r
s]γ↑∀). To this end, by assumption the

right hand side contains [β/t]α. But this is α-equivalent to the type
expression ∀    

r
′s .[β/t,    

r
′s /    

r
s](γ→δ), where     

r
′s  is a non-repeating list of

variables, all distinct from t, and not occurring free in β  or (γ→δ).
Therefore [  

r
σ /    

r
′s ][β/t,    

r
′s /    

r
s]δ is in  M (ρ(x := [  

r
σ /    

r
′s ][β/t,    

r
′s /    

r
s]γ↑∀). But

then it follows that the type expression [  
r
σ /    

r
′s ][β/t,    

r
′s /    

r
s]δ is α-equivalent

to [  
r
σ /    

r
′s , β/t,  

r
σ /    

r
s]δ =α [β/t,  

r
σ /    

r
s]δ, and similarly for γ. ■

One now sees that the set of functional type expressions in  λx.M (ρ)
is the set { α→β | β ∈  M (ρ(x := α↑∀)) }, and so for condition (v) we
have that:

 λx.M (ρ)⋅a =  { α→β | β ∈  M (ρ(x := α↑∀)) }⋅a
  =  { β | for some α in a, β ∈  M (ρ(x := α↑∀) } ↑∀
 ⊃   M (ρ(x := a))

using the monotonicity of  M (ρ) in ρ.
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The partial order P is an algebraic complete lattice. Unfortunately,
however, application is not continuous. For example, set

a ={(∀t.t→t)→s}↑∀
and for all finite sets of type expressions, X, put

bX = {α→α|α∈X}↑∀
Then a and bX are ∀-filters, the set {bX} is directed with least upper
bound (∀t.t→t)↑∀, but a.bX is ∅ and a.(∀t.t→t)↑∀ is s↑∀. On the other
hand, application is continuous in a weaker sense. Say that a subset of a
partial order is countably directed if it contains an upper bound of any
of its countable subsets and say that a function of complete partial
orders is countably continuous if it preserves least upper bounds of
countably directed sets. The category of complete partial orders and
countably continuous functions can be shown to be a cartesian closed
order-enriched category. Now assuming that there are countably many
type variables, there are countably many type expressions. One can then
show that the least upper bound of a countably directed subset of P is
the union of that set, and it follows that application is countably
continuous. One can define F and G by:

F(a)(b) = a.b
G(f) = { α→β | β ∈ f(α↑∀) }↑∀

and one has that:
 λx.M (ρ)=G(λα:P.  M (ρ(x := α↑∀)))

The question arises whether there is a type expression model in the
category of complete partial orders and continuous functions which
can be made the basis of a completeness proof; it is conjectured that
there is none, although, admittedly, the conjecture is not precise.

For the type interpretation define:
Xα  =  { a | α ∈ a }

and then put
Ty  =  { Xα|α a type expression }

Noting that Xα ⊃

 Xβ iff α ⊃

mg β we see that Xα determines α up to α-
equivalence and so we can define the arrow operation by

Xα→Xβ  =  Xα→β
The two arrow conditions are straightforwardly verified. Finally we can
define the interpretation of type expressions by the conditions
(i),(ii),(iii) above, as the intersection of any collection of ∀-filters is itself
a ∀-filter.

One can show that
X∀t.α = ∩ {X[β/t]α | β a type expression }

and it is just here that good use is made of the infinitary condition in
the definition of ∀-filters. The inclusion from left to right is proved
using condition (1): if a ∈ X∀t.α then ∀t.α ∈ a and so [β/t]α ∈ a (for any
β), and so a ∈ X[β/t]α (for any β). The inclusion from right to left is
proved using condition (2): if [β/t]α ∈ a (for any β) then ∀t.α ∈ a. Using
this equation, one can prove by induction that for any type expression α
and type environment V,
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 α (V) =       X[
r
σ/

r
s]α

where     
r
s  is a list of the free type variables in α and     X r

σ  is V(    
r
s). In the

proof of completeness the type environment V1 is defined by:
V1(t) = Xt

Then by the above remark, V1(α) = Xα for any type expression α.

As above, for any finite basis Γ we may define an environment by:
Γ̂(x) = { α↑∀ | x:α ∈ Γ }

Lemma 6 Let M be a term. Then M (Γ̂) = { α | Γ |−F∀ M:α }
Proof  The proof is by induction on M. There are three cases. The first
case where M is a variable is easy and is omitted. Second, suppose M is
an application NL. Then in one direction,

NL (Γ̂) = N (Γ̂) ⋅ L (Γ̂)
      = { γ | Γ |−F∀ N:γ }⋅{ α | Γ |−F∀ L:α }

(by the induction hypothesis)
          = { α→β | Γ |−F∀ N:α→β }⋅{ α | Γ |−F∀ L:α }

(by the definition of application)
       = { β | Γ |−F∀ N:α→β and Γ |−F∀ L:α}↑∀
    ⊃

 { β | Γ |−F∀ NL:β }
(using the rule (→E) and the fact that {β | Γ |−F∀ NL:β} is a ∀-filter).

Conversely suppose that Γ |−F∀ NL:δ. Then  Γ* |− NL:δ* is provable in
the basic system, by Proposition 3, and so by the “characterisation of
pure typing” in [28] there are types α, β and a sequence     

r
s  of type vari-

ables such that Γ* |− N: ∀    
r
s .α→β and Γ* |− L: ∀    

r
s .α  are provable in the

basic system, and ∀    
r
s .β  ⊃

g δ*. (Mitchell’s pure typing system is the
same as the basic system considered here). Let   

r
σ  be any sequence of

type expressions of the same length as     
r
s . Since Γ * |− N: ∀     

r
s .α→β  is

provable in the basic system, it follows that Γ  |− N: [  
r
σ /    

r
s](α→β) is

provable in the basic system, and so (by the induction hypothesis) that
[  

r
σ /    

r
s](α→β)  is in N (Γ̂); similarly [  

r
σ /    

r
s](α) is in L (Γ̂). Therefore

[  
r
σ /    

r
s]β is in NL (Γ̂), and so as this is a ∀-filter and as   

r
σ  is arbitrary we

see that ∀    
r
s .β and hence δ is in NL (Γ̂).

Third, if M is an abstraction λx.N, then in one direction,
λx.N (Γ̂) = { α→β | β ∈ N (Γ̂(x := α↑∀))↑∀

  = { α→β |  Γ, x:α |−F∀ N:β }↑∀
(by induction hypothesis)

  ⊃

  { δ |  Γ |−F∀  λx.N:δ }
(using the rule (→I) and the fact that { δ | Γ |−F∀  λx.N:δ } is a ∀-filter)
Conversely, suppose that Γ |−F∀  λx.N:δ. Then  Γ* |− λx.N:δ* is provable
in the basic system, by Proposition 3, and so by the characterisation of
pure typing in [28], there are type expressions α, β and a sequence     

r
s  of

type variables, none of which appears free in any type expression in Γ*,
such that Γ*, x:α |− N:β is provable in the basic system, and it holds that
∀    

r
s .(α→β) ⊃

g δ. Let   
r
σ  be any sequence, of the same length as     

r
s , of type

expressions. Since Γ*, x:α |− N:β is provable in the basic system, and no
type variable in     

r
s  appears free in any type expression in Γ* it follows

that Γ, x:[  
r
σ /    

r
s]α |−  N:[  

r
σ /    

r
s]β is provable in the basic system. So by the

induction hypothesis [  
r
σ /    

r
s] β is in N (Γ̂(x := [   

r
σ /    

r
s]α↑∀ )) and so
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[  
r
σ /    

r
s](α→β) ∈  λx.N (Γ̂), and so as this is a ∀-filter and as   

r
σ is arbitrary,

∀    
r
s .α→β and hence δ is in  λx.N (Γ̂). ■

With this lemma, the proof of completeness now follows very much as
it did for the system λ→.

The simple semantics.  Simple type interpretations validate the fol-
lowing rule, introduced by Mitchell:

(simple)
Γ |− λx.Mx:α→β

Γ |− M:α→β
 (x ∉ FV(M))

To see this is the case, suppose we have a simple interpretation which
satisfies Γ |− λx.Mx:α→β, where x is not free in M, and we also have
environments ρ,V satisfying every statement in Γ. Take a in V(α) to
show that M (ρ)⋅a is in V(β). By the assumptions, λx.Mx (ρ)⋅a ∈ V(β).
But V(β) is upper closed and λx.Mx (ρ ) ⋅a ≤ M (ρ)⋅a, yielding the
desired conclusion.

The above counter-example to Subject Reduction for βη-reduction also
shows that (simple) is not a derived rule of the polymorphic typing
system λ→∀. So, as simple type interpretations validate (simple) they
cannot be complete for this polymorphic typing system. Instead, they
are complete for the basic system for polymorphic types extended with
(simple). Let us call this extended system “λ→∀s”, and write B |−s M:α to
mean Γ |− M:α is provable in it, for some finite Γ ⊃ B. It is easily seen that
both Weakening and Strengthening hold for this system. The analogue
to (modified) generic instantiation is simple containment α ⊃

s β, which
is defined to be the least relation between type expressions which
satisfies the following axioms and rules:

(gen) ∀    
r
s .α ⊃

 ∀    
r
r .[  

r
σ /    

r
s]α

(no variable in     
r
r  is free in ∀    

r
s .α)

(dist) ∀    
r
s .(α→β) ⊃

 ∀    
r
s .α→∀    

r
s .β

(arrow) if α ' ⊃

 α and β ⊃

 β' then (α→β) ⊃

 (α'→β ')

(trans) if α ⊃

 β and β ⊃

 γ then α ⊃

 γ

(congruence) if α ⊃

 β then ∀s.α ⊃

 ∀s.β
The simple containment α ⊃

s β holds iff x:α |−s x:β (see [28]); it is an open
problem whether simple containment is decidable. According to
Theorem 16 of Mitchell [28], the system λ→∀s is equivalent to the sys-
tem λ→∀ extended by the rule:

(SubTypess)       
Γ |− M:α , α ⊃

s β 

Γ |− M:β
Since modified generic instantiation is a sub-relation of simple
containment, it follows that the system λ→∀s is stronger than λ→∀.
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Subject Reduction for βη-reduction holds for the system λ→∀s. This is an
immediate consequence of:
Proposition 5 Γ |−s M:α iff there is a λ-term N such that both N →→βηM
and also Γ |−F∀ N:α.
Proof  The implication from left to right is a straightforward induction
on the size of proof of Γ  |−s M:α , and is remarked on p228 of [28].
Mitchell’s Lemma 16 shows that the converse holds for the basic
system for polymorphic types extended by (SubTypess) and that is
equivalent to λ→∀s, as remarked above. ■

The term model With this result a proof of completeness can be based
on the term model R β η , following the above lines. For a type
interpretation, given any finite basis Γ and term A, define a basis B as
above, and with the analogous understanding of B  |−s M:α. Define:

Xα  =  { [M] | B |−s M:α }
making use of Subject Reduction for βη-reduction, and take

Ty  =  { Xα|α a type expression }
Here Xα does not quite determine α; we get instead that Xα ⊃

 Xβ holds
iff α ⊃

s β; the implication from left to right is proved as for the system
λ→∀ ; the other direction follows from an application of the
rule (SubTypess). It follows that Xα = Xβ iff α ≡s β (the equivalence
associated with simple containment).

Now, using the (arrow) rule, → can be defined by:
Xα→Xβ  = Xα→β

as before. The arrow conditions hold, and are proved as before. For the
interpretation of type expressions, put:

α (V) =       X[
r
σ/

r
s ]α

where     
r
s  is a list of the free type variables of α  and     X r

σ  = V (    
r
s). The

verification of the three conditions proceeds as before. It remains to see
that this semantics is indeed simple. One direction is the first arrow
condition. For the other suppose that whenever [N] is in Xα then [MN]
is in Xβ. Choose x:α in B with x not free in M. Then [Mx] is in Xβ, which
is to say that B |−s Mx:β. So by (→I), B |−s λx.Mx:α→β, and so by (simple) we
have that B |−s M:α→β as required. Now one chooses ρ0,V0 as before, and
obtains:
Completeness Theorem 7  If Γ |=  M:α holds in every syntactical model of
βη-reduction and every simple type interpretation,  then Γ |−s  M:α.

A type expression model Again there is a completeness proof via a type
expression model of reduction. Say now that a simple ∀-filter over the
set of polymorphic type expressions is a subset F such that:

(1s) if α ∈ F and α ⊃

s β then β ∈ F

(2s) if [β/t]α ∈ F for all type expressions β, then ∀t.α ∈ F
As before, {α}↑∀s = {β| α ⊃

s β } is a simple ∀-filter (where for any set F of
type expressions, F↑∀s is the least simple ∀-filter containing F). The
proof is as above for {α}↑∀; one now needs that if α ⊃

s β and t is not free
α in then it follows that α ⊃

s ∀t.β. But this holds as by (gen) α ⊃

s ∀t.α,
and by (congruence) ∀t.α 

 

⊃

s ∀t.β. Sets of the form { α | Γ |−s M:α } are
simple ∀-filters, and this is proved as in the above case. The model of
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reduction is the set of simple ∀-filters, partially ordered by subset,
application is defined by:

a⋅b = { β | for some α in b, α→β is in a }↑∀s
And    ⋅  (⋅) is defined by the inductive clauses

 x (ρ) = ρ(x)
 MN (ρ) =  M (ρ )⋅  N (ρ)
 λx.M (ρ)={ α→β | β ∈  M (ρ(x := α↑∀s)) }↑∀s

As before this defines a model of β-reduction; for condition (v) one
needs:
Lemma 8
   λx.M (ρ) = {∀    

r
s .(α→β) | for all   

r
σ , [  

r
σ /    

r
s]β ∈  M (ρ(x := [  

r
σ /    

r
s]α↑∀s)) }

Proof  First, that (1) and (2s) are satisfied is shown as in the proof of
Lemma 5. Next that (1s) is satisfied is shown by induction on the
number of axioms and rules used to show that α ⊃

s β. The proof di-
vides into cases according to the last rule or axiom used to show α ⊃

s β.
The case (gen) is just that (1) is satisfied, which has already been
proved. In case (dist) let us assume that ∀    

r
s .(α→β) is in the right hand

side and show that ∀    
r
s .α→∀    

r
s .β is too. To this end, it is enough to show

that [  
r
σ /    

r
s]β ∈  M (ρ(x := ∀    

r
s .α↑∀s)), for arbitrary   

r
σ  of the same length

as     
r
s . But since ∀    

r
s .(α→β) is in the right hand side, it follows that [  

r
σ /    

r
s]β

is an element of  M (ρ(x := [  
r
σ /    

r
s]α↑∀s)), and the conclusion follows

using the monotonicity of ⋅ (⋅) in its second argument and the
simple containment ∀    

r
s .α ⊃

s [  
r
σ /    

r
s]α.

The case (arrow) is rather similar, and so is omitted. The case (trans) is
immediate using the inductive hypothesis twice. Finally we come to
the case (congruence). Here we need the fact - easily proved by
induction - that if α ⊃

s β, then [  
r
σ /    

r
s]α ⊃

s [  
r
σ /    

r
s]β can be proved using

the same number of rules. So suppose that α ⊃

s β , and ∀s.α  is in the
right hand side. We have to show that so is ∀ s.β . Choose a type
expression σ. Since ∀s.α is in the right hand side so is [σ/s]α. Now as
α ⊃

s β, and [σ/s]α ⊃

s [σ/s]β can be proved using the same number of
rules, and so we can apply the inductive hypothesis to see that [σ/s]β is
in the right hand side. But σ as was arbitrary, it follows from the
satisfaction of (2) that ∀s.β is in the right hand side. ■

The partial order of ∀-filters is a complete lattice, but (as is shown by a
variant of the corresponding counterexample given above) application
is again not continuous. As before, the model of reduction can be
located in the category of complete partial orders and countably
continuous functions. In the definition of the type interpretation one
has Xα ⊃

 Xβ iff α ⊃

s β, and so Xα = Xβ iff α ≡s β; as before, this difference
causes no problems. The arrow conditions hold; one proves as above
that

X∀t.α = ∩ {X[β/t]α | β a type expression }
and then for any type expression α and type environment V,

 α (V) =       X[
r
σ/

r
s ]α

where     
r
s  is a list of the free type variables in α and     X r

σ  is V(    
r
s).
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One has also now to show that the type interpretation is simple. To this
end, note first that one direction is the first arrow condition. For the
other suppose that whenever b is in Xα then a.b is in Xβ. Then taking b
to be α↑∀s we have that β ∈ (a.α↑∀s), and wish to show that α→β ∈ a, as
then a∈Xα→β  as desired. To this end we prove by induction on the
inductive construction of { β | for some δ in α↑∀s, δ→β ∈ a }↑∀s (which is
(a.α↑∀s)) that for any β, if β is in { β | for some δ in α↑∀s, δ→β ∈ a }↑∀s then
α→β ∈ a. The first case is where for some δ in α↑∀s, δ→β ∈ a. Here α ⊃

s δ,
and so by (arrow) (δ→β) ⊃

s (α→β), and hence α→β ∈ a. In the second case
there is a δ ⊃

s β, with α→δ ∈ a, and we get that α→β ∈ a, again using
(arrow). Finally suppose that for all δ, α→[δ/t]γ is in a, and β has the
form ∀t.γ. One can suppose without loss of generality that t is not free
in α, and so for all δ, [δ/t](α→γ) is in a and we get that ∀t.(α→γ) is in a,
and so by (dist) and (arrow) α→∀t.γ is in a, concluding the inductive
proof.

The proof of the analogue of Lemma 6 proceeds just as before, but
without the need for an analogue of Proposition 3, using instead
Mitchell’s characterisation of pure typing for the simple type discipline,
and completeness follows. Finally, let us show that – as may be
expected – the ∀ -filter model of β-reduction obtained is even a
syntactical model of βη-reduction. Suppose x is not free in M. Then one
calculates that:

  λx.Mx (ρ) = {∀    
r
s .(α→β)|for all   

r
σ , [  

r
σ /    

r
s]β ∈ Mx (ρ(x:=[  

r
σ /    

r
s]α↑∀s))}

(by Lemma 8)
   = {∀    

r
s .(α→β)|for all   

r
σ , [  

r
σ /    

r
s]β ∈ M (ρ).[  

r
σ /    

r
s]α↑∀s}

(as x is not free in M)
 

 

⊃

 {∀    
r
s .(α→β)| for all   

r
σ , [  

r
σ /    

r
s]α→[  

r
σ /    

r
s]β ∈ M (ρ)}

(by the same reasoning as used to show the type interpretation simple)
 

 

⊃

 M (ρ) (as M (ρ) satisfies condition (2s))
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6. The Intersection Type Discipline

Intersection types were independently introduced by Coppo and
Dezani-Ciancaglini, by Sallé and by Pottinger (see [3,6,9,20,36] for refer-
ences and further discussion). The surprising feature of such systems is
that even though (EQβ) is not derivable, it is admissible - provided
empty intersections are allowed. We may then use ordinary models for
completeness proofs. We are back in the world considered first by
Barendregt, Coppo and Dezani-Ciancaglini and by Hindley, with the
caveat that only systems sound for the wider class of models of β-
reduction are to be considered. There is nonetheless some interest in
pursuing such systems. First the availability of non-simple type in-
terpretations allows completeness proofs for other, perhaps simpler,
type inference systems. Secondly these systems are very closely con-
nected to the models of the λ-calculus given by Plotkin [30] and Engeler
[14].

A natural basic system with intersection types is obtained by adding to
the system λ→  binary and empty intersections of types: α ∩ β and ω. The
rules we take are

(∩Ι)  
Γ |− M :α,  Γ |− M:β

Γ  |−  M:α∩β

(∩Ε) 1. 
Γ |− M:α∩β
Γ  |−  M:α

    2. 
Γ |− M:α∩β
Γ  |−  M:β

(ωI) Γ |− M:ω

This system has not been considered in the literature (see [9] for a
closely related system) as it is not complete for simple type
interpretations. Completeness for our more general type
interpretations requires the addition of an extra rule, as in the case of
polymorphism. As before, there is a possibility of non-trivial equalities
between type expressions; for example if ∩ is  interpreted as intersection
then ((α ∩ β) → γ) and ((β ∩ α) → γ) have equal interpretations.

We consider the extension of the basic system for intersection types
with the rule (EQTypes), and the following rules and axioms for the
equality of types:

α = α
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α = β
β = α

α = β , β = γ 
α = γ

α = β , α' = β' 
α → α' = β → β'

α = β , α' = β' 
α ∩ α' = β ∩ β'

((α ∩ β) ∩ γ) = (α ∩ (β ∩ γ))
(α ∩ β) = (β ∩ α)
(α ∩ α) = α
(α ∩ ω) = α

Essentially this system was previously considered in [6,20]. Let us call it
“λ→∩ω” and for the notion of F∩ω-deducibility, the relation Γ |−F∩ω M:α,
is taken to be that Γ |− M:α is provable using this system of rules. Let us
also define α  =F∩ω  β to hold just when α  = β is provable. The system
yields different typings than the basic system; for example λx.x has type
((α ∩ β) → γ) → ((β ∩ α) → γ) in this system, but not in the basic system.
Note that it is again the congruence rule for arrow, that makes the
difference; if omitted, the resulting system is equivalent to the basic
system.

Once one has an intersection type available, one can define a formal
subtype relation by letting α ⊃

 β abbreviate α = α∩β; we write α ⊃

F∩ω β to
mean that α ⊃

 β is provable in λ→∩ω. The following rule is derivable in
λ→∩ω:

(SubTypes)       
Γ |− M:α , α ⊃

 β 

Γ |− M:β

It follows, in particular that if α ⊃

F∩ω  β then x:α |−F∩ω x:β; the converse
also holds, the proof being a straightforward induction. Both
Weakening and Strengthening hold for λ →∩ω , by straightforward
inductive proofs. Further, (EQβ) is admissible, as shown in [6].

The system is closely relate to the model of the untyped λβ-calculus
given in [30]. Let T be the smallest set containing all type variables and
closed under the rule that, if u and v are finite subsets of T, then the
pair <u,v> (to be written as u→v) is in T. In [30] a model of the untyped
λ-calculus was given consisting, up to isomorphism, of all subsets of T,
but with the (unnecessary) assumption that there is just one type
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variable; more details are given below. Here T will provide us with a
way to define normal forms of type expressions. To each type
expression α we associate a finite subset α σ  of T by a recursive
definition:

tσ = {t}
(α → β)σ = {ασ → βσ}
ωσ =  ∅
(α ∩ β)σ = (ασ ∪ βσ)

Now to each element α of T we associate a type expression ατ, and to
each finite subset u of T we associate a type expression uτ. This is done
by a simultaneous recursive definition, in which a fixed linear
ordering of T is assumed available:

tτ =  t
(u → v)τ =  uτ → vτ

{α1,…,αn-1,αn}τ = (α1τ ∩ .... (αn-1τ ∩ αnτ) … )

where in the last equation the right hand side is understood to be ω if
n=0, α1τ if n=1, and otherwise, the αi are taken in the assumed ordering.
One can show, by straightforward inductive proofs, first that if α =F∩ω β
then α σ  and βσ  are identical, and second α  = F∩ω α στ for any type
expression α, and third that ατσ = α and uτσ = u for any α in T, and any
finite subset u of T. It follows that we have a normal form for type
expressions, in that first α =F∩ω β iff αστ and βστ are identical, and second
that for any type expression α, α =F∩ω αστ. It also follows that α =F∩ω β is
equivalent to the identity of ασ and βσ. Now derivability in λ→∩ω can be
characterised in terms of the basic system. In the following proposition
the (⋅)σ and (⋅)τ transformations are applied also to bases; this is intended
to mean that the transformations are applied to type expressions, or
elements or finite subsets of T, as appropriate.

Proposition 6 The sequent Γ |− M:α is provable in λ→∩ω iff it is provable
in the basic system that Γστ |− M:αστ.
Proof  The proof is like that of Proposition 3. ■

Finally, we can better understand subtyping. First we have that:
 α ⊃

F∩ω β iff  α  =F∩ω  α∩β
iff  ασ = ασ ∪ βσ

iff  ασ ⊃ βσ

Now every type expression is a formal intersection of type variables
and function type expressions (taking ω  to be an empty such
intersection). It then follows that α ⊃

F∩ω β iff every such type variable
or function type expression in β is provably equal to one such in α.

Type interpretations < >Ty,→  are as for the system λ → except that Ty
must be closed under finite intersections. Valuations are extended to
type expressions as before for functional types; for the intersection type
expressions we put V(α ∩ β) = V(α)∩V(β) and V(ω) = P (using the above
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notation). With the evident definition of satisfaction, the soundness
theorem is then straightforwardly proved.

 In [35] van Bakel considers a strict type assignment system and proves
a completeness theorem for it, using a variation of Mitchell’s inference
model of polymorphic types. The provable sequents of his system are
those of the basic system, except that the type expressions occurring are
restricted to be Hindley’s “Normal type schemes” [17].

The term model For our first proof of completeness, we use the term
model of β-reduction Cβ = < >C, ⋅,     ⋅   ( ⋅)  whose elements are equiva-
lence classes of (open) terms under β−conversion, with the trivial
partial order, and whose definition is otherwise exactly as that of Rβ
(dropping the partial order, this is, of course the usual term model of
open terms under β−conversion [2]). For the type interpretation, given
any finite basis Γ and term A define a basis B as above, and with the
analogous understanding of B  |−F∩ω M:α. Define:

Xα  =  { [M] | B |−F∩ω M:α }
as before, again making use of the admissibility of (EQβ) and take

Ty  =  { Xα|α a type expression }
To see that Xα essentially determines α, suppose that Xα

⊃

 Xβ. Taking a
statement of the form x:α in B , we get that B |−F∩ω x:β, and hence, by
Strengthening, it follows that x:α |−F∩ ω  x :β,  and so that α ⊃

F∩ω  β.
Therefore if Xα = Xβ then α =F∩ω β, and in view of the rule (EQTypes)
the converse also holds. Therefore, → can be defined by:

Xα→Xβ  = Xα→β
and the arrow conditions are verified as before. Since it is easily
verified that:

Xω = C
Xα∩β = Xα ∩ Xβ

Ty is closed under finite intersections, and so we have a proper type
interpretation. Completeness can now be proved along the same lines
as before.

A type expression model The other approach to completeness is to use
a filter model along the lines of Barendregt et al [4]. Here the filter
model turns out to be isomorphic to the set-theoretic model of Plotkin.

A filter is a set F of type expressions such that:
1. if α ⊃

F∩ω β, and α ∈ F, then β ∈ F

2. ω ∈ F
3. if α, β ∈ F, then α ∩ β ∈ F

Every filter can be mapped to a subset of T by:

Fσ = ∪{ασ | α ∈ F}
and every subset of T can be mapped to a filter by:

aτ = {α | ασ ⊃

 a }

Using the properties given above of the (⋅)σ and (⋅)τ transformations, it
is easy to see that these two mappings are inverses; they are also clearly
monotonic. The relation between filter models and set-theoretic
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models has also been considered in [8], where it is shown that the filter
model of [4] can be embedded in Engeler’s model; use is made there of a
function similar to the (⋅)σ transformation.

Since the filter and set-theoretic models considered here are
isomorphic, we at liberty to work with either, and choose the simpler
model P(T) of all subsets of T. This forms a complete lattice under the
subset ordering. The model can be presented as a syntactical model of β-
reduction. Application is defined by:

a ⋅b = ∪{ v | for some u a finite subset of b, u→v is in a }
and  ⋅  (⋅) is defined by the inductive clauses

 x (ρ) = ρ(x)
 MN (ρ) =  M (ρ )⋅  N (ρ)
 λx.M (ρ)={ u→v | v ⊃

  M (ρ(x := u)) }
The model can be placed in the category of complete partial orders and
continuous functions with F defined as before, and:

G(f) = { u→v | v ⊃

 f(u) }

For the type interpretation define:
Xα  =  { a | ασ ⊃

 a }

and then put
Ty  =  { Xα|α a type expression }

Note that Xα 

⊃

 Xβ holds iff βσ ⊃

 ασ holds, iff α ⊃

F∩ω β holds. Thus Xα
determines α up to provable equality and we can define the arrow
operation by

Xα→Xβ  =  Xα→β
The arrow conditions are easy to verify, and as we also have the
equations

Xω = P(T)
Xα∩β = Xα ∩ Xβ

we have a type interpretation.

It is necessary now to relate type inference to denotation in the model,
and to this end we introduce a subsidiary type inference system where
we take finite subsets and elements of T as the “type expressions”,
adapting the usual notions of type assignment statements, and bases in
the evident way except that we only consider bases where the type
assignment statements have the form x:u, where u is a finite subset of
T. The system has the following rules:

∆ |− M:α  (α ∈ u)
 ∆ |− M:u

 ∆ , x:u |−x:α (α ∈ u)
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∆ , x:u |− M:v
 ∆ |− λx.M:u→v

∆ |− M:u→v  ,  ∆ |− N:u
∆ |− MN:α

   (α ∈ v)

We write ∆ |− T M:δ for derivability of sequents in this system (where δ
is an element or finite subset of T). The system can be thought of as
providing normal forms for proofs in λ →∩ω, although no theorem to
that effect will be proved. However we do consider the relationship as
far as provable sequents is concerned. 
Proposition 7  1. Γ |−F∩ω M:α iff Γσ |−T M:ασ.

2. ∆ |−T M:δ      iff ∆τ |−F∩ω M:δτ

(δ an element or finite subset of T)
Proof  First one shows the implications from left to right by straight-
forward inductive arguments. For the converse to 1, if Γσ |−T M:ασ, then
Γστ |−F∩ω M:αστ, by 2. So Γ |−F∩ω M:α since  λ →∩ω-provability is invariant
under substitution of provably equal type expressions. The converse to
2 is even simpler, making use of the facts that uτσ = u, for u a finite
subset of T, and ατσ = {α}, for α in T. ■

We can now proceed with the proof of completeness via  the set
theoretic model. For any finite T-basis ∆ define an environment by:

∆̂(x) = ∪{ u | x:u ∈ ∆ }

Lemma 9 Let M be a term. Then M (∆̂) = { α | ∆ |−T M:α }
Proof  The proof is much like that of Lemma 4. ■

Now a type environment is defined by V1(t)=Xt, and one has that
V1(α)=Xα. For completeness, assume Γ |=  M:α holds. Note that it holds
that (Γσ)^, V1 satisfy every type statement x:α in Γ, as (Γσ)^(x) is ασ, and
V1(α) is Xα. So (Γσ)^, V1 satisfies M:α, which means that Μ ( (Γσ)^) is
in Xα, that is that ασ ⊃

 Μ ( (Γσ)^). So Γσ |−T M:ασ by Lemma 9, and so by
Proposition 7, Γ |−F∩ω M:α, concluding the proof. As P(T) is actually a
model of the λβ-calculus, the completeness result gives a semantic
proof of the admissibility of (EQβ) for by λ→∩ω.

Other systems of intersection types Let us conclude with some remarks
on Engeler’s model [14] and also on the case of simple type
interpretations, as considered by Barendregt et al [4], and by Hindley
[17]. Instead of T, Engeler considers the least set B containing a given set
A (which we take here to be the set of all type variables) and such that if
u is a finite subset of B and β is an element of B then the pair <u,β> (to
be written as u→β) is in B. Then P(B) is a model of the λβ-calculus.
Application is defined by:

a ⋅b = { β | for some u a finite subset of b, u→β is in a }
and  ⋅  (⋅) is defined by the inductive clauses:

 x (ρ) = ρ(x)
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 MN (ρ) =  M (ρ )⋅  N (ρ)
 λx.M (ρ)={ u→β |β ∈  M (ρ(x := u)) }

Again, the model can be placed in the category of complete partial
orders and continuous functions with F defined as before, and now:

G(f) = { u→β | β ∈ f(u) }

For the corresponding type system, one adds these axioms to λ→∩ω :
(α → ω) =  ω
(α → (β ∩ γ)) = (α → β) ∩ (α → γ)

The development of the theory can proceed along the lines developed
above for λ →∩ω, with evident minor variations. For example when
defining the transformations one puts:

(α → β)σ = {ασ → γ| γ ∈ βσ}
(u → β)τ =  uτ → βτ

One considers type interpretations which satisfy the above extra two
type equations, and completeness can be proved by using either a term
model or Engeler’s model. For the latter, the modified type inference
system is:

∆ |− M:α  (α ∈ u)
 ∆ |− M:u

 ∆ , x:u |−x:α (α ∈ u)

∆ , x:u |− M:β
 ∆ |− λx.M:u→β

∆ |− M:u→β  ,  ∆ |− N:u
∆ |− MN:β

The system of Barendregt et al [4] can be equivalently formulated as
λ→∩ω plus the two rules above plus the conditional rule

α'  ⊃

 α

(α → β)   ⊃

 (α' → β)

Hindley gave a completeness proof via term models in [17] and
Barendregt et al used a filter model in [4]. This filter model is iso-
morphic to yet another set theoretic model, consisting of the up-closed
subsets of a certain partial order ≤B defined on Engeler’s set B. This
partial order is defined to be the least partial order ≤ over B such that:

 If
      for every β in v there is an α in u such that α ≤ β
     and  also α ≤ β
then u→α ≤ v→β.
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Using the results in [17] on normal type expressions, one can show that
α≤ β in the sense of [17] iff ασ ≤B   βσ, and also that for any α in B, ατσ ≡B α,
where ≡B is the equivalence associated to ≤B. With this one can show
that the filter model of Barendregt et al, is isomorphic to the collection
of up-closed subsets of B, with application defined as for Engeler’s
model and with  ⋅ (⋅) defined by the similar inductive clauses:

 x (ρ) = ρ(x)
 MN (ρ) =  M (ρ )⋅  N (ρ)
 λx.M (ρ)={ u→β |β ∈  M (ρ(x := u↑)) }

(where u↑ is the least up-closed subset containing u). The model can be
placed in the category of complete partial orders and continuous
functions: take F as before, and

G(f) = { u→β | β ∈ f(u↑) }
It may well also be possible to treat this type discipline directly, along
the lines followed for the previous two systems.
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