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Abstract

We investigate whether the π-calculus is able to serve as a good foundation for
the design and implementation of a strongly-typed concurrent programming lan-
guage. The first half of the dissertation examines whether the π-calculus supports
a simple type system which is flexible enough to provide a suitable foundation
for the type system of a concurrent programming language. The second half of
the dissertation considers how to implement the π-calculus efficiently, starting
with an abstract machine for π-calculus and finally presenting a compilation of
π-calculus to C.

We start the dissertation by presenting a simple, structural type system for
π-calculus, and then, after proving the soundness of our type system, show how
to infer principal types for π-terms. This simple type system can be extended
to include useful type-theoretic constructions such as recursive types and higher-
order polymorphism. Higher-order polymorphism is important, since it gives
us the ability to implement abstract datatypes in a type-safe manner, thereby
providing a greater degree of modularity for π-calculus programs.

The functional computational paradigm plays an important part in many pro-
gramming languages. It is well-known that the π-calculus can encode functional
computation. We go further and show that the type structure of λ-terms is pre-
served by such encodings, in the sense that we can relate the type of a λ-term to
the type of its encoding in the π-calculus. This means that a π-calculus program-
ming language can genuinely support typed functional programming as a special
case.

An efficient implementation of π-calculus is necessary if we wish to consider
π-calculus as an operational foundation for concurrent programming. We first
give a simple abstract machine for π-calculus and prove it correct. We then
show how this abstract machine inspires a simple, but efficient, compilation of
π-calculus to C (which now forms the basis of the Pict programming language
implementation).
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Chapter 1

Introduction

The π-calculus [MPW89a, MPW89b, MPW92] is a process calculus which is able

to describe dynamically changing networks of concurrent processes. An example

of such a process network is shown below. The network models a mobile telephone

and two ground stations. To describe how the telephone can switch from using

one ground station to another, we need to be able to change the communication

topology of the network (unlinking the telephone from the first station and linking

it to the second). The telephone must be able to accept messages (along its

existing links) which tell it how to access other ground stations. Thus, as the

car travels from region to region, details of other, closer, ground stations may be

transmitted to the phone, enabling it to reroute its communications through the

closest station.

Control Centre Control Centre

The active agents of the π-calculus are processes, which exchange informa-

tion over channels. A process of the form c!v.P outputs the value v along the

channel c and then continues as P . This communication is synchronous: P is

prevented from executing until the communication on c has completed. Similarly,

8



CHAPTER 1. INTRODUCTION 9

the process c?x.Q waits to receive a value along c, continuing as Q with the value

received substituted for the formal parameter x. (The π-calculus literature has

many variations on the syntax used for input and output – we use a syntax which

is most similar to that used in the Pict programming language [PT95b].)

Two processes may be run in parallel using the parallel composition operator |,
thus enabling interactions between them. In the following example, since both

processes wish to communicate on the channel c, an interaction is possible:

c!v.P | c?x.Q

→ P | {v/x}Q

(We use the symbol → to denote process reduction, and {v/x}Q to denote the

substitution of v for x in Q).

This style of synchronous rendezvous is used in many process calculi, includ-

ing CCS [Mil80, Mil89] and value-passing CCS [Mil80, Mil89]. However, unlike

its predecessors, the π-calculus’ channels not only provide the means of commu-

nication, but are also the values exchanged during communication.

This dissertation investigates whether the π-calculus is able to serve as a good

foundation for the design and implementation of a strongly-typed concurrent

programming language. The first half of the dissertation examines whether the

π-calculus supports a simple type system which is flexible enough to provide a

suitable foundation for the type system of a concurrent programming language.

The second half of the dissertation considers how to implement the π-calculus

efficiently, starting with an abstract machine for π-calculus and finally presenting

a compilation of π-calculus to C.

The following sections summarise the contents of this dissertation.

1.1 The polyadic π-calculus

The input and output primitives of the π-calculus are monadic: exactly one chan-

nel is exchanged during each communication. The polyadic π-calculus [Mil91a]

is a useful extension of the π-calculus which allows the atomic communication

of tuples of channels. The additional structure introduced by polyadic commu-

nication is important, since it raises the possibility of runtime failure (the tuple
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sent along a channel may not have the same length as the tuple expected by the

receiver). The monadic π-calculus has no corresponding operational notion of

runtime failure, even though it can encode polyadic communication.

In Chapter 2 we give the syntax and semantics of the polyadic π-calculus, and

then show why encoding the polyadic π-calculus in the monadic π-calculus de-

stroys our operational notion of runtime failure. We also present some convenient

derived forms and examples (which shall appear again in later chapters).

1.2 Process typing

The formal simplicity of the λ-calculus makes it an ideal foundation for the con-

struction of type systems for sequential programming languages. We believe that

the π-calculus can play a similar role in the construction of type systems for

concurrent programming languages. In Chapter 3, we show that the polyadic

π-calculus admits a simple typing discipline, which can easily be extended to

include useful type-theoretic constructions such as recursive types and polymor-

phism. We show how our typing rules behave on the examples and derived forms

of Chapter 2, and prove (by means of a subject-reduction theorem) that our type

system guarantees freedom from runtime errors.

The simplicity of our π-calculus type system allows us to infer types automat-

ically. The benefits of automatic type inference have been clearly demonstrated

in languages such as Standard ML [MTH90] and Haskell [HJW+92], where the

programmer has to write only a minimum of explicit type information. We use

similar, unification based, techniques to infer types for π-terms.

1.3 Recursive types

There are many useful programs which cannot be assigned a type in the simply-

typed λ-calculus. Similarly, there are many useful π-calculus programs which

cannot be assigned a type in our simple type system. An important deficiency is

that we cannot support programming with recursive datatypes (for example, lists

or trees). In Chapter 4, we present a simple solution to this problem: recursive

types. In fact, as in the λ-calculus, recursive types make the typed π-calculus
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as expressive as the untyped monadic π-calculus, since we can assign a type to

every monadic π-term.

1.4 Polymorphism

A common disadvantage of simple type systems is that, although they prevent

common programming errors, they also disallow many useful and intuitively cor-

rect programs. Polymorphic type systems overcome much of this problem by

allowing generic operations, that is, operations which can be safely applied to

many different types of argument. List operations such as reversing and con-

catenation are good examples of generic operations, since they act completely

independently of the types of the elements in the lists. The extra flexibility of-

fered by a polymorphic type system seems to be enough to allow a more natural

style of programming, where the type system is not perceived as ‘getting in the

way’.

In Chapter 5 we define an explicitly-typed polymorphic type system for π-

calculus which arises as a natural extension of the simple type system we pre-

sented in Chapter 3. We illustrate the utility of polymorphic types in π-calculus

programming using a number of examples, and then show how polymorphic chan-

nels can be used to model abstract datatypes in a type-safe manner. We prove

our type system sound using techniques similar to those we used to prove the

soundness of our monomorphic type system.

1.5 Relating typed λ-terms to typed π-terms

Our type system is constructed using type-theoretic techniques borrowed from

the λ-calculus, so it is natural to ask if there is a precise relationship between

well-typed λ-terms and well-typed π-terms. Milner [Mil90] has already shown

that we can encode various λ-calculus reduction strategies in the π-calculus. In

Chapter 6, we show that the type structure of a λ-term is often preserved by

these encodings. In fact, in some cases, we can even prove that the principal type

of a λ-term is directly related to its encoding’s principal type in the π-calculus.

Perhaps the most interesting feature of these encodings is that (in the presence
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of polymorphism) they don’t always work! For example, we find that the Damas-

Milner type system [DM82] does not always agree with our π-calculus type system

as to which types a λ-term may inhabit. This might not be surprising to those

familiar with ML, since it is well-known that Damas-Milner polymorphism is

unsafe in the presence of side-effects [Tof88]. The π-calculus is, by its very nature,

a calculus containing side-effects, so it had better not allow the same kind of

polymorphism as the Damas-Milner type system.

In fact, we find that the soundness of the Damas-Milner type system is closely

connected to the precise evaluation order used (a result which was recently discov-

ered by Leroy [Ler93], though not using encodings into the π-calculus). We find

that the call-by-value encoding of λ-calculus does not preserve its Damas-Milner

type structure, but the call-by-name encoding does.

1.6 An abstract machine for π-calculus

If the π-calculus could be implemented efficiently, it would clearly serve as a

flexible intermediate language for compilers of concurrent languages (in view of

the diverse high-level constructs which have been shown to be encodable in the

π-calculus). For example, the π-calculus can encode higher-order communication

(the communication of processes along channels) [San93a, San93b], structured

datatypes [Mil91a], mutable data, concurrent objects [Wal91], and even the λ-

calculus [Mil90]. In Chapter 7, we describe an abstract machine for the π-calculus

which is simple and yet realistic. In fact, in Chapters 8 and 9 we present a

compilation of π-calculus to C which is directly based on the abstract machine

presented in Chapter 7.

Our first abstract machine for the π-calculus introduces the basic mechanisms

for process creation, channel creation and communication. We prove that the

reductions of our abstract machine correspond to valid π-calculus reductions. We

then make a number of refinements to both our abstract machine and our source

language. In particular, we record variable bindings explicitly in environments,

rather than using a substitution operation, so that the basic operations of our

abstract machine are simple and efficient enough to be implemented directly.
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1.7 Compiling Pict to C

The primary motivation of the Pict [PT95b] project was to design and implement

a high-level concurrent language purely in terms of π-calculus primitives. There

have been many proposals for concurrent languages [Car86, Hol83, Rep92, Mat91,

GMP89, etc.] which include communication primitives which are very similar to

those of the π-calculus. However, to our knowledge, none have proposed using

π-calculus primitives as the sole mechanism of computation.

The Pict language consists of two layers: a very simple core calculus (which is

just π-calculus extended with built-in structured data), and a high-level language

which is defined via translation into the core calculus. In Chapters 8 and 9, we

describe an efficient compilation of core Pict to C. The compilation has been

implemented and now forms part of the Pict programming language implemen-

tation. The compilation is (perhaps surprisingly) quite simple, and is designed

so that it can exploit information provided by a number of program analyses.

Our compilation can be thought of as a more refined description of the abstract

machine which we present in Section 7.11, where we are explicit about the exact

representation of all runtime data and the implementation of operations such as

environment lookup.

1.8 Useful information

Labelled items (such as definitions, lemmas or theorems) are labelled c.n, where

c is the chapter in which the item occurs, and n indicates that the item is the

n’th labelled item in that chapter.

Some familiarity with CCS and the π-calculus would be helpful for readers of

this dissertation. Useful background reading can be found in [Mil89, MPW89a,

MPW89b, MPW92, Mil90, Mil91a].

The implementation of the Pict programming language (referred to previously)

is available electronically. The distribution includes a manual and tutorial, as

well as a number of examples of X-Windows programs written in Pict. This

dissertation is also available online.



Chapter 2

The polyadic π-calculus

The input and output primitives of the π-calculus are monadic: exactly one chan-

nel is exchanged during each communication. The polyadic π-calculus [Mil91a]

is a useful extension of the π-calculus which allows the atomic communication

of tuples of channels. The additional structure introduced by polyadic commu-

nication is important, since it raises the possibility of runtime failure (the tuple

sent along a channel may not have the same length as the tuple expected by the

receiver). The monadic π-calculus has no corresponding operational notion of

runtime failure, even though it can encode polyadic communication.

We first give the syntax and semantics of the polyadic π-calculus, and then

show why encoding the polyadic π-calculus in the monadic π-calculus destroys

our operational notion of runtime failure.

2.1 Syntax

The syntax of the polyadic π-calculus is given in Definition 2.1. We require

that all arguments to the summation operator are either input prefixes, output

prefixes, or the nil process. This is commonly known as guarded summation, since

every non-trivial term in a summation is guarded by an input or output prefix.

We could allow full summation, but it adds very little useful power in exchange

for the complexity it introduces in the formal semantics of our calculus.

The restriction operator (ν x)P binds the variable x in the process P . The

input operator x?[x1, . . . , xn].P binds the variables x1, . . . , xn in P . We disallow

14



CHAPTER 2. THE POLYADIC π-CALCULUS 15

duplicate bound variables in input prefixes. When the length of a sequence is

clear from the context, or is unimportant, we let x̃ denote x1, . . . , xn. We do not

distinguish terms which are α-convertible.

Definition 2.1 (Process syntax)

P, Q, R, S ::= P | P Parallel composition
(ν x)P Restriction
P + P Summation
x?[x1, . . . , xn].P Input
x![x1, . . . , xn].P Output
∗P Replication
0 Nil

It is very common for the continuation of an output to be the nil process, so

we allow x![x1, . . . , xn] as an abbreviation for x![x1, . . . , xn].0.

The precedences of the operators are described below. For example, the term

(ν x)x![a, b].P+Q denotes ((ν x)x![a, b].P )+Q and ∗P | Q denotes (∗P ) | Q. Note

the precedence of the (meta-syntactic) substitution operator which, for example,

implies that {y/x}P | Q denotes ({y/x}P ) | Q.

Parallel Composition < Summation <

 Input, Output, Restriction,

Replication, Substitution.

Tuples have no interesting evaluation behaviour. We cannot, for example,

embed communications inside tuples. Thus, all computation in the polyadic π-

calculus is still based on processes communicating over channels, just as in the

monadic π-calculus.

2.2 Semantics

We present the semantics of the polyadic π-calculus using a reduction relation

(see [Mil91a] for more details). This style of semantics involves defining two

relations on processes: a reduction relation, which formalises the actual com-

munication behaviour of processes, and a structural congruence relation. The
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structural congruence relation allows us to rewrite a process so that any two ac-

tive input or output prefixes can be syntactically juxtaposed. This simplifies the

presentation of the reduction relation by reducing the number of cases we have

to consider.

Definition 2.2 describes the reduction of π-terms. The first two rules state

that we can reduce under both parallel composition and restriction. (The sym-

metric rule for parallel composition is redundant, because of the use of structural

congruence.)

Definition 2.2 (Process reduction)

Q → R

P | Q → P | R

P → Q

(ν x)P → (ν x)Q

(P + c?[x1, . . . , xn].Q) | (c![y1, . . . , yn].R + S) → {y1, . . . , yn/x1, . . . , xn}Q | R

P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q

The communication rule takes two processes which are willing to communicate

on the channel c, and simultaneously substitutes the free names y1, . . . , yn for

the bound variables x1, . . . , xn. (The simultaneous substitution of y1, . . . , yn for

x1, . . . , xn is well-defined, since we disallow duplicate bound variables in input

prefixes.) The remaining components of the summations (P and S) are discarded,

since at most one component of a summation is allowed to execute. Note that

the communication rule is the only rule which directly reduces a π-term.

The communication rule assumes that processes are in a particular format

(for example, the inputting process must be on the left, and must be contained

in a summation). The structural congruence rule allows us to rewrite processes

so that they have the correct format for the communication rule. (Some rewriting

may also be necessary before using the parallel composition rule, since it assumes

that the next reduction will always occur in its right sub-component.)

The rule for communication is sufficient, since we are only considering guarded

summation. If we allowed full summation, then we would not be able to assume
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that both participants in a communication are immediate sub-components of

summations.

Definition 2.3 (Structural congruence) Let structural congruence, ≡, be
the smallest congruence relation which satisfies the axioms below.

∗P ≡ P | ∗P

P ≡ P | 0 P ≡ P + 0
P | Q ≡ Q | P P + Q ≡ Q + P

(P | Q) | R ≡ P | (Q | R) (P + Q) + R ≡ P + (Q + R)

(ν x)P | Q ≡ (ν x)(P | Q) x /∈ fv(Q)

Definition 2.3 presents the structural congruence relation. Most of the rules

simply assert the associativity and commutativity of the parallel composition and

summation operators.

We now show some example reductions which illustrate simple uses of struc-

tural congruence. To infer that the following process can do a communication on

c, we need to use the associativity and commutativity of parallel composition to

bring the input and output prefixes together:

c?[x, y].P | (R | c![a, b].Q)
≡ R | (c?[x, y].P | c![a, b].Q)

The communication rule also expects both the input and output prefixes to

be contained in summations, so we must use the identity and commutativity rules

for summation:

≡ R | (0 + c?[x, y].P | c![a, b].Q + 0)

We can now use the parallel composition and communication rules to infer

the communication on c:

→ R | ({a, b/x, y}P | Q)
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The structural congruence rules also allow us to generate as many copies of

a replicated process as we require. This allows us to ignore replication in the

reduction rules. For example, we can use structural congruence to make a single

copy of the replicated process ∗c?[x, y].P , which can then start communicating

in the usual way.

∗c?[x, y].P | (R | c![a, b].Q)
≡ (∗c?[x, y].P | c?[x, y].P ) | (R | c![a, b].Q)
≡ (∗c?[x, y].P | R) | (0 + c?[x, y].P | c![a, b].Q + 0)
→ (∗c?[x, y].P | R) | ({a, b/x, y}P | Q)

The benefits of a reduction-style semantics are most obvious when we con-

sider the restriction operator: the reduction rules contain no mention of restric-

tion, except for the rule which allows us to reduce underneath restriction. We

have managed to separate the rules implementing communication from the rules

which change the scope of restriction: in a labelled-transition semantics, the two

operations are usually combined, resulting in more complicated rules.

In the case where a channel c is shared between two communicating processes,

the reduction rule for restriction can be used directly:

(ν c)(c?[x, y].P | c![a, b].Q)
≡ (ν c)(0 + c?[x, y].P | c![a, b].Q + 0)
→ (ν c)({a, b/x, y}P | Q)

In the case where a private channel is being communicated to another process,

we must first expand the scope of the private channel to encompass the recipient

(using structural congruence), and then reduce the process:

c?[x, y].P | (ν a)(c![a, b].Q)
≡ (ν a)(c?[x, y].P | c![a, b].Q)
≡ (ν a)(0 + c?[x, y].P | c![a, b].Q + 0)
→ (ν a)({a, b/x, y}P | Q)

Expanding the scope of a in the above example is only valid if a does not

already occur in the process c?[x, y].Q. This condition is checked in the side-

condition on the rule (ν x)P | Q ≡ (ν x)(P | Q).

Suppose x ∈ fv(Q) and we wish to apply the (ν x)P | Q ≡ (ν x)(P | Q)

rule. We achieve this by first α-converting the term (ν x)P , renaming x so that
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it no longer occurs free in Q. Then we can apply the structural congruence rule.

(We do not mention such α-conversions explicitly, since we do not distinguish

α-convertible processes.)

2.3 Runtime failure

The additional structure introduced by the polyadic communication primitives

is important, since it raises the possibility of runtime failure. For example, the

process

c![v1, v2, v3].P | c?[x1, x2].Q

is ill-formed, since it attempts to input a pair on c, when c is in fact being used

to carry a triple.

Definition 2.4 (Runtime failure)

P fails
P | Q fails

P fails
(ν x)P fails

P ≡ Q Q fails
P fails

m 6= n

(P + c?[x1, . . . , xm].Q) | (c![y1, . . . , yn].R + S) fails

Definition 2.4 formalises what we mean by runtime failure in the polyadic

π-calculus (the rules mimic the reduction rules exactly, except for the communi-

cation rule, which actually detects the runtime failure).

2.4 Encoding polyadic communication

The ability to create private channels and communicate them to other processes

allows us to encode polyadic communication in the monadic π-calculus [Mil91a].

We can encode polyadic output as below (we use the symbol .= to denote defini-

tional equality):

c![v1, . . . , vn].P
.= (ν w)(c!w.w!v1. . . . w!vn.P ) w /∈ fv(P, v1, . . . , vn)
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The encoding first creates a new channel w and sends it along c. It then

transmits v1, . . . , vn sequentially along w and continues as P . The condition

w /∈ fv(P, v1, . . . , vn) ensures that the auxiliary variable w is not a free variable

of either P or v1, . . . , vn.

We can encode polyadic input using a similar composite communication; the

components of the received tuple are bound to x1, . . . , xn:

c?[x1, . . . , xn].Q
.= c?w.w?x1. . . . w?xn.Q w /∈ fv(Q, x1, . . . , xn)

As the following example demonstrates, the communication of [v1, v2] along c

results, after a number of reduction steps, in the substitution of v1 for x1 and v2

for x2.

c![v1, v2].P | c?[x1, x2].Q
.= (ν w)(c!w.w!v1.w!v2.P ) | c?w.w?x1.w?x2.Q

→ (ν w)(w!v1.w!v2.P | w?x1.w?x2.Q)
→ (ν w)(w!v2.P | w?x2.{v1/x1}Q)
→ (ν w)(P | {v2/x2}{v1/x1}Q)

After the exchange of w along c, w becomes a private channel shared be-

tween the inputting and outputting processes. The final result of the composite

communication still mentions the private channel w, but this extra channel is

harmless, since w is not mentioned in the scope of (ν w) (the side-conditions in

the encoding ensure that w /∈ fv(P, Q, v1, v2, x1, x2)).

2.5 Runtime failure in the monadic π-calculus

We now show why encoding the polyadic π-calculus in the monadic π-calculus

destroys our operational notion of runtime failure. Consider the following process

(which fails in the polyadic π-calculus):

c![v1, v2, v3].P | c?[x1, x2].Q

If we examine the encodings of c![v1, v2, v3].P and c?[x1, x2].Q into the monadic

π-calculus, we find that the following reduction sequence is possible (we assume

that w /∈ fv(P, Q, v1, v2, v3, x1, x2)):
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c![v1, v2, v3].P | c?[x1, x2].Q
.= (ν w)(c!w.w!v1.w!v2.w!v3.P ) | c?w.w?x1.w?x2.Q

→ (ν w)(w!v1.w!v2.w!v3.P | w?x1.w?x2.Q)
→ (ν w)(w!v2.w!v3.P | w?x2.{v1/x1}Q)
→ (ν w)(w!v3.P | {v2/x2}{v1/x1}Q)

It is now much harder to detect that our example has failed, since it can

actually perform a number of reduction steps. Only after the communication of

v1 and v2 along w do we encounter a problem: the process w!v3.P cannot proceed,

since there are no processes which can cooperate with the output on w.

Thus, we find that a failure due to an ill-formed communication manifests

itself as a deadlocked sub-process. It is not the case that the whole process

deadlocks (the process {v2/x2}{v1/x1}Q is free to proceed), so a precise definition

of this failure in terms of deadlock is difficult. (Another reason why deadlock is

not a suitable notion of failure is that there are many useful π-calculus programs

which expect certain processes to become deadlocked. Often, it is assumed that

deadlocked processes will be garbage collected so that, for example, a server which

has no clients will be garbage collected without any need for explicit termination.)

These difficulties suggest that the monadic π-calculus does not have enough

syntactic structure to support a simple type system: there is not enough informa-

tion present in a π-term to guess whether the programmer expected it to deadlock

or not. The polyadic π-calculus can be thought of as a minimal extension of the

π-calculus which allows us to detect runtime failure purely syntactically.

2.6 Recursive process definitions

Most recent presentations of the π-calculus use a replication operator to enable

processes to have infinite behaviour. The replication operator neatly replaces

the much more complicated mechanism of recursively-defined processes used in

earlier presentations of the π-calculus. However, it is still helpful to have high-

level syntax for recursively-defined processes when writing π-calculus examples.

We therefore provide a derived form for such definitions:
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Definition 2.5 (Process definitions)

defX1[x̃1] = P1 and . . . andXn[x̃n] = Pn in Q
.= (ν X1) . . . (ν Xn)(∗X1?[x̃1].P1 | . . . | ∗Xn?[x̃n].Pn | Q)

For each process definition Xi[x̃i] = Pi we create a new channel Xi and a repli-

cated process ∗Xi?[x̃i].Pi. The process Xi?[x̃i].Pi waits for a tuple of arguments

to be sent on the channel Xi and then runs Pi with the arguments substituted

for the formal parameters x̃i. The replication operator enables Xi to be called

arbitrarily often by providing an arbitrary number of copies of Xi?[x̃i].Pi.

We can invoke the process definition Xi by simply sending the desired ar-

guments along the channel Xi. For example, the following process repeatedly

outputs b along y:

defX[x, a] = x![a].X![x, a] in X![y, b]

We can illustrate the behaviour of X by expanding the derived form:

defX[x, a] = x![a].X![x, a] in X![y, b]
.= (ν X)( ∗X?[x, a].x![a].X![x, a] | X![y, b] )
≡ (ν X)( ∗X?[x, a].x![a].X![x, a] | X?[x, a].x![a].X![x, a] | X![y, b] )
→ (ν X)( ∗X?[x, a].x![a].X![x, a] | y![b].X![y, b] )
.= defX[x, a] = x![a].X![x, a] in y![b].X![y, b]

A simple example of a mutually-recursive process definition is given below

(the example repeatedly waits for a value on p and then retransmits it on q).

We expand the derived form to illustrate how the scoping of the Get and Put

channels allows mutually-recursive calls (both channels are in scope in the bodies

of Get and Put, and in the process Get ![p, q]).

defGet [i, o] = i?[x].Put![i, o, x]
and Put [i, o, x] = o![x].Get![i, o]
in Get ![p, q]

.=

(ν Get)(ν Put)(
∗Get?[i, o].i?[x].Put![i, o, x] |
∗Put?[i, o, x].o![x].Get![i, o] |
Get ![p, q]

)
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2.7 Returning results

It is very common for a process to behave in a ‘functional’ manner: accepting

a number of arguments, doing some computation and then returning a result.

In the π-calculus, it is necessary to return such results by means of an explicit

communication, since processes do not have implicit results.

By convention, we write such ‘functional’ processes in the following form,

using the last parameter as a result channel.

f?[x̃, r]. . . . r![results] . . .

Such processes are frequently replicated, to enable multiple calls to be executed,

in which case we can write them as a process definition:

def f [x̃, r] = . . . r![results] . . .

This style of programming is very reminiscent of continuation-passing style, since

r can be though of as the current continuation into which f inserts its result.

Although we don’t need any special syntax to help define processes which

return results, it is, however, convenient to have a derived form for getting results

back from process definitions such as f :

Definition 2.6 (Getting results from processes)

let x1, . . . , xn = f(a1, . . . , am) in P
.= (ν r)(f ![a1, . . . , am, r] | r?[x1, . . . , xn].P ) r /∈ fv(P, f, a1, . . . , am)

The above definition calls f by creating a new channel r (a new channel is

necessary to avoid interference), and sending it to f along with the arguments ã.

It then waits for the results to be sent back along r, continuing as P , with the

results substituted for the bound variables x̃. (The fact that all communication

is polyadic means that we can conveniently support calls which not only require

multiple arguments, but which return multiple results.)

We omit the in and let keywords in nested let expressions, so that we need

only write

let x̃ = f(. . .) ỹ = g(. . .) in P
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instead of

let x̃ = f(. . .) in let ỹ = g(. . .) in P

Consider the process definition g below, whose last action is to get some result

from f , and return it along r.

def g[x̃, r] = let ỹ = f(x̃) in r![ỹ]

We often simplify processes such as g by making a tail-call to f :

def g[x̃, r] = f ![x̃, r]

Now f returns its result along r directly, rather than returning it indirectly via g.

We use tail-calls here to simplify our examples, but they do have a useful effect

in practice, since they both save creating an extra result channel and avoid a

communication in g.

2.8 Booleans

In [Mil91a] Milner demonstrated how data structures could be encoded in the

π-calculus. For example, we can define the booleans True and False as below:

defTrue[r] = (ν b)( r![b] | ∗b?[t, f ].t![] )
def False [r] = (ν b)( r![b] | ∗b?[t, f ].f ![] )

True and False do not take any parameters, other than a result channel r.

They both create a new channel b, which serves as the location of the boolean

value and return b along the result channel r. That is not all, however, since True

and False both start a replicated process, whose purpose is to answer queries

about the boolean b. The process must be replicated if we want to query a

boolean more than once (omitting the replication would yield a linear boolean).

We can implement conditionals as below. Suppose that b is the location of a

boolean value. If we send a pair of private channels [t, f ] along b, the boolean

will reply using t, if it is true, or f , if it is false. Thus, P proceeds if b is true and

Q proceeds if b is false.
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Definition 2.7 (Conditionals)

if b then P else Q
.= (ν t)(ν f)(b![t, f ].(t?[].P + f?[].Q)) t, f /∈ fv(P, Q)

It is now easy to implement the conjunction, disjunction and negation opera-

tions on booleans. Consider, for example, the behaviour of And , the conjunction

operation. If b1 is true it simply returns b2 along the result channel r, otherwise

it instructs False to create a boolean and return it along r.

defAnd [b1, b2, r] = if b1 then r![b2] else False![r]
defOr [b1, b2, r] = if b1 then True![r] else r![b2]
defNot [b, r] = if b then False ![r] else True![r]

2.9 Lists

Lists have two constructors: Nil and Cons. Nil doesn’t take any parameters,

apart from a result channel. Cons takes the head and tail of the list as parameters,

plus a result channel.

defNil [r] = (ν l)( r![l] | ∗l?[n, c].n![] )
defCons[hd, tl , r] = (ν l)( r![l] | ∗l?[n, c].c![hd, tl ] )

The behaviour of Nil is similar to that of True. It creates a new channel l, the

location of the list, and returns it along r. It then creates a replicated process

which responds to requests on l by signalling on n, the first component of the

request.

The behaviour of Cons is slightly more complicated, since it does not signal

on c using the trivial value, but sends a pair [hd , tl ]. This enables a process

interrogating the cons cell to further interrogate the head and tail of the list

(assuming, of course, that hd is the location of some data structure and tl is the

location of another list).

We define a list pattern-matching derived form below. It operates similarly

to the derived form for conditionals, except that it binds the variables hd and tl

to the head and tail of l (if l is a cons cell).
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Definition 2.8 (List pattern-matching)

match l with Nil => P and Cons[hd , tl ] => Q
.= (ν n)(ν c)(l![n, c].(n?[].P + c?[hd , tl ].Q)) n, c /∈ fv(P, Q)

We can now use list pattern-matching to write the list concatenation proce-

dure. The Concat procedure take two lists, l1 and l2, as arguments, plus a result

channel r. It responds by sending the concatenation of l1 and l2 along r.

defConcat [l1, l2, r] =
match l1 with Nil =>

r![l2]
and Cons[hd , tl ] =>
let rest = Concat(tl , l2) in Cons ![hd, rest, r]

If l1 is nil then Concat immediately sends l2 along r. Otherwise, we recursively

calculate the concatenation of tl and l2, naming the result rest. We then cons hd

onto rest, instructing Cons to return the resulting list along r.

2.10 Process-based reference cells

We can easily encode updatable data structures using processes. For example, the

process Cell ![x, read, update] represents a reference cell whose current contents is

x (the read and update channels can be used to read or modify the contents of

the reference cell).

defCell [x, read, update] =
read![x].Cell ![x, read, update] + update?[n].Cell ![n, read, update]

The summation operator ensures that read and update requests cannot be exe-

cuted concurrently. We can therefore guarantee that once an update request has

been accepted, all subsequent read requests will be answered with the updated

contents of the cell.

The process definition Ref, given an initial value x and a result channel r,

creates a new reference cell (by creating two new read and write channels, and

starting a Cell process).

defRef [x, r] = (ν read)(ν update)(r![read, update] | Cell![x, read, update])



CHAPTER 2. THE POLYADIC π-CALCULUS 27

2.11 Channel-based reference cells

An alternative style of reference cell, which doesn’t use the summation operator, is

shown below. Each reference cell is represented using a single channel, rather than

a process. Given an initial value x and a result channel r, the ChanRef process

builds a new reference cell by creating a new channel ref and (asynchronously)

writing x on it.

defChanRef [x, r] = (ν ref )(r![ref ] | ref ![x])

The Read process, given a reference cell ref and a result channel r, reads a

value x from ref (the current contents of the reference cell) then immediately

puts it back, sending x back to the client using r.

defRead[ref , r] = ref ?[x].(ref ![x] | r![x])

Similarly, given a reference cell ref, a new value v and a result channel r,

the Update process reads the current contents of the reference cell from ref and

replaces it with v, signalling completion on r by sending the empty tuple.

defUpdate[ref , v, r] = ref ?[x].(ref ![v] | r![])

The ChanRef , Read and Update operations all preserve the invariant that

there is at most one active writer on the ref channel. The first action of both the

Read and Update processes is to read a value from the channel ref. Successfully

reading a value from ref therefore has the effect of temporarily blocking all other

Read and Update operations (since there is at most one active writer on the

channel ref ). Thus, we avoid any interference between concurrent Read and

Update operations.



Chapter 3

Process typing

The most useful type systems for programming languages are those which can

be typechecked automatically (usually during compilation). The ML type sys-

tem [Mil77, DM82] is a particularly good example of such a type system, since the

programmer does not even have to write any type information – it is all inferred

automatically by the type checker.

If we wish type checking, or type inference, to be performed during compila-

tion, rather than during evaluation, then we cannot hope to calculate the exact

behaviour of a program, since this will in general depend on the input data, which

is not available at compilation time. We must therefore make a conservative ap-

proximation of the behaviour of a program, assuming, for example, that both

the then and else clauses of a conditional expression are executed, rather than

attempting to calculate exactly which clauses are executed.

There are also good pragmatic reasons to avoid complicated calculations in

a programming language’s type system, since programmers need to understand

any type errors reported by the type system.

Computation in the π-calculus is based on communication over channels. We

simplify our type system by making two important decisions:

1. The type of a channel remains constant throughout its lifetime.

2. We do not specify temporal properties of channels.

These decisions avoid the need to consider causal relationships between com-

munications, and significantly simplify our type system.

28
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This chapter presents our monomorphic π-calculus type system. We first

define the syntax of types and typing contexts, and then present the typing rules

for processes, showing how the typing rules behave on the examples and derived

forms of Chapter 2. We then prove (by means of a subject-reduction theorem)

that our type system guarantees freedom from runtime errors.

3.1 Types and type contexts

Definition 3.1 gives the syntax of types. We have just one type constructor (the

channel type constructor) since channels are the only data that we have in the

polyadic π-calculus. We also allow type variables (which will enable us to do type

inference later).

Definition 3.1 (Types)

δ ::= ↑[δ1, . . . , δn] Channel type
α Type variable

We record the types of free variables in a type context. Type contexts are

(possibly empty) sequences of bindings of the form x1 : δ1, . . . , xn : δn, where

x1, . . . , xn must be distinct variables. We sometimes let x̃ : δ̃ denote the context

x1 : δ1, . . . , xn : δn.

Definition 3.2 (Type contexts) ∆ ::= x1 : δ1, . . . , xn : δn

We leave the ‘distinct variable’ condition implicit in our typing rules. For ex-

ample, if we mention ∆, x : δ in a rule, we are implicitly assuming that x is not

already mentioned in ∆. The expression ∆(x) denotes the type associated with

x in ∆, and is defined as below:

Definition 3.3 (Context lookup)

(∆, x : δ)(x) .= δ

(∆, y : δ)(x) .= ∆(x) if x 6= y

()(x) .= undefined
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3.2 Typechecking processes

In the π-calculus, processes have no explicit results. We can only interact with a

process by communicating with it. Therefore, our typing judgements for processes

take the form ∆ ` P , where ∆ is a typing context which gives the types of the

free variables of P . We can read ∆ ` P as asserting that P uses its free variables

consistently with the types given in ∆.

The simplest π-calculus process is the nil process, 0. It cannot communicate

at all and hence is consistent with any context:

∆ ` 0 Nil

The output operator c![x1, . . . , xn].P sends the tuple [x1, . . . , xn] along the

channel c. P is the process which continues after the communication has com-

pleted. The Output typing rule

∆(c) = ↑[∆(x1), . . . , ∆(xn)] ∆ ` P

∆ ` c![x1, . . . , xn].P
Output

states that if, in a context ∆, c is a channel carrying a tuple of length n, whose

components match the types of the values x1, . . . , xn we are sending, and P is a

well-formed process in the same context ∆, then c![x1, . . . , xn].P is a well-formed

process. Note that the output operator is not a name-binding operator, so P

is expected to be well-formed in the same context ∆. A simple example of a

well-typed output is given below (A and B are arbitrary types).

a : A, b : B, c : ↑[A, B] ` c![a, b].0

The input operator c?[x1, . . . , xn].P receives a tuple of length n along the

channel c, binding the components of the received tuple to x1, . . . , xn in P . The

Input typing rule

∆(c) = ↑[δ1, . . . , δn] ∆, x1 : δ1, . . . , xn : δn ` P

∆ ` c?[x1, . . . , xn].P
Input

checks that c is a channel carrying a tuple of length n, and that P is well-formed

in the context ∆ extended with the types of the bound variables. Note that

the bound variables x1, . . . , xn must be distinct from the variables already bound
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in ∆ (it is always possible to satisfy this condition by α-converting the bound

variables).

A simple instance of the Input typing rule is given below (where ∆ .= a : A, b :

B, c : ↑[A, B]). Note that P is typechecked in the context ∆, x : A, y : B, since x

and y are bound to the first and second components of the tuple sent along c.

∆(c) = ↑[A, B] ∆, x : A, y : B ` P

∆ ` c?[x, y].P
Input

The typing rule for P | Q must ensure that P and Q use their free variables

in a consistent manner. We therefore require that P and Q are well-typed in the

same context. This ensures that any channels which are used in both P and Q

must have the same type.

∆ ` P ∆ ` Q

∆ ` P | Q
Prl

We can now check that our previous two examples can be run in parallel:

...
∆ ` c![a, b].0

Output
...

∆ ` c?[x, y].P
Input

∆ ` c![a, b].0 | c?[x, y].P
Prl

The Prl rule clearly disallows ill-formed examples such as c![a, b].P | c?[x].Q,

since the left-hand process requires that c has type ↑[A, B] while the right-hand

process requires c to have type ↑[X], for some X.

The restriction operator (ν x)P introduces a new channel x in the scope of

P . The typing rule for restriction therefore extends the context ∆ by adding a

type binding for x. This rule is particularly simple because there is only one type

constructor: the channel type. If we also had some basic types, such as integers,

we would need an extra restriction on the Res rule, to ensure that x is given a

channel type.

∆, x : δ ` P

∆ ` (ν x)P
Res

We can now use restriction to localise the channels a, b and c in our previous

example:
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` (ν a)(ν b)(ν c)(c![a, b].0 | c?[x, y].P )

Note that the above process is consistent with the empty context. In fact,

we can show that it is consistent with any context. This makes sense because a

closed process cannot communicate with the outside world, and therefore, if it is

internally consistent, is able to execute safely in any context.

The summation operator ensures that only one of its operands will ever exe-

cute, but we cannot (in general) statically determine which one it will be. There-

fore, we require that both P and Q are consistent with the same context. This

ensures that any possible execution of P + Q will behave correctly:

∆ ` P ∆ ` Q

∆ ` P + Q
Smt

Our types do not attempt to describe how often a channel is used. Thus, since

the replication operator, ∗P , only serves to make an arbitrary number of copies

of P available, the consistency of ∗P only depends on the consistency of P :

∆ ` P

∆ ` ∗P
Repl

The typing rules for processes are summarised in Definition 3.4.
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Definition 3.4 (Process typing rules)

∆ ` P ∆ ` Q

∆ ` P | Q
Prl

∆, x : δ ` P

∆ ` (ν x)P
Res

∆ ` P ∆ ` Q

∆ ` P + Q
Smt

∆(c) = ↑[δ1, . . . , δn] ∆, x1 : δ1, . . . , xn : δn ` P

∆ ` c?[x1, . . . , xn].P
Input

∆(c) = ↑[∆(x1), . . . , ∆(xn)] ∆ ` P

∆ ` c![x1, . . . , xn].P
Output

∆ ` P

∆ ` ∗P
Repl

∆ ` 0 Nil

3.3 Derived rules for process definitions

Our process typing rules give rise to the following admissible rule for process

definitions:

Definition 3.5 (Typing of process definitions)

∆, X1 : ↑[δ̃1], . . . , Xn : ↑[δ̃n] ` Q

∆, X1 : ↑[δ̃1], . . . , Xn : ↑[δ̃n], x̃i : δ̃i ` Pi 1 ≤ i ≤ n

∆ ` defX1[x̃1] = P1 and . . . andXn[x̃n] = Pn in Q
Def

If we expand out the derived form (see Definition 2.5 on page 22) for any

process definition, we find that we can construct a complete proof of its well-

typedness using only the premises of the above rule. Suppose the premises of the

above rule are true. For each definition Xi we have, using the Input rule and the

second assumption, that
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∆, X1 : ↑[δ̃1], . . . , Xn : ↑[δ̃n] ` Xi?[x̃i].Pi

Therefore, using the Repl rule, we have

∆, X1 : ↑[δ̃1], . . . , Xn : ↑[δ̃n] ` ∗Xi?[x̃i].Pi

Using the Prl rule and the first assumption we then find that

∆, X1 : ↑[δ̃1], . . . , Xn : ↑[δ̃n] ` ∗X1?[x̃1].P1 | . . . | ∗Xn?[x̃n].Pn | Q

Finally, we can use the Res rule to prove that

∆ ` (ν X1) . . . (ν Xn)(∗X1?[x̃1].P1 | . . . | ∗Xn?[x̃n].Pn | Q)

as required.

3.4 Processes which return results

The process typing rules also give rise to the following admissible rule for let.

(We introduce the type abbreviation ⇒, since it clarifies which types are the

arguments, and which are the results.)

Definition 3.6 (Typing let)

[δ1, . . . , δm] ⇒ [γ1, . . . , γn]
.= ↑[δ1, . . . , δm, ↑[γ1, . . . , γn]]

∆(f) = [∆(a1), . . . , ∆(am)] ⇒ [δ1, . . . , δn] ∆, x1 : δ1, . . . , xn : δn ` P

∆ ` let x1, . . . , xn = f(a1, . . . , am) in P
Let

It is easy to check that the above rule is admissible by expanding out the de-

rived form for let (Definition 2.6 on page 23). Suppose the premises of the above

rule are true. If ∆′ = ∆, r : ↑[δ1, . . . , δn] then we can use the weakening lemma

(Lemma 3.8, which we prove later) to prove that ∆′, x1 : δ1, . . . , xn : δn ` P ,

since the side-condition in our derived form ensures that r /∈ fv(P ). We annotate

the bound variables in the expansion of let x1, . . . , xn = f(a1, . . . , am) in P , to

show that the conclusion of the above rule is valid:

∆ ` (ν r : ↑[δ1, . . . , δn])(f ![a1, . . . , am, r] | r?[x1 : δ1, . . . , xn : δn].P )
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3.5 Booleans

We can now typecheck our boolean examples. Let Bool be the type ↑[↑[ ], ↑[ ]].

We reproduce the definitions of True and False below, indicating how they are

typed by annotating bound variables with types.

defTrue[r : ↑[Bool]] = (ν b : Bool)( r![b] | ∗b?[t : ↑[ ], f : ↑[ ]].t![] )
def False [r : ↑[Bool]] = (ν b : Bool)( r![b] | ∗b?[t : ↑[ ], f : ↑[ ]].f ![] )

True and False both have the type ↑[↑[Bool ]], which can also be written as

[ ] ⇒ [Bool], making it clear that True and False both take no arguments and

return a boolean.

Definition 3.7 (Typing of conditionals)

∆(b) = Bool ∆ ` P ∆ ` Q

∆ ` if b then P else Q
If

It is easy to check that above rule is admissible by expanding out the derived

form for if (Definition 2.7 on page 25). Suppose the premises of the above

rule are true. If ∆′ = ∆, t : ↑[ ], f : ↑[ ] then we can use the weakening lemma

(Lemma 3.8, which we prove later) to prove that ∆′ ` P and ∆′ ` Q, since the

side-condition in our derived form ensures that t, f /∈ fv(P, Q). We annotate

the bound variables in the expansion of if b then P else Q, to show that the

conclusion of the above rule is valid:

∆ ` (ν t : ↑[ ])(ν f : ↑[ ])(b![t, f ].(t?[].P + f?[].Q))

It is now easy to verify the types of the conjunction, disjunction and negation

operations on booleans.

defAnd [b1 : Bool , b2 : Bool , r : ↑[Bool ]] = if b1 then r![b2] else False![r]
defOr [b1 : Bool , b2 : Bool , r : ↑[Bool]] = if b1 then True![r] else r![b2]
defNot [b : Bool , r : ↑[Bool ]] = if b then False ![r] else True![r]
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3.6 Process-based reference cells

A process-based reference cell can be represented as a pair of channels: the first

channel can be used to read the contents of the cell, and the second can be used

to update the contents of the cell.

The type of Cell is ↑[X, ↑[X], ↑[X]], for arbitrary but fixed X. Both the read

and update channels have type ↑[X].

defCell [x : X, read : ↑[X], update : ↑[X]] =
read![x].Cell ![x, read, update] + update?[n : X].Cell ![n, read, update]

The process definition Ref takes an initial value x and creates a new reference

cell. It has type [X] ⇒ [↑[X], ↑[X]].

defRef [x : X, r : ↑[↑[X], ↑[X]]] =
(ν read : ↑[X])(ν update : ↑[X])(r![read, update] | Cell![x, read, update])

This example highlights two weaknesses in our simple π-calculus type system.

Firstly, we are forced to choose a single type X in the definitions of Cell and Ref ,

even though they clearly operate uniformly over all types X. We will address this

problem in Chapter 5. Secondly, the user of a reference cell should never write

on the read channel, and never read from the write channel, but this restriction

cannot be enforced by our type system. Fortunately, Pierce and Sangiorgi [PS93]

have shown that it is possible to refine the channel type constructor ↑ so that input

and output capabilities can be manipulated separately. The Pict programming

language [PT95b] adopts Pierce and Sangiorgi’s refinement, enabling it to give

Ref the type [X] ⇒ [?X, !X] (the type ?X allows only read access, while the type

!X allows only write access).

3.7 Channel-based reference cells

Let ChanRef X be the type ↑[X], the type of a reference cell represented as a

channel. The ChanRef process has type [X] ⇒ [ChanRef X ].

defChanRef [x : X, r : ↑[ChanRef X ]] = (ν ref : ↑[X])(r![ref ] | ref ![x])

The Read process has type [ChanRef X ] ⇒ [X].
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defRead[ref : ChanRef X , r : ↑[X]] = ref ?[x].(ref ![x] | r![x])

The Update process has type [ChanRef X , X] ⇒ [ ].

defUpdate[ref : ChanRef X , v : X, r : ↑[ ]] = ref ?[x : X].(ref ![v] | r![])

This example again highlights two weaknesses in our simple π-calculus type

system. Firstly, just as with process-based reference cells, we are forced to choose

a single type X in the definitions of ChanRef , Read and Update, even though

they clearly operate uniformly over all types X. We will address this problem in

Chapter 5. Secondly, the ChanRef , Read and Update operations all preserve the

invariant that there is at most one active writer on the ref channel, but we have

no way of ensuring that ChanRef , Read and Update are the only processes which

manipulate the ref channel. This is precisely what abstract datatypes are useful

for, and in Chapter 5 we show that the polymorphic extension of our π-calculus

type system is able to provide just such a mechanism.

3.8 Properties of well-typed π-terms

If x /∈ fv(P ) then we can add a new type binding for x without invalidating the

typing of P :

Lemma 3.8 (Weakening)

If ∆ ` P and x /∈ fv(P ) then ∆, x : δ ` P .

Proof A simple induction on the structure of P . 2

Similarly, if x /∈ fv(P ) then we can remove x’s type binding without invalidating

the typing of P :

Lemma 3.9 (Strengthening)

If ∆, x : δ ` P and x /∈ fv(P ) then ∆ ` P .

Proof A simple induction on the structure of P . 2

If each xi and yi have the same type in the context ∆ then we can simulta-

neously substitute y1, . . . , yn for x1, . . . , xn while preserving the type of P :

Lemma 3.10 (Substitution)

If ∆ ` P and ∆(xi) = ∆(yi) for 1 ≤ i ≤ n then ∆ ` {y1, . . . , yn/x1, . . . , xn}P .

Proof A simple induction on the structure of P . 2
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3.9 Properties of structural congruence

In Definition 2.3 (on page 17), the structural congruence relation is defined as

the least congruence relation which satisfies a given set of axioms. In fact, we

can be more explicit and say that ≡ is defined as the least relation satisfying the

axioms given in Definition 2.3, plus the four rules below (defining ≡ in this way

allows us to use induction on the depth of the derivation of P ≡ Q in proofs).

P ≡ P
Refl

P ≡ Q

Q ≡ P
Sym

P ≡ Q Q ≡ R

P ≡ R
Trans

P ≡ Q

C[P ] ≡ C[Q]
Cong

C denotes a process context (a process containing a ‘hole’):

C ::= [ ] | (ν x)C | (C | P ) | (P | C) | (C + P ) | (P + C) |
c?[x1, . . . , xn].C | c![x1, . . . , xn].C | ∗C

The structural congruence relation captures most of the runtime behaviour

of the restriction operator. An important lemma, therefore, is that types are

preserved under structural congruence. (Only part 1 of the lemma is actually

necessary for our type soundness result, but part 2 is essential if we wish to use

induction to prove that the Sym rule preserves the type of a process).

Lemma 3.11 (Types are preserved under structural congruence)

1) If ∆ ` P and P ≡ Q then ∆ ` Q.

2) If ∆ ` Q and P ≡ Q then ∆ ` P .

Proof We prove both parts simultaneously, using induction on the depth of the
inference of P ≡ Q. We omit the cases involving the summation operator,
since they are similar to the parallel composition cases.

case P ≡ P | 0
Part 1. We have, by assumption, that ∆ ` P . Therefore, using the Nil and
Prl rules, we have ∆ ` P | 0 as required. Part 2 is easy.

case P | Q ≡ Q | P

Part 1. Clearly, if ∆ ` P | Q then ∆ ` P and ∆ ` Q and the result follows
using the Prl rule. Part 2 is similar.
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case (P | Q) | R ≡ P | (Q | R)

Part 1. Clearly, if ∆ ` (P | Q) | R then ∆ ` P , ∆ ` Q and ∆ ` R. The
result follows after two applications of the Prl rule. Part 2 is similar.

case ∗P ≡ P | ∗P

Part 1. If ∆ ` ∗P then it must be that ∆ ` P . Therefore, using the Prl rule,
we have ∆ ` P | ∗P as required. Part 2 is easy.

case (ν x)P | Q ≡ (ν x)(P | Q) where x /∈ fv(Q)

Part 1. If ∆ ` (ν x)P | Q then it must be that ∆ ` Q and ∆, x : δ ` P for some
δ. We can therefore use weakening (Lemma 3.8) to prove that ∆, x : δ ` Q,
since x /∈ fv(Q). The result follows using the Prl and Res rules.

Part 2. If ∆ ` (ν x)(P | Q) then it must be that ∆, x : δ ` Q and ∆, x : δ ` P

for some δ. We can therefore use strengthening (Lemma 3.9) to prove that
∆ ` Q, since x /∈ fv(Q). The result follows using the Prl and Res rules.

case P ≡ P

Immediate.

case P ≡ Q where Q ≡ P

Part 1. We have by induction (Part 2) that ∆ ` Q as required. Part 2 is
similar.

case P ≡ R where P ≡ Q and Q ≡ R

Part 1. We have, by induction that ∆ ` Q so, using induction again, we have
that ∆ ` R as required. Part 2 is similar.

case C[P ] ≡ C[Q] where P ≡ Q

A simple sub-induction on the structure of C proves the result. 2

Note that it is very important that none of the structural congruence rules

delete or create any sub-terms. If we allowed such rules, types would not be

preserved under structural congruence. For example, when read from left to

right, the ‘garbage collection’ rule (ν x)(x![ã].P ) ≡ 0 makes perfect sense (since

the output x![ã].P can never succeed). However, when read from right to left,

this rule allows us to ‘magically’ create an arbitrary term P which, in particular,

may not be well-typed.
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3.10 Type soundness

We are now able to prove one of our main soundness theorems: well-typed pro-

cesses can never fail.

Theorem 3.12 (Well-typed processes never fail)

If ∆ ` P then not (P fails).

Proof Suppose ∆ ` P and P fails. We use induction on the depth of the
inference of P fails to show a contradiction for all possible types of failure P

can encounter:

case P | Q fails since P fails

We have, by assumption, that ∆ ` P , so we can use induction to prove that
not (P fails) and we have a contradiction, as required.

case (ν x)P fails since P fails

We have, by assumption, that ∆ ` P , so we can use induction to prove that
not (P fails) and we have a contradiction, as required.

case P fails since P ≡ Q and Q fails

We have, by assumption, that ∆ ` P , so we can use Lemma 3.11 to prove
that ∆ ` Q. We can therefore use induction to prove that not (Q fails) and
we have a contradiction, as required.

case (P + c?[x1, . . . , xm].Q) | (c![y1, . . . , yn].R + S) fails since m 6= n

We have, by assumption, that ∆ ` c?[x1, . . . , xm].Q and ∆ ` c![y1, . . . , yn].R.
The type of c is clearly the same in both the inputting and outputting pro-
cesses, so m = n and we have a contradiction, as required. 2

Since the definition of process failure only detects the immediate failure of

a process, a subject-reduction theorem is required to prove that well-typed pro-

cesses remains well-typed after a successful reduction step. A corollary of Theo-

rems 3.12 and 3.13 is that a well-typed process cannot fail after any number of

reduction steps.

Theorem 3.13 (Subject reduction)

If ∆ ` P and P → Q then ∆ ` Q.

Proof We prove the result by induction on the depth of the inference of P → Q.
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case P | Q → P | R where Q → R

It must be the case that ∆ ` P and ∆ ` Q. We can therefore use induction
to prove that ∆ ` R. The result follows using the Prl rule.

case (ν x)P → (ν x)Q where P → Q

It must be the case that ∆, x : δ ` P . We can therefore use induction to prove
that ∆, x : δ ` Q. The result follows using the Res rule.

case (P +c?[x1, . . . , xn].Q) | (c![y1, . . . , yn].R+S) → {y1, . . . , yn/x1, . . . , xn}Q | R

We have, by assumption, that ∆ ` c?[x1, . . . , xn].Q and ∆ ` c![y1, . . . , yn].R.
Therefore, it must be the case that ∆, x1 : δ1, . . . , xn : δn ` Q and ∆(c) =
↑[δ1, . . . , δn]. However, we also have that ∆(c) = ↑[∆(y1), . . . , ∆(yn)]. We
can therefore use our substitution lemma (Lemma 3.10) to prove that ∆, x1 :
δ1, . . . , xn : δn ` {y1, . . . , yn/x1, . . . , xn}Q. We have, using our strengthening
lemma (Lemma 3.9), that ∆ ` {y1, . . . , yn/x1, . . . , xn}Q (since x1, . . . , xn are
not free in the substituted process). We already have, by assumption, that
∆ ` R, so the result follows using the Prl rule.

case P → Q where P ≡ P ′, P ′ → Q′ and Q′ ≡ Q

We have, by assumption, that ∆ ` P . Therefore, using Lemma 3.11, we have
that ∆ ` P ′. Using induction we have that ∆ ` Q′ and the result follows by
using Lemma 3.11 again. 2

3.11 Type inference

The benefits of automatic type inference have been clearly demonstrated in lan-

guages such as Standard ML [MTH90] and Haskell [HJW+92], where the pro-

grammer has to write only a minimum of explicit type information. Using simi-

lar, unification based, techniques we now show that it is possible to automatically

infer types for π-terms.

3.11.1 Substitutions

A substitution is a finite map from type variables to types. We let domσ denote

the domain of σ. A substitution naturally extends to an operation on both types

and contexts, defined as below.
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Definition 3.14 (Substitutions)

σ, ρ, µ ::= {α1 7→ δ1, . . . , αn 7→ δn}

σ↑[δ1, . . . , δn]
.= ↑[σδ1, . . . , σδn]

σα
.=

{
σα α ∈ dom σ

α otherwise

σ(x1 : δ1, . . . , xn : δn)
.= x1 : σδ1, . . . , xn : σδn

During type inference, it is necessary to compose substitutions. The compo-

sition of ρ and σ, written ρσ, is defined below:

Definition 3.15 (Composition of substitutions)

ρσ
.= {α 7→ ρ(σα) | α ∈ (dom ρ ∪ dom σ)}

Lemma 3.16 (Simple properties of substitutions)

(1) {}σ = σ{} = σ (2) ρ(σµ) = (ρσ)µ
(3) ρ(σδ) = (ρσ)δ (4) ρ(σ∆) = (ρσ)∆

Proof Straightforward from the definitions of substitution and composition. 2

An important fact we prove about substitution is that typing judgements

are closed under substitution. This fact is crucial for type inference, since our

algorithm must be able to apply substitutions to the typing context without

invalidating the types of π-terms it has already checked.

Lemma 3.17 (Preservation of process types under substitution)

If ∆ ` P then σ∆ ` P .
Proof A simple induction on the structure of P. 2

3.11.2 Unification

Since π-calculus types are simple trees, we know from Robinson’s work [Rob65]

that there is a sound and complete unification algorithm for π-calculus types,

which we refer to as Unify. Propositions 3.18 and 3.19 state the appropriate

soundness and completeness properties of the algorithm.



CHAPTER 3. PROCESS TYPING 43

Proposition 3.18 (Soundness of unification algorithm [Rob65])

If Unify(δ, γ) = σ then σδ = σγ.

Proposition 3.19 (Completeness of unification algorithm [Rob65])

If σδ = σγ then Unify(δ, γ) succeeds, returning ρ, and there exists a µ such that
σ = µρ. Otherwise, Unify fails.

3.11.3 Inference algorithm

In Definition 3.20 we give an algorithm, X, which takes a type context ∆ and a

process P as arguments, and either fails (if no valid typing exists), or returns the

minimal substitution ρ such that ρ∆ ` P .

Definition 3.20 (Inference algorithm)

case X(∆; P | Q)

If X(∆; P ) = ρ and X(ρ∆; Q) = ρ′ then return ρ′ρ else fail.

case X(∆; P + Q)

If X(∆; P ) = ρ and X(ρ∆; Q) = ρ′ then return ρ′ρ else fail.

case X(∆; (ν x)P )

If α is a fresh type variable and X(∆, x : α; P ) = ρ then return ρ else fail.

case X(∆; c?[x1, . . . , xn].P )

If α1, . . . , αn are fresh type variables, ∆(c) = δ, Unify(δ, ↑[α1, . . . , αn]) = ρ

and X(ρ(∆, x1 : α1, . . . , xn : αn); P ) = ρ′ then return ρ′ρ else fail.

case X(∆; c![x1, . . . , xn].P )

If ∆(c) = δ, ∆(xi) = δi for 1 ≤ i ≤ n, Unify(δ, ↑[δ1, . . . , δn]) = ρ and
X(ρ∆; P ) = ρ′ then return ρ′ρ else fail.

case X(∆; ∗P )

If X(∆; P ) = ρ then return ρ else fail.

case X(∆;0)

Return {} (the empty substitution).

We do not formalise how the algorithm picks ‘fresh’ type variables. In the

following proofs we will assume that whenever a type variable is declared to
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be ‘fresh’ it is distinct from any type variables mentioned either in the current

context or in types which have already been computed. In practice this condition

can easily be satisfied by using a global counter to number new type variables.

The soundness of our inference algorithm is demonstrated by the following

theorem:
Theorem 3.21 (Soundness of inference algorithm)

If X(∆; P ) = ρ then ρ∆ ` P .

Proof We proceed by induction on the structure of P .

case X(∆; P | Q) = ρ′ρ

We have X(∆; P ) = ρ and so by induction ρ∆ ` P . We also have that
X(ρ∆; Q) = ρ′ and so by induction ρ′ρ∆ ` Q. Now, by Lemma 3.17 we have
that ρ′ρ∆ ` P and so using the Prl rule we have ρ′ρ∆ ` P | Q as required.

case X(∆; P + Q) = ρ′ρ

As above.

case X(∆; (ν x)P ) = ρ

We have X(∆, x : α; P ) = ρ where α is fresh. Hence, by induction, ρ∆, x :
ρα ` P and we can conclude, using the Res rule that ρ∆ ` (ν x)P as required.

case X(∆; c?[x1, . . . , xn].P ) = ρ′ρ

We have that ∆(c) = δ and Unify(δ, ↑[α1, . . . , αn]) = ρ where α1, . . . , αn
are fresh. We also have that X(ρ(∆, x1 : α1, . . . , xn : αn); P ) = ρ′. By
induction, we have that ρ′ρ∆, x1 : ρ′ρα1, . . . , xn : ρ′ραn ` P . Using Proposi-
tion 3.18 we find that ρδ = ρ↑[α1, . . . , αn] which clearly implies that ρ′ρδ =
↑[ρ′ρα1, . . . , ρ′ραn]. We can therefore apply the Input rule to prove that
ρ′ρ∆ ` c?[x1, . . . , xn].P as required.

case X(∆; c![x1, . . . , xn].P ) = ρ′ρ

We have that ∆(c) = δ, ∆(xi) = δi for 1 ≤ i ≤ n and Unify(δ, ↑[δ1, . . . , δn]) =
ρ. We also have that X(ρ∆; P ) = ρ′. By induction we have that ρ′ρ∆ ` P .
Using Proposition 3.18 we find that ρδ = ρ↑[δ1, . . . , δn] which clearly implies
that (ρ′ρ∆)(c) = ρ′ρδ = ρ′ρ↑[δ1, . . . , δn] = ↑[(ρ′ρ∆)(x1), . . . , (ρ′ρ∆)(xn)] and
the result follows using the Output rule.

case X(∆; ∗P ) = ρ

We have X(∆)(P ) = ρ and so by induction ρ∆ ` P . Using the Repl rule
ρ∆ ` ∗P as required.
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case X(∆;0) = {}
Immediate, since {}∆ .= ∆ and ∆ ` 0 using the Nil rule. 2

In the following proof, we sometimes need to take the union of two substitu-

tions. But ρ ∪ σ is only well-defined when the domains of ρ and σ are disjoint,

so we introduce an overwrite operation ρ ⊕ σ which combines arbitrary ρ and σ

(the behaviour of σ takes precedence over the behaviour of ρ for any α which is

in the domain of both ρ and σ):

Definition 3.22 (Union of substitutions)

ρ ⊕ σ
.=

{α 7→ ρ(α) | α ∈ dom ρ, α /∈ dom σ} ∪
{α 7→ σ(α) | α ∈ dom σ}

The following theorem demonstrates that our inference algorithm returns a

principal substitution (if one exists).

Theorem 3.23 (Completeness of inference algorithm)

If σ∆ ` P then X(∆; P ) succeeds, returning ρ, and there exists a µ such that
σ∆ = µρ∆.

Proof We proceed by induction on the structure of P .

case σ∆ ` P | Q where σ∆ ` P and σ∆ ` Q

Using induction, we find that X(∆; P ) succeeds, returning ρ, and there exists
a µ such that σ∆ = µρ∆. Hence, by induction, X(ρ∆; Q) succeeds, returning
ρ′ and there exists a µ′ such that µρ∆ = µ′ρ′ρ∆. Therefore X(∆; P | Q)
succeeds, returning ρ′ρ, where σ∆ = µ′(ρ′ρ)∆ as required.

case σ∆ ` P + Q where σ∆ ` P and σ∆ ` Q

As above.

case σ∆ ` (ν x)P where σ∆, x : δ ` P

Let α be a fresh type variable and σ′ = σ ⊕ {α 7→ δ}. Since α is fresh we
have that α /∈ ∆ and σ′∆ = σ∆. Therefore, σ′(∆, x : α) = σ∆, x : δ so,
by induction, X(∆, x : α; P ) succeeds, returning ρ, and there exists a µ such
that σ′(∆, x : α) = µρ(∆, x : α). This implies that σ′∆ = µρ∆. Therefore,
X(∆; (ν x)P ) succeeds, returning ρ and σ∆ = σ′∆ = µρ∆ as required.
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case σ∆ ` c?[x1, . . . , xn].P where (σ∆)(c) = ↑[δ1, . . . , δn]
and σ∆, x1 : δ1, . . . , xn : δn ` P

Let α1, . . . , αn be fresh type variables and σ′ = σ ⊕ {α1 7→ δ1, . . . , αn 7→ δn}.
Since α1, . . . , αn are fresh we have that α1, . . . , αn /∈ ∆ and σ′∆ = σ∆. We
also have that ∆(c) = δ, for some δ, where again α1, . . . , αn /∈ δ. Thus, σ′δ =
σδ = ↑[δ1, . . . , δn] = σ′↑[α1, . . . , αn]. We can use Proposition 3.19 to show
that Unify(δ, ↑[α1, . . . , αn]) succeeds, returning ρ, and there exists a µ such
that σ′ = µρ. Using induction, we have that X(ρ(∆, x1 : α1, . . . , xn : αn); P )
succeeds, returning ρ′, and there exists a µ′ such that µρ(∆, x1 : α1, . . . , x :
n : αn) = µ′ρ′ρ(∆, x1 : α1, . . . , x : n : αn). Therefore, X(∆; c?[x1, . . . , xn].P )
succeeds, returning ρ′ρ where σ∆ = σ′∆ = µ′(ρ′ρ)∆ as required.

case σ∆ ` c![x1, . . . , xn].P where (σ∆)(c) = ↑[(σ∆)(a1), . . . , (σ∆)(an)]
and σ∆ ` P

It must be the case that ∆(c) = δ and ∆(xi) = δi for 1 ≤ i ≤ n for some
δ and δ1, . . . , δn such that σ(∆(c)) = σ(↑[δ1, . . . , δn]). We can therefore use
Proposition 3.19 to show that Unify(δ, ↑[δ1, . . . , δn]) succeeds, returning ρ, and
there exists a µ such that σ = µρ. Using induction, we have that X(ρ∆; P )
succeeds, returning ρ′ and there exists a µ′ such that µρ∆ = µ′ρ′ρ∆. There-
fore, X(∆; c![x1, . . . , xn].P ) succeeds, returning ρ′ρ where σ∆ = µ′(ρ′ρ)∆ as
required.

case σ∆ ` ∗P where σ∆ ` P

We have, by induction, that X(∆; P ) succeeds, returning ρ and there exists
a µ such that σ∆ = µρ∆. The result is immediate since X(∆; ∗P ) succeeds,
returning ρ.

case σ∆ ` 0

We have that X(∆;0) succeeds, returning {} and the result follows by taking
µ = σ. 2



Chapter 4

Recursive types

There are many useful programs which cannot be assigned a type in the simply-

typed λ-calculus. Similarly, there are many useful π-calculus programs which

cannot be assigned a type in our simple type system. An important deficiency is

that we cannot support programming with recursive datatypes (for example, lists

or trees). We now present a simple solution to this problem: recursive types. In

fact, as in the λ-calculus, recursive types make the typed π-calculus as expressive

as the untyped monadic π-calculus, since we can assign a type to every monadic

π-term.

4.1 Type syntax

We extend our syntax of types with recursive types of the form µα.δ (which bind

the type variable α with scope δ).

Definition 4.1 (Recursive types)

δ ::= α Type variable
↑[δ1, . . . , δn] Channel type
µα.δ Recursive type

There are now at least two possible ways to proceed: allow implicit fold-

ing and unfolding of recursive types (cf. Cardone and Coppo [CC91] or Amadio

and Cardelli [AC91], for example), or require explicit annotations from the pro-

grammer (cf. MacQueen, Plotkin and Sethi [MPS86], for example). We choose

47
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the former, since it requires the minimum of changes to our typing rules and

operational semantics.

The simplest way to allow implicit folding and unfolding of recursive types is

to modify the definition of type equality so that it is insensitive to such operations.

This is commonly achieved by considering the type µα.δ as a finite specification

of an infinite tree (obtained by repeatedly applying the rule µα.δ = {µα.δ/α}δ).

With such an interpretation, we say that δ = γ whenever δ and γ denote the

same infinite tree. We take a more direct approach here, defining equality by

means of a bisimulation relation on types.

Our treatment of recursive types was inspired by Pierce and Sangiorgi’s for-

malisation of subtyping for recursive types [PS93]. We refine their work by elim-

inating all uses of infinite trees: Pierce and Sangiorgi use a bisimulation relation

defined over infinite trees, while we use a bisimulation relation defined directly

over the syntax of types. We believe that by eliminating all uses of infinite trees

from our presentation, we get a simpler treatment of recursive types, and a more

direct proof of correctness for our type equality algorithm.

We now define what it means for two types to be bisimilar. Intuitively, two

types are bisimilar if we cannot distinguish their type structure. The relation

δ ⇓ γ formalises the observations we can make of a type δ:

Definition 4.2 (Observation)

α ⇓ α ↑[δ1, . . . , δn] ⇓ ↑[δ1, . . . , δn]
{µα.δ/α}δ ⇓ γ

µα.δ ⇓ γ

We allow type variables and channel types to be observed directly. In order to

make bisimulation insensitive to the folding and unfolding of recursive types, we

prevent any direct observation of recursive types. Instead, we unfold the recursion

and observe the structure of the unfolded type. This means, for example, that

the type µα.δ and its unfolding {µα.δ/α}δ have exactly the same observable type

structure, and will not be distinguished by our bisimulation relation.

We require that all recursive types µα.δ be contractive in α: all occurrences of

α must be inside at least one channel type constructor. This disallows types such

as µα.α and µα.µβ.α, which have no observable type structure, and guarantees

that for every type δ there exists a (unique) γ such that δ ⇓ γ.
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Definition 4.3 (Bisimulation)

Let R range over relations between types. The relation R is a bisimulation if
R ⊆ F (R) where F is the following function on relations: (δ, γ) ∈ F (R) if either

1. δ ⇓ α and γ ⇓ α.

2. δ ⇓ ↑[δ1, . . . , δn], γ ⇓ ↑[γ1, . . . , γn] and (δi, γi) ∈ R for 1 ≤ i ≤ n.

The function F in Definition 4.3 is monotone, so we have by Tarski’s fixpoint

theorem [Tar55] that the greatest fixpoint of F exists and is equal to
⋃{R |

R ⊆ F (R)}. Let ' be the greatest fixpoint of F . It follows from the definition

of ' that if (δ, γ) ∈ R for some bisimulation R then δ ' γ. For example, if

X
.= µα.↑[α, α] then the relation

{(X, ↑[X, X]), (↑[X, X], ↑[X, X]), (X, X)}

is a bisimulation, and is sufficient to prove that X ' ↑[X, X].

4.2 Typing rules

We can now reinterpret our process typing rules (Definition 3.4 on page 33),

replacing syntactic type equality with ' in both the Input and Output rules (the

other typing rules remain unchanged):

Definition 4.4 (Typing rules using ')

∆(c) ' ↑[δ1, . . . , δn] ∆, x1 : δ1, . . . , xn : δn ` P

∆ ` c?[x1, . . . , xn].P
Input

∆(c) ' ↑[∆(x1), . . . , ∆(xn)] ∆ ` P

∆ ` c![x1, . . . , xn].P
Output

For example, we can now give a type to the process x![x, x].0, which sends the

pair [x, x] along the channel x. If X
.= µα.↑[α, α] and ∆ .= x : X then we can use

the Output typing rule to show that ∆ ` x![x, x].0 (we proved that X ' ↑[X, X]

in Section 4.1):
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∆(x) = X ' ↑[X, X] = ↑[∆(x), ∆(x)] ∆ ` 0
∆ ` x![x, x].0

More importantly, we can now typecheck our list processing examples from

Section 2.9. Let List be the recursive type µL.↑[↑[ ], ↑[α, L]]. It is easy to check

that

{(List, ↑[↑[ ], ↑[α,List]]), (↑[α,List], ↑[α,List]), (↑[ ], ↑[ ]), (List ,List), (α, α)}

is a bisimulation, which implies that List ' ↑[↑[ ], ↑[α,List]]. We reproduce the

definitions of Nil and Cons below, indicating how they are typed by annotating

bound variables with types.

defNil [r : ↑[List]] =
(ν l : List)( r![l] | ∗l?[n : ↑[ ], c : ↑[α, List]].n![] )

defCons[hd : α, tl : List, r : ↑[List]] =
(ν l : List)( r![l] | ∗l?[n : ↑[ ], c : ↑[α, List]].c![hd, tl ] )

The above annotations imply that Nil has type [ ] ⇒ [List] and Cons has type

[α,List] ⇒ [List].

Definition 4.5 (Typing of list pattern-matching)

∆(l) = List ∆ ` P ∆, hd : α, tl : List ` Q

∆ ` match l with Nil => P and Cons[hd, tl ] => Q
Match

It is easy to check, by expanding out the derived form for match (Definition 2.8

on page 26), that the above rule is admissible. (We can use the same proof

technique as we used in Section 3.5.)

We can now verify that Concat has type [List,List ] ⇒ [List]:

defConcat[l1 : List , l2 : List, r : ↑[List]] =
match l1 with Nil =>

r![l2]
and Cons[hd : α, tl : List ] =>
let rest : List = Concat(tl , l2) in Cons![hd , rest, r]
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4.3 Encoding the monadic π-calculus

The monadic π-calculus is clearly is special case of the polyadic π-calculus (where

all tuples have arity one). Without the help of recursive types, there are many

monadic π-terms which cannot be given a type in our simple type system (for

example, the term x![x].0). However, the following rules are admissible when we

have recursive types:

Definition 4.6 (Typing monadic π-terms)

∆(x) = µα.↑[α] ∆, y : µα.↑[α] ` P

∆ ` x?[y].P
Monadic Input

∆(x) = µα.↑[α] ∆(y) = µα.↑[α] ∆ ` P

∆ ` x![y].P
Monadic Output

If every variable in ∆ has type µα.↑[α], then ∆ ` P for every monadic π-term

P whose free variables are a subset of those bound in ∆, since the Monadic

Input rule preserves the invariant that every variable has type µα.↑[α]. We

therefore regain the full power of the monadic π-calculus if we allow recursive

types (though we do pay a price for that flexibility, since the type µα.↑[α] is

rather uninformative).

4.4 Properties of '
We now prove that ' is a reasonable equality relation: it is a equivalence relation,

it is preserved by substitution, and it is preserved by all type constructors.

Proposition 4.7 (' is an equivalence relation)

1) δ ' δ.

2) If δ ' γ then γ ' δ.

3) If δ ' δ′ and δ′ ' δ′′ then δ ' δ′′.

Proof Part 1 follows from the fact that the identity relation is a bisimulation.
Part 2 follows from the fact that {(γ, δ) | (δ, γ) ∈ R} is a bisimulation if R is a
bisimulation. Part 3 follows from the fact that

{(δ, δ′′) | (δ, δ′) ∈ R and (δ′, δ′′) ∈ R′}
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is a bisimulation if R and R′ are bisimulations. 2

Before we can prove that ' is preserved under substitution, we need to show

how substitution affects the observations we can make of a type.

Lemma 4.8 (Observation and substitution)

1) If δ ⇓ α and γ ⇓ γ′ then {γ/α}δ ⇓ γ′.

2) If δ ⇓ ↑[δ1, . . . , δn] then {γ/α}δ ⇓ ↑[{γ/α}δ1, . . . , {γ/α}δn].

Proof Both results can be proved by induction on the depth of the inference of
the observation of δ. 2

The following lemma proves that the observations we can make from the type

{γ/α}δ arise either from the original type δ, or from the substituted type γ. No

essentially new observations arise when we substitute γ for α in δ.

Lemma 4.9 (Substitution and observation)

If {γ/α}δ ⇓ γ′ then either

1. α /∈ fv(δ) and δ ⇓ γ′, or

2. δ ⇓ α and γ ⇓ γ′, or

3. δ ⇓ ↑[δ1, . . . , δn] and γ′ = ↑[{γ/α}δ1, . . . , {γ/α}δn].

Proof The result can be proved using induction on the depth of the inference
of {γ/α}δ ⇓ γ′. 2

Our equality relation forces the free type variables of equal types to be the

same:

Lemma 4.10 (Free type variables and ')

If δ ' γ then α ∈ fv(δ) iff α ∈ fv(γ).

Proof It is easy to see that if α ∈ fv(δ) then we can eventually observe the type
variable α. Now, since we can observe α, it must also be the case that we can
observe an α in γ, since δ and γ are bisimilar, so α ∈ fv(γ) as required. We can
use identical reasoning to prove that if α ∈ fv(γ) then α ∈ fv(δ). 2

We can now prove that ' is preserved under substitution.
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Proposition 4.11 (' is preserved under substitution)

If δ ' δ′ and γ ' γ′ then {γ/α}δ ' {γ′/α}δ′.

Proof The result follows if we can prove that

{({γ/α}δ, {γ′/α}δ′) | (δ, δ′) ∈ R} ∪ R ∪ R′

is a bisimulation if R and R′ are bisimulations containing the pairs (δ, δ′) and
(γ, γ′) respectively. Suppose that {γ/α}δ ⇓ β. We know from Lemma 4.9 that
either

1. α /∈ fv(δ) and δ ⇓ β, in which case we have that δ′ ⇓ β, since R is a
bisimulation. Now, we know from Lemma 4.10 that α /∈ fv(δ′) and the
result follows, since {γ′/α}δ′ = δ′.

2. δ ⇓ α and γ ⇓ β, in which case we know that δ′ ⇓ α (since R is a bisimula-
tion), and γ′ ⇓ β (since R′ is a bisimulation). Using Lemma 4.8, we have
that {γ′/α}δ′ ⇓ β as required.

Alternatively, if {γ/α}δ ⇓ ↑[δ1, . . . , δn], we know from Lemma 4.9 that either

1. α /∈ fv(δ) and δ ⇓ ↑[δ1, . . . , δn], in which case we have, since R is a bisim-
ulation, that δ′ ⇓ ↑[δ′1, . . . , δ

′
n] where (δi, δ′i) ∈ R. Now, we know from

Lemma 4.10 that α /∈ fv(δ′) and the result follows, since {γ′/α}δ′ = δ′.

2. δ ⇓ α and γ ⇓ ↑[δ1, . . . , δn], in which case we know that δ′ ⇓ α (since R

is a bisimulation), and γ′ ⇓ ↑[δ′1, . . . , δ′n] where (δi, δ′i) ∈ R′ (since R′ is a
bisimulation). Using Lemma 4.8, we have that {γ′/α}δ′ ⇓ ↑[δ′1, . . . , δ′n] as
required.

3. δ ⇓ ↑[τ1, . . . , τn] and ↑[δ1, . . . , δn] = ↑[{γ/α}τ1, . . . , {γ/α}τn], in which case
we know that δ′ ⇓ ↑[τ ′1, . . . , τ ′n] and (τi, τ ′i) ∈ R (since R is a bisimulation).
Using Lemma 4.8, we have that {γ′/α}δ′ ⇓ ↑[{γ′/α}τ ′1, . . . , {γ′/α}τ ′n] and
the result follows, since for each 1 ≤ i ≤ n, the pair ({γ/α}τi, {γ′/α}τ ′i ) is
in our bisimulation relation.

We therefore have that {γ/α}δ ' {γ′/α}δ′, as required. 2

Before we prove that ' is a congruence relation, we must prove the following

lemmas about observation and recursive types.
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Lemma 4.12 (Observation and recursive types)

1) If µα.δ ⇓ β then α 6= β and δ ⇓ β.

2) If µα.δ ⇓ ↑[γ1, . . . , γn] then there exist γ′1, . . . , γ
′
n such that δ ⇓ ↑[γ′1, . . . , γ′n]

and {µα.δ/α}γ′i = γi for 1 ≤ i ≤ n.

3) If δ ⇓ γ then µα.δ ⇓ {µα.δ/α}γ

Proof All three results can be proved using induction on the depth of the
inference of the initial observation. All rely on the fact that occurrences of the
recursively-bound variable α must be contractive. 2

Proposition 4.13 (' is an congruence relation)

1) If δi ' γi for 1 ≤ i ≤ n then ↑[δ1, . . . , δn] ' ↑[γ1, . . . , γn].

2) If δ ' γ then µα.δ ' µα.γ.

Proof Part 1 follows from the fact that

{(↑[δ1, . . . , δn], ↑[γ1, . . . , γn])} ∪ R1 ∪ . . . ∪ Rn

is a bisimulation if each relation Ri is a bisimulation containing the pair (δi, γi).
Part 2 follows from the fact that the following relation is a bisimulation if R is a
bisimulation containing the pair (δ, γ).

{(µα.δ, µα.γ)} ∪ {({µα.δ/α}τ, {µα.γ/α}τ ′) | (τ, τ ′) ∈ R} ∪ R

Suppose that {µα.δ/α}τ ⇓ β. We know from Lemma 4.9 that either

1. α /∈ fv(τ ) and τ ⇓ β, in which case we have that τ ′ ⇓ β, since R is a
bisimulation. Now, we know from Lemma 4.10 that α /∈ fv(τ ′) and the
result follows, since {µα.δ/α}τ ′ = τ ′.

2. τ ⇓ α and µα.δ ⇓ β, in which case we know that τ ′ ⇓ α, since R is a
bisimulation. Now, using Lemma 4.12, we have that δ ⇓ β. Therefore,
since R′ is a bisimulation, we have that γ ⇓ β. Using Lemma 4.12, we have
that µα.γ ⇓ {µα.γ/α}β = β as required.

Alternatively, if {µα.δ/α}τ ⇓ ↑[δ1, . . . , δn], we know from Lemma 4.9 that either

1. α /∈ fv(τ ) and τ ⇓ ↑[δ1, . . . , δn], in which case we have, since R is a bisim-
ulation, that τ ′ ⇓ ↑[δ′1, . . . , δ

′
n] where (δi, δ′i) ∈ R. Now, we know from

Lemma 4.10 that α /∈ fv(τ ′) and the result follows, since {µα.γ/α}τ ′ = τ ′.
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2. τ ⇓ α and µα.δ ⇓ ↑[δ1, . . . , δn], in which case we know that τ ′ ⇓ α, since
R is a bisimulation. Now, using Lemma 4.12, we have that there exist
τ1, . . . , τn such that δ ⇓ ↑[τ1, . . . , τn] and {µα.δ/α}τi = δi for 1 ≤ i ≤ n.
Now, since R is a bisimulation, we have that there exist τ ′1, . . . , τ

′
n such

that γ ⇓ ↑[τ ′1, . . . , τ
′
n] and (τi, τ ′i) ∈ R for 1 ≤ i ≤ n. Using Lemma 4.12,

we have that µα.γ ⇓ ↑[{γ/α}τ ′1, . . . , {γ/α}τ ′n]. The result follows, since for
each 1 ≤ i ≤ n the pair ({µα.δ/α}τi, {µα.γ/α}τ ′i ) is in our bisimulation
relation.

3. τ ⇓ ↑[τ1, . . . , τn] and ↑[δ1, . . . , δn] = ↑[{µα.δ/α}τ1, . . . , {µα.δ/α}τn], so we
know that τ ′ ⇓ ↑[τ ′1, . . . , τ ′n] and (τi, τ ′i ) ∈ R (since R is a bisimulation).
Lemma 4.8 proves that {µα.γ/α}τ ′ ⇓ ↑[{µα.γ/α}τ ′1, . . . , {µα.γ/α}τ ′n] and
the result follows, since each pair ({µα.δ/α}τi, {µα.γ/α}τ ′i ) is in our bisim-
ulation relation.

The observations of µα.δ and µα.γ are identical to those of {µα.δ/α}δ and
{µα.γ/α}γ, and we have already checked that such pairs are bisimilar. We there-
fore have that µα.δ ' µα.γ, as required. 2

4.5 Checking type equality

We now present an algorithm which, given a relation R and two types δ and γ,

builds a bisimulation containing the pair (δ, γ). The algorithm fails if R, δ and γ

do not match one of the cases below. The first clause takes precedence over the

other clauses in the case where more than once clause matches R, δ and γ.

Definition 4.14 (Checking type equality)

case Eq(R, δ, γ) where (δ, γ) ∈ R

Return R.

case Eq(R, δ, γ) where δ ⇓ α and γ ⇓ α

Return R ∪ {(δ, γ)}.

case Eq(R, δ, γ) where δ ⇓ ↑[δ1, . . . , δn] and γ ⇓ ↑[γ1, . . . , γn]

If R0 = R∪{(δ, γ)} and Ri = Eq(Ri−1, δi, γi) for 1 ≤ i ≤ n then return Rn.

The relation R contains pairs of types which have already been checked by the

algorithm. We therefore simply return R if we encounter a pair we have already
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checked. Note that the fact that all recursive types are contractive guarantees

that for every δ we can always effectively compute the (unique) type γ such that

δ ⇓ γ.

The soundness of Eq depends crucially on the relation R which it is passed

as an argument. For example, if R = {(↑[ ], ↑[α])} then Eq(R, ↑[ ], ↑[α]) succeeds,

returning R, even though the types ↑[ ] and ↑[α] are clearly not bisimilar. We must

therefore prove that the result of Eq is sound assuming R is sound. The following

definition formalises when a relation is a bisimulation relative to a second relation

(which can be thought of as containing pairs of types which have already been

checked for equality).

Definition 4.15 (Relative bisimulation) The relation R is a bisimulation
relative to R′ if R ⊇ R′ and R ⊆ F (R) ∪ R′ where F is the function on relations
given in Definition 4.3.

Suppose we wish to check that R is a bisimulation relative to R′. For each

pair (δ, γ) ∈ R we need to check that either (δ, γ) ∈ R′ (which we can interpret

as meaning that δ and γ have been checked elsewhere), or (δ, γ) ∈ F (R) (which

means we have to check the observable type structure of δ and γ in the normal

way).

We can now state and prove the soundness of Eq. Note that in top-level calls

the relation R passed as an argument to Eq will be {}, the empty relation. Thus,

at the top-level we have that the result of Eq is a bisimulation relative to {},

which implies that R is a bisimulation.

Lemma 4.16 (Soundness of Eq)

If Eq(R, δ, γ) = R′ then R′ is a bisimulation relative to R and (δ, γ) ∈ R′.

Proof We prove the result using induction on the depth on the inference of
Eq(R, δ, γ) = R′.

case Eq(R, δ, γ) = R where (δ, γ) ∈ R

Immediate from the definition of relative bisimulation.

case Eq(R, δ, γ) = R ∪ {(δ, γ)} where δ ⇓ α and γ ⇓ α

Immediate, since δ and γ have identical observable type structure.
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case Eq(R, δ, γ) = Rn where δ ⇓ ↑[δ1, . . . , δn], γ ⇓ ↑[γ1, . . . , γn],
R0 = R ∪ {(δ, γ)} and Ri = Eq(Ri−1, δi, γi) for 1 ≤ i ≤ n

We have, using induction, that Ri is a bisimulation relative to Ri−1 for 1 ≤
i ≤ n. Thus, we have that Ri ⊇ Ri−1 and Ri ⊆ F (Ri) ∪ Ri−1. This clearly
implies that Rn ⊇ R, since R0 = R∪{(δ, γ)}. Now, since Rn ⊆ F (Rn)∪Rn−1

and Rn−1 ⊆ F (Rn−1)∪Rn−2 we have that Rn ⊆ F (Rn)∪F (Rn−1)∪Rn−2. But
F (Rn−1) ⊆ F (Rn) since Rn−1 ⊆ Rn and F is monotone, so we therefore have
that Rn ⊂ F (Rn) ∪ Rn−2 i.e. R is bisimilar relative to Rn−2. Iterating this
argument proves that R is bisimilar relative to R0 i.e. Rn ⊆ F (Rn)∪R0. Now,
since R0 = R ∪ {(δ, γ)}, if we can prove that (δ, g) ∈ F (Rn) we can conclude
that Rn ⊆ F (Rn) ∪ R as required. But it is easy to see that (δ, g) ∈ F (Rn),
since δ ⇓ ↑[δ1, . . . , δn], γ ⇓ ↑[γ1, . . . , γn] and (δi, γi) ∈ Ri ⊆ Rn. Thus, Rn is a
bisimulation relative to R, as required. 2

The following lemma proves the completeness of Eq: if δ and γ are bisimilar

then Eq will succeed, returning a bisimulation containing (δ, γ).

Lemma 4.17 (Completeness of Eq)

If (δ, γ) ∈ R′ for some bisimulation R′ and R ⊆ R′ then Eq(R, δ, γ) succeeds,
returning R′′ where (δ, γ) ∈ R′′ and R′′ ⊆ R′.

Proof We prove the result using induction on the number of pairs still to be
checked by Eq (i.e. the size of the set R′ − R). In the base case R = R′ and we
therefore have that (δ, γ) ∈ R and Eq(R, δ, γ) succeeds, returning R as required.
Otherwise, if the size of R′ − R is non-zero, we have two cases to consider: if
(δ, γ) ∈ R then Eq(R, δ, γ) = R and the result follows. Otherwise, if (δ, γ) /∈ R

then it must be the case that either

1. δ ⇓ α and γ ⇓ α, in which case Eq(R, δ, γ) succeeds, returning R ∪ {(δ, γ)},
and the result follows.

2. δ ⇓ ↑[δ1, . . . , δn] and γ ⇓ ↑[γ1, . . . , γn] where (δi, γi) ∈ R′ for 1 ≤ i ≤ n. Now,
if R0 = R ∪ {(δ, γ)} we clearly have that R0 ⊆ R′, so we can use induction
to prove that Eq(Ri−1, δi, γi) succeeds, returning Ri where (δi, γi) ∈ Ri and
Ri ⊆ R′, for 1 ≤ i ≤ n. Thus, we have that Eq(R, δ, γ) succeeds, returning
Rn, where (δ, γ) ∈ Rn and Rn ⊆ R′, as required.

Thus, in all cases Eq(δ, γ) succeeds, as required. 2

The following two propositions are simple corollaries of Lemmas 4.16 and 4.17,

and give simplified statements of soundness and completeness.
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Proposition 4.18 (Soundness of Eq)

If Eq({}, δ, γ) succeeds then δ ' γ.

Proof If Eq({}, δ, γ) = R then from Lemma 4.16 we have that R is a bisimulation
containing the pair (δ, γ). It follows from the definition of ' that δ ' γ. 2

Proposition 4.19 (Completeness of Eq)

If δ ' γ then Eq({}, δ, γ) succeeds.

Proof If δ ' γ then there must exist a bisimulation R containing the pair (δ, γ).
Now, since {} ⊆ R, we can use Lemma 4.17 to prove that Eq({}, δ, γ) succeeds,
as required. 2

4.6 Type soundness

It is easy to check that the weakening, strengthening and substitution lemmas

from Section 3.8 still hold in the presence of recursive types (the proofs are

identical to those in Section 3.8). We can then prove that types are preserved

under structural congruence, using the same techniques as in Section 3.9.

We are now able to prove that our type system remains sound when it is

extended with recursive types. The proofs are almost identical to those in Sec-

tion 3.10.

Theorem 4.20 (Well-typed processes never fail)

If ∆ ` P then not (P fails).

Theorem 4.21 (Subject reduction)

If ∆ ` P and P → Q then ∆ ` Q.

It is interesting to note that the proof of Theorem 4.20 relies on the fact that

if ↑[δ1, . . . , δm] ' ↑[γ1, . . . , γn] then m = n and δi ' γi for 1 ≤ i ≤ n. This

fact seems obvious, and indeed it follows immediately from the definition of ',

but it marks the dividing line between an ‘acceptable’ equality relation for types

and an ‘unacceptable’ one. The proofs of weakening, strengthening, substitution,

preservation of types under structural congruence and subject reduction remain

valid for arbitrary congruence relations (for example, the universal relation).



Chapter 5

Polymorphism

A common disadvantage of simple type systems is that, although they prevent

common programming errors, they also disallow many useful and intuitively cor-

rect programs. Polymorphic type systems overcome much of this problem by

allowing generic operations, that is, operations which can be safely applied to

many different types of argument. List operations such as reversing and con-

catenation are good examples of generic operations, since they act completely

independently of the types of the elements in the lists. The extra flexibility of-

fered by a polymorphic type system seems to be enough to allow a more natural

style of programming, where the type system is not perceived as ‘getting in the

way’.

In this chapter we define an explicitly-typed polymorphic type system for π-

calculus which arises as a natural extension of the simple type system presented

earlier. We illustrate the utility of polymorphic types in π-calculus programming

using a number of examples, and then show how polymorphic channels can be

used to model abstract datatypes in a type-safe manner. We then prove (by means

of a subject-reduction theorem) that our polymorphic type system guarantees

freedom from runtime errors.

5.1 Typing rules

A simple example of a channel which can be used polymorphically is the channel

f in the (explicitly-typed) process below:

59
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f : ↑[α, ↑[α]] ` ∗f?[x : α, r : ↑[α]].r![x]

Intuitively, we should be able to send any pair of channels along f whose types

are instances of α and ↑[α] respectively. In fact, we can think of f as having an

additional type argument α, as shown below:

f : ↑[α ; α, ↑[α]] ` ∗f?[α ; x : α, r : ↑[α]].r![x]

The type of f is similarly extended to indicate that f requires an explicit type

argument to be sent along with the pair of channels. For example, the following

process can send the channels a and b along f , since the types of a and b match

the types required by f (when we instantiate the type parameter α with the

explicit type argument δ).

f : ↑[α ; α, ↑[α]], a : δ, b : ↑[δ] ` f ![δ ; a, b]

Thus, from the server’s pointer of view (i.e. the point of view of any pro-

cess reading messages from f), the type ↑[α ; α, ↑[α]] can be interpreted as a

requirement that the server must behave correctly given any type α and a pair

of channels of type α and ↑[α] respectively.

From the client’s pointer of view (i.e. the point of view of any process writing

messages on f), the type ↑[α ; α, ↑[α]] can be interpreted as a guarantee that any

process listening on f will behave correctly as long as the client supplies a type

δ and two channels whose types match the types α and ↑[α] (after substituting

the argument type δ for the type parameter α).

We now formally define our explicitly-typed polymorphic π-calculus. First, we

give the syntax of explicitly-typed terms. We require an explicit type annotation

on every bound variable, explicit type parameters in input expressions, and ex-

plicit type arguments in output expressions. The syntax for parallel composition,

summation, replication and the nil process is unchanged.
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Definition 5.1 (Explicitly-typed π-calculus)

P, Q, R, S ::= P | P Parallel composition
(ν x : δ)P Restriction
P + P Summation
x?[α1, . . . , αm ; y1 : δ1, . . . , yn : δn].P Input
x![δ1, . . . , δm ; y1, . . . , yn].P Output
∗P Replication
0 Nil

Note that we allow polyadic type arguments as well as polyadic channel ar-

guments. In the case where m = 0, we write just x?[y1 : δ1, . . . , yn : δn].P instead

of x?[ ; y1 : δ1, . . . , yn : δn].P , and x![y1, . . . , yn].P instead of x![ ; y1, . . . , yn].P .

The expression x?[α1, . . . , αm ; y1 : δ1, . . . , yn : δn].P binds the type variables

α1, . . . , αm (which are in scope in both δ1, . . . , δn and P ). The type parameters

α1, . . . , αm must always be pairwise-distinct.

We generalise our syntax for simple channel types so that channels may now

contain type parameters. The types α1, . . . , αm are bound by the channel type

constructor and have scope δ1, . . . , δn. The type parameters α1, . . . , αm must

always be pairwise-distinct. In the case where m = 0, we write just ↑[δ1, . . . , δn]

instead of ↑[ ; δ1, . . . , δn].

Definition 5.2 (Polymorphic types)

δ ::= ↑[α1, . . . , αm ; δ1, . . . , δn] Polymorphic channel type
α Type variable

The syntax of type contexts is just the same it was in our monomorphic type

system (modulo the change in the syntax of types). The variables x1, . . . , xn

must be pairwise-distinct. The expression ftv(∆) denotes the free type variables

of ∆ and is defined to be the union of all the free type variables of those types

contained in ∆.

Definition 5.3 (Type contexts) ∆ ::= x1 : δ1, . . . , xn : δn
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The typechecking rules for the nil process, parallel composition, summation

and replication are the same as the typing rules we gave for our monomorphic

type system:

∆ ` 0 Nil
∆ ` P ∆ ` Q

∆ ` P | Q
Prl

∆ ` P ∆ ` Q

∆ ` P + Q
Smt

∆ ` P

∆ ` ∗P
Repl

The typechecking rule for an explicitly-typed restriction is similar to our orig-

inal rule for restriction, except that we now force the type assigned to x to be a

channel type. This restriction on the type of x is not necessary to preserve the

soundness of our type system, but simplifies reasoning about abstract datatypes

encoded in the polymorphic π-calculus (see Section 5.7 for details).

∆, x : ↑[α̃ ; δ̃] ` P

∆ ` (ν x : ↑[α̃ ; δ̃])P
Res

In the case of a polymorphic input we check that the body of the input requires

no more type structure of x1, . . . , xn than is specified in the type of c. The

condition α1, . . . , αm /∈ ftv(∆) ensures that we do not capture any type variables

which occur free in the context. This rule generalises the rule for input we gave

in our monomorphic π-calculus type system of Chapter 3 (just set m = 0).

α1, . . . , αm /∈ ftv(∆)
∆(c) = ↑[α1, . . . , αm ; δ1, . . . , δn] ∆, x1 : δ1, . . . , xn : δn ` P

∆ ` c?[α1, . . . , αm ; x1 : δ1, . . . , xn : δn].P
Input

A simple instance of the Input typing rule is given below (we let ∆ be the

context f : ↑[α ; α, ↑[α]]).

∆(f) = ↑[α ; α, ↑[α]] α /∈ ftv(∆) ∆, x : α, r : ↑[α] ` P

∆ ` f?[α ; x : α, r : ↑[α]].P
Input

In the case of an output along a polymorphic channel c, we check that the

channel values we are sending along c are substitution instances of the types

specified in the type of c (the type arguments δ1, . . . , δm make it explicit how we

instantiate each abstracted variable α1, . . . , αm). Again, this generalises the rule

for output we gave in our monomorphic π-calculus type system of Chapter 3 (just

set m = 0).
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∆(c) = ↑[α1, . . . , αm ; γ1, . . . , γm]
∆(ai) = {δ1, . . . , δm/α1, . . . , αm}γi 1 ≤ i ≤ n ∆ ` P

∆ ` c![δ1, . . . , δm ; a1, . . . , an].P
Output

Using the Output rule, it is easy to check that ∆, x : α, r : ↑[α] ` r![x] (the

type of r contains no type arguments, so the Output rule is just the same as our

monomorphic Output rule in this case). Thus, we can use the Input and Repl

rules to conclude that our original example of a replicated process reading from

f is well-typed:

· · ·
...

∆, x : α, r : ↑[α] ` r![x]
Output

∆ ` f?[α ; x : α, r : ↑[α]].r![x]
Input

∆ ` ∗f?[α ; x : α, r : ↑[α]].r![x]
Repl

Furthermore, one can use the Output rule to check that the following output

expression is well-typed, since the types of a and b are substitution instances of

those specified in the type of f (we let ∆′ denote the context ∆, a : δ, b : ↑[δ]). The

type δ in the output expression indicates that we instantiate the type argument

α with the actual type δ.

∆′(f) = ↑[α ; α, ↑[α]]
∆′(a) = δ = {δ/α}α ∆′(b) = ↑[δ] = {δ/α}↑[α] ∆′ ` 0

∆′ ` f ![δ ; a, b]
Output

It is easy to check that our replicated input example is well-typed in the

context ∆′. Thus, since both our input and output examples agree on the type

of f , we can run them in parallel:

...
∆′ ` f ![δ ; a, b]

Output
...

∆′ ` ∗f?[α ; x : α, r : ↑[α]].r![x]
Repl

∆′ ` f ![δ ; a, b] | ∗f?[α ; x : α, r : ↑[α]].r![x]
Prl

It is worth noting that in general there may be any number of processes

reading from the channel f . For example, there is no reason why we shouldn’t

have two copies of our replicated process serving requests along f :

f : ↑[α ; α, ↑[α]] ` (∗f?[α ; x : α, r : ↑[α]].r![x]) | (∗f?[α ; x : α, r : ↑[α]].r![x])
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Our type system ensures that each process which inputs values from the chan-

nel f provides the same standard of service (i.e. makes the same requirements of

its arguments). For example, we would certainly not expect the following process

to be well-typed in the context f : ↑[α; α, ↑[α]], since the rightmost process makes

more demands of its first argument x that is allowed by the type of f (it sends

the empty tuple along x):

f : ↑[α ; α, ↑[α]] 6` (∗f?[α ; x : α, r : ↑[α]].r![x]) | f?[α ; x : α, r : ↑[α]].x![ ]

It is important to generalise types at input prefixes rather than at some later

stage in the typing derivation, since otherwise we cannot guarantee that every

process which uses a polymorphic channel will be sufficiently polymorphic. Sup-

pose that we had the following typing rule, which allows one to generalise the

type of x at any point in the type inference (as long the type variables α̃ do not

appear in the typing context):

∆, x : ↑[δ̃] ` P

∆, x : ↑[α̃ ; δ̃] ` P
α̃ /∈ ∆

If we had such a rule we could give a polymorphic type to the channel f in

the following example:

f?[x, r].(r![x] | ∗f?[y, r].r![x])

The process reading on f behaves like an identity function the first time it

is called, since it returns x along the result channel r. However, all subsequent

calls also return x, the argument given to the first call of f . The principal type

for the above example (in our monomorphic type system) gives f type ↑[α, ↑[α]].

So, at the top-level, it seems clear that f is polymorphic in the type α (and we

could apply the above typing rule to generalise the type of f).

However, it would be unsound to let f be polymorphic. Suppose that we send

f a pair of an integer x and a result channel r of type ↑[Int ]. We will receive

x back from f along r, as expected. But what if we now send f a boolean b

and a result channel s of type ↑[Bool ] (we will certainly be able to do this if f is

polymorphic). Now, instead of receiving b back along s, we receive x, a value of

type Int , which is incompatible with the value of type Bool that we expected to

receive.



CHAPTER 5. POLYMORPHISM 65

Our polymorphic typing rules deal with above example correctly, since we

check that each separate input prefix is sufficiently polymorphic. If we tried to

give f the type ↑[α ; α, ↑[α]] then we would find that the second (replicated) input

on f is ill-formed (since the type α occurs free in the type of x).

For ease of reference, we summarise the typing rules for explicitly-typed poly-

morphic π-terms in Definition 5.4.

Definition 5.4 (Polymorphic typing rules)

∆ ` 0 Nil

∆ ` P ∆ ` Q

∆ ` P | Q
Prl

∆ ` P ∆ ` Q

∆ ` P + Q
Smt

∆ ` P

∆ ` ∗P
Repl

∆, x : ↑[α̃ ; δ̃] ` P

∆ ` (ν x : ↑[α̃ ; δ̃])P
Res

α1, . . . , αm /∈ ftv(∆)
∆(c) = ↑[α1, . . . , αm ; δ1, . . . , δn] ∆, x1 : δ1, . . . , xn : δn ` P

∆ ` c?[α1, . . . , αm ; x1 : δ1, . . . , xn : δn].P
Input

∆(c) = ↑[α1, . . . , αm ; γ1, . . . , γm]
∆(ai) = {δ1, . . . , δm/α1, . . . , αm}γi 1 ≤ i ≤ n ∆ ` P

∆ ` c![δ1, . . . , δm ; a1, . . . , an].P
Output

One might be tempted to add a type restriction operator to the polymorphic

π-calculus, to match the π-calculus’s channel restriction operator. Intuitively,

a type restriction operator should create a new type which is distinct from all

other types, just as the channel restriction operator creates a new channel which is

distinct from all other channels. However, such an operator is essentially useless,

since there is no way to create values which inhabit the new type. What we
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really need is the ability to create a new type and some values of that type. This

sounds rather like an abstract datatype, but we show in Section 5.7 that abstract

datatypes can be encoded using just polymorphic channel types, so there seems

to be no obvious use for a type restriction operator in the π-calculus.

5.2 Recursive process definitions

Our derived form for process definitions (Definition 2.5) used channels to model

each recursively-defined process. We can therefore easily generalise our derived

form to allow recursively-defined polymorphic process definitions. We allow ex-

plicit type parameters α̃i in each definition and require explicit types for the

channel parameters x̃i, to match the type information required in our polymor-

phic input expressions.

For each process definition Xi we create a new channel Xi and a replicated

process which does a polymorphic input on Xi. Note that we infer the appropriate

explicit type for each channel Xi from the explicit types given in the process

definition for Xi.

Definition 5.5 (Process definitions)

defX1[α̃1 ; x̃1 : δ̃1] = P1 and . . . andXn[α̃n ; x̃n : δ̃n] = Pn in Q
.=

(ν X1 : ↑[α̃1 ; δ̃1]) . . . (ν Xn : ↑[α̃n ; δ̃n])(
∗X1?[α̃1 ; x̃1 : δ̃1].P1 | . . . | ∗Xn?[α̃n ; x̃n : δ̃n].Pn | Q

)

We provide the following high-level typing rule for process definitions, which

can be proved admissible using the same techniques as we used in Section 3.3.

Definition 5.6 (Typing of polymorphic process definitions)

α̃1, . . . , α̃n /∈ ftv(∆)
∆, X1 : ↑[α̃1 ; δ̃1], . . . , Xn : ↑[α̃n ; δ̃n] ` Q

∆, X1 : ↑[α̃1 ; δ̃1], . . . , Xn : ↑[α̃n ; δ̃n], x̃i : δ̃i ` Pi 1 ≤ i ≤ n

∆ ` defX1[α̃1 ; x̃1] = P1 and . . . andXn[α̃n ; x̃n] = Pn inQ
Def
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We can invoke the process definition Xi by simply sending the desired type

and value arguments along the channel Xi. For example, the following process

can repeatedly output b along y and c along z, even if b and c have different

types:

defX[α ; x : ↑[α], a : α] = x![a].X![α ; x, a]
in X![δ ; y, b] | X![γ ; z, c]

5.3 Processes which return results

It is possible to generalise our syntax for getting results from processes (Defini-

tion 2.6) so that we can get results from polymorphic processes:

Definition 5.7 (Getting results from polymorphic processes)

let x̃ : γ̃ = f(δ̃ ; ã) in P
.= (ν r : ↑[γ̃])(f ![δ̃ ; ã, r] | r?[x̃ : γ̃].P ) r /∈ fv(P, f, ã)

Our polymorphic typing rules also give rise to the following admissible rule

for let. (We introduce the type abbreviation ⇒, since it clarifies which types

are the arguments, and which are the results.)

Definition 5.8 (Typing let)

∀α̃.[δ̃] ⇒ [γ̃] .= ↑[α̃ ; δ̃, ↑[γ̃]]

∆(f) = ∀α̃.[γ̃′] ⇒ [γ̃′′]
∆(ã) = {δ̃/α̃}γ̃′ γ̃ = {δ̃/α̃}γ̃′′ ∆, x̃ : γ̃ ` P

∆ ` let x̃ : γ̃ = f(δ̃ ; ã) in P
Let

We can check that the above rule is admissible by expanding out the derived

form for let (just as we did in Section 3.4).

5.4 Process-based reference cells

We can now give better types to our process-based reference cells (we gave

monomorphic types for these examples in Section 3.6).
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A process-based reference cell can be represented as a pair of channels: the

first channel can be used to read the contents of the cell, and the second can be

used to update the contents of the cell. The process definition Cell describes the

behaviour of a reference cell whose current contents is x and which can be accessed

via the channels read and write. Now that we have polymorphic channels, we

can make Cell polymorphic in α, the type of x:

defCell [α ; x : α, read : ↑[α], update : ↑[α]] =
read![x].Cell ![α ; x, read, update] + update?[n : α].Cell ![α ; n, read, update]

The process definition Ref takes an initial value x of type α, for any α, and

creates a new reference cell. Note that Ref creates a new instance of the Cell

process, instantiated at the type α.

defRef [α ; x : α, r : ↑[↑[α], ↑[α]]] =
(ν read : ↑[α])(ν update : ↑[α])(r![read, update] | Cell ![α ; x, read, update])

5.5 Channel-based reference cells

The types of our channel-based references (from Section 3.7) can similarly be

generalised. Let ChanRef α be the type ↑[α], the type of a reference cell repre-

sented as a channel. Given a value x of type α, ChanRef returns a value of type

ChanRef α.

defChanRef [α ; x : α, r : ↑[ChanRef α]] = (ν ref : ↑[α])(r![ref ] | ref ![x])

The Read process is now parametric in the type α. It takes a reference cell and

returns the current contents of that reference cell.

defRead[α ; ref : ChanRef α, r : ↑[α]] = ref ?[x : α].(ref ![x] | r![x])

Similarly, the Update process now works correctly given any reference cell ref of

type ChanRef α and value v of type α.

defUpdate[α ; ref : ChanRef α, v : α, r : ↑[ ]] = ref ?[x : α].(ref ![v] | r![])



CHAPTER 5. POLYMORPHISM 69

5.6 Lists

We could now give polymorphic types for our list examples from Section 4.2, but

that would require us to add recursive types to our polymorphic type system.

Thus, instead of further complicating our type system, we present an encoding

of lists and polymorphic list operations which can be typechecked using only

polymorphic types (our encoding is closely related to the Church-encoding of

lists in polymorphic λ-calculus). In practice, it is probably better to add recursive

types, instead of relying solely on polymorphic types, since some operations are

more naturally described using the encoding of lists presented in Section 4.2

(in particular, finding the tail of a list is not a constant-time operation in our

Church-encoded lists, while it is in the previous encoding).

We first recall the Church-encoding of lists in the polymorphic λ-calculus.

The expression List α denotes the type ∀β.(β → (α → β → β) → β).

Nil .= Λα.Λβ.λ(n : β).λ(c : α → β → β).n
Cons .= Λα.λ(hd : α).λ(tl : List α).

Λβ.λ(n : β).λ(c : α → β → β).c hd (tl [β] n c)

The type of Nil is ∀α.Listα, and the type of Cons is ∀α.(α → Listα → Listα).

Each encoded list allows us to iterate a function over the elements of that list,

accumulating a result of type β. Thus, for instance, the expression

l [Int ] 0 (λ(e : α).λ(x : Int).x + 1)

computes the size of the list l, since l applies the function λ(e : α).λ(x : Int).x+1

to each of its elements, using the value 0 as the initial value.

Another example of a function which uses this encoding of lists is the Concat

function, shown below. Concat has the effect of concatenating the lists l1 and l2,

and has type ∀α.(List α → List α → List α):

Concat .= Λα.λ(l1 : List α).λ(l2 : List α).l1 [List α] l2 (Cons [α])

We now give the π-calculus version of the above list encoding, where the

expression List α now denotes the type ↑[β ; β, [α, β] ⇒ [β], ↑[β]]. The process

definition Nil accepts a type α and a result channel r as arguments, and returns

the location of a process definition implementing the empty list.
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defNil [α ; r : ↑[List α]] =
def nil [β ; n : β, c : [α, β] ⇒ [β], r : ↑[β]] = r![n]
in r![nil ]

The process definition Cons accepts a type α, the head of the list hd, the tail

of the list tl and a result channel r as arguments, and returns the location of a

process definition implementing a cons cell.

defCons[α ; hd : α, tl : List α, r : ↑[List α]] =
def cons[β ; n : β, c : [α, β] ⇒ [β], r : ↑[β]] =

let x : β = tl(β ; n, c) in c![hd, x, r]
in r![cons]

In the definition of cons, we use our derived syntax for let to get the result

of accumulating c over the tail of the list. This yields a result x of type β which

we then pass on to c along with the head list element hd.

The π-calculus version of the concatenate function is shown below. It is a little

more verbose than the λ-calculus version, since we have to explicitly construct

the partial application of Cons to α (using the local process definition cons).

defConcat [α ; l1 : List α, l2 : List α, r : ↑[List α]] =
def cons[hd : α, tl : List α, r : ↑[List α]] = Cons ![α ; hd, tl, r]
in l1![List α ; l2, cons , r]

5.7 Abstract datatypes

Abstract datatypes are a well-known and important program structuring tech-

nique. In [MP88], Mitchell and Plotkin showed that the typing behaviour of an

abstract datatype is correctly modeled by an existential type. In fact, it also

turns out that it is possible to encode existential types in the polymorphic λ-

calculus [Rey83]. A similar technique is applicable in the polymorphic π-calculus,

enabling us to provide support for programming with abstract datatypes in the

π-calculus.

The following example illustrates how we can package up our booleans and

boolean operations (from Section 2.8) in an abstract datatype. We have already

show in Section 3.5 that True, False, And, Or and Not have simple, monomorphic,

types. We have annotated the bound variables of each process definition to
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indicate these types (where Rep denotes ↑[↑[ ], ↑[ ]], the representation type of

booleans).

(ν bool : BoolPackage)(
defTrue[r : ↑[Rep]] = (ν b)( r![b] | ∗b?[t, f ].t![] )
def False[r : ↑[Rep]] = (ν b)( r![b] | ∗b?[t, f ].f ![] )
defAnd [b1 : Rep, b2 : Rep, r : ↑[Rep]] = if b1 then r![b2] elseFalse ![r]
defOr [b1 : Rep, b2 : Rep, r : ↑[Rep]] = if b1 thenTrue![r] else r![b2]
defNot [b : Rep, r : ↑[Rep]] = if b thenFalse ![r] elseTrue![r]
in bool ![Rep ; True,False ,And ,Or ,Not ]

|
bool?[
Bool ;
True : [ ] ⇒ [Bool ],
False : [ ] ⇒ [Bool ],
And : [Bool ,Bool ] ⇒ [Bool ],
Or : [Bool ,Bool ] ⇒ [Bool ],
Not : [Bool] ⇒ [Bool ]

].P
)

The channel bool is polymorphic: it expects to be sent some representation

type Bool , and a collection of operations on the type Bool. The type of the

channel bool is given below:

BoolPackage .= ↑[
Bool ; The representation of booleans
[ ] ⇒ [Bool ], Implementation of True
[ ] ⇒ [Bool ], Implementation of False
[Bool,Bool ] ⇒ [Bool ], Implementation of And
[Bool,Bool ] ⇒ [Bool ], Implementation of Or
[Bool] ⇒ [Bool ] Implementation of Not

]

Our aim is to hide the representation type Rep inside an abstract datatype,

thereby ensuring that all uses of boolean values outside the abstract datatype

are independent of the actual representation of booleans. Thus, instead of using

our boolean process definitions directly, we define them outside the scope of P ,

and send them to P all together along the channel bool (we assume that bool is a



CHAPTER 5. POLYMORPHISM 72

fresh channel, not used in P ). Operationally, the above process is equivalent to

the process

defTrue[r : ↑[Rep]] = (ν b)( r![b] | ∗b?[t, f ].t![] )
def False [r : ↑[Rep]] = (ν b)( r![b] | ∗b?[t, f ].f ![] )
defAnd [b1 : Rep, b2 : Rep, r : ↑[Rep]] = if b1 then r![b2] else False ![r]
defOr [b1 : Rep, b2 : Rep, r : ↑[Rep]] = if b1 thenTrue![r] else r![b2]
defNot [b : Rep, r : ↑[Rep]] = if b thenFalse ![r] elseTrue![r]
in {Rep/Bool}P

However, the typing behaviour of the two processes is very different. In the

latter process, the boolean representation Rep is visible in the process P . In the

former, the fact that the channel bool is polymorphic in the type Bool forces P

to behave independently of the actual representation of booleans.

When we first presented the encoding of booleans in π-calculus, we said that

booleans are represented using channels which, when sent a pair of channels [t, f ],

will always respond on exactly one of t and f . Until now, nothing in our type

system enforced such a constraint on values of type Bool, since Bool was simply

an abbreviation for the type ↑[↑[ ], ↑[ ]], which makes no constraints on what a

process reading from such a channel does with the values it receives.

However, now that we have packaged up all our boolean operations in an

abstract datatype, we can be sure that all occurrences of values of type Bool in

P must have been constructed via some number of applications of True, False,

And, Or and Not. It is easy to see that True and False produce processes which

satifying our protocol for booleans. Similarly, assuming that their boolean argu-

ments satisfy our protocol, And, Or and Not all produce well-behaved booleans.

Thus, we have proved that all values of type Bool in P satisfy our protocol for

booleans. The above reasoning is quite informal, but even so we believe that it

is still very useful in practice. We leave the issue of how to formalise the above

reasoning as an interesting open problem.

Note that the above reasoning relies crucially on the fact that the only way of

constructing values of type Bool is to use the operations provided by the abstract

datatype. We now see why we changed our typing rule for restriction to force

the type given to a restricted name to be a channel type. If we had not made

this restriction, we could easily write expressions such as (ν x : Bool)P , thereby
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breaking our invariant that every value of type Bool is created by an operation

within the abstract datatype implementation.

Like our encoding of booleans, our channel-based reference cells from Sec-

tion 5.5 use channels in a very controlled manner (the Read and Update opera-

tions preserve the invariant that at most one value is ever stored in the channel

implementing the ref cell, see Section 2.11 for details). Thus, our channel-based

reference cells provide another good example where representation hiding would

be useful. It is certainly possible to hide the representation of ChanRef δ, for

any given δ, using the same technique as we used for booleans. However, a much

better solution would be to make the type constructor ChanRef abstract, and

then provide polymorphic operations which work for any reference cells of type

ChanRef α.

In order to make ChanRef abstract, we need to be able to send it along a chan-

nel (just as we sent Rep along the channel bool). Unfortunately, the type system

presented does not allow the communication of type constructors along channels

(since we do not implement high-order polymorphism). But there is no reason

why we cannot add such a feature. In the Pict language [PT95b] the author, in

collaboration with Benjamin Pierce, has developed a higher-order polymorphic

π-calculus calculus, which enables one to communicate type constructors along

channels, and thereby implement abstract datatypes for type constructors such

as ChanRef and List.

5.8 Type soundness

We need to modify the π-calculus reduction semantics we gave in Section 2.2

to take account of the fact that we now communicate both type and channel

arguments along channels. We need only modify the communication rule, as

shown below. The rest of the reduction rules remain unchanged (the behaviour

of structural congruence is also unchanged, modulo the fact that the restriction

operator now contains an explicit type annotation).
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Definition 5.9 (Polymorphic communication)

(P + c?[α1, . . . , αm ; x1 : δ1, . . . , xn : δn].Q)
| (c![γ1, . . . , γm ; y1, . . . , yn].R + S)

→ {y1, . . . , yn/x1, . . . , xn}{γ1, . . . , γm/α1, . . . , αm}Q | R

An alternative way of specifying the behaviour of polymorphic π-terms would

be to say that a polymorphic π-term P has exactly the same behaviour as its

type erasure, erase(P ), defined as below.

Definition 5.10 (Type erasure)

erase(P | Q) .= erase(P ) | erase(Q)
erase((ν x : δ)P ) .= (ν x)erase(P )

erase(P + Q) .= erase(P ) + erase(Q)
erase(x?[α1, . . . , αm ; y1 : δ1, . . . , yn : δn].P ) .= x?[y1, . . . , yn].erase(P )

erase(x![δ1, . . . , δm ; y1, . . . , yn].P ) .= x![y1, . . . , yn].erase(P )
erase(∗P ) .= ∗erase(P )
erase(0) .= 0

In fact, it is easy to check that the two definitions are equivalent (for well-

typed terms):

Proposition 5.11 (Type erasure)

1) If P → Q then erase(P ) → erase(Q).

2) If ∆ ` P and erase(P ) → R then there exists a Q such that P → Q and
erase(Q) = R.

Proof A simple induction on the structure of P . 2

The above property is useful from the point of view of implementation, since

it means that we need not maintain explicit type information at runtime. It is

worth noting that the corresponding property is not always true of functional

languages (we will have more to say about this in Chapter 6).

We also modify our definition of runtime failure, to take account of possible

type argument mismatches:
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Definition 5.12 (Polymorphic runtime failure)

m 6= m′ or n 6= n′

(P + c?[α1, . . . , αm ; x1 : δ1, . . . , xn : δn].Q)
| (c![γ1, . . . , γm′ ; y1, . . . , yn′ ].R + S)

fails

The properties we can prove about well-typed polymorphic π-terms are es-

sentially the same as those we proved in Section 3.8 for our monomorphic type

system. For example, if x /∈ fv(P ) then we can add a new type binding for x

without invalidating the typing of P :

Lemma 5.13 (Weakening)

If ∆ ` P and x /∈ fv(P ) then ∆, x : δ ` P .

Proof A simple induction on the structure of P . 2

Similarly, if x /∈ fv(P ) then we can remove x’s type binding without invali-

dating the typing of P :

Lemma 5.14 (Strengthening)

If ∆, x : δ ` P and x /∈ fv(P ) then ∆ ` P .

Proof A simple induction on the structure of P . 2

If each xi and yi have the same type in the context ∆ then we can simulta-

neously substitute y1, . . . , yn for x1, . . . , xn while preserving the type of P :

Lemma 5.15 (Substitution)

If ∆ ` P and ∆(xi) = ∆(yi) for 1 ≤ i ≤ n then ∆ ` {y1, . . . , yn/x1, . . . , xn}P .

Proof A simple induction on the structure of P . 2

If P is well-typed in the context ∆, then whenever we simultaneously substi-

tute δ̃ for α̃ in ∆ and P we get a well-typed term.

Lemma 5.16 (Type substitution)

If ∆ ` P then {δ1, . . . , δn/α1, . . . , αn}∆ ` {δ1, . . . , δn/α1, . . . , αn}P .

Proof A simple induction on the structure of P . 2
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It is now easy to prove, using the above lemmas, that types are preserved

under structural congruence.

Lemma 5.17 (Types are preserved under structural congruence)

1) If ∆ ` P and P ≡ Q then ∆ ` Q.

2) If ∆ ` Q and P ≡ Q then ∆ ` P .

Proof Similar to the proof of Lemma 3.11 2

We prove type soundness in exactly the same way as we proved type soundness

for our monomorphic type system. Since only a few rules have been changed, the

proofs of these theorems are very similar to those for our monomorphic type

system.

Theorem 5.18 (Well-typed processes never fail)

If ∆ ` P then not (P fails).

Proof Similar to the proof of Theorem 3.12 2

Theorem 5.19 (Subject reduction)

If ∆ ` P and P → Q then ∆ ` Q.

Proof Similar to the proof of Theorem 3.13 2



Chapter 6

Relating typed λ-terms to typed

π-terms

Our type system is constructed using type-theoretic techniques borrowed from

the λ-calculus, so it is natural to ask if there is a precise relationship between well-

typed λ-terms and well-typed π-terms. Milner [Mil90] has already shown that

we can encode various λ-calculus reduction strategies in the π-calculus. We now

show that the type structure of a λ-term is often preserved by these encodings.

In fact, in some cases, we can even prove that the principal type of a λ-term is

directly related to its encoding’s principal type in the π-calculus.

Perhaps the most interesting feature of these encodings is that (in the presence

of polymorphism) they don’t always work! For example, we find that the Damas-

Milner type system [DM82] does not always agree with our π-calculus type system

as to which types a λ-term may inhabit. This might not be surprising to those

familiar with ML, since it is well-known that Damas-Milner polymorphism is

unsafe in the presence of side-effects [Tof88]. The π-calculus is, by its very nature,

a calculus containing side-effects, so it had better not allow the same kind of

polymorphism as the Damas-Milner type system.

In fact, we find that the soundness of the Damas-Milner type system is closely

connected to the precise evaluation order used (a result which was recently dis-

covered by Leroy [Ler93], though he did not use encodings into the π-calculus).

We find that the call-by-value encoding of λ-calculus does not preserve its Damas-

Milner type structure, but the call-by-name encoding does.

77
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6.1 Encoding λ-terms

The syntax for λ-terms is given below. We let the expression fv(e) denote the

free variables of e (it is defined in the usual way).

Definition 6.1 (λ-calculus syntax)

e ::= x Variable
λx.e Abstraction
e e Application

6.1.1 Call-by-value reduction

Definition 6.2 presents Milner’s encoding of the call-by-value λ-calculus reduction

strategy in the polyadic π-calculus. We assume that the set of λ-calculus variables

is a subset of the set of π-calculus variables (this avoids having to rename λ-

calculus variables when translating λ-terms).

Definition 6.2 (Call-by-value λ-calculus encoding)

[[x]]a .= a![x]
[[λx.e]]a .= (ν f)(a![f ] | ∗f?[x, b].[[e]]b)
[[e e′]]a .= (ν b)(ν c)([[e]]b | b?[f ].([[e′]]c | c?[x].f ![x, a]))

The translation of λ-terms is parameterised on an auxiliary channel a. This

channel is the location where the encoded λ-term returns its result. The encod-

ing introduces auxiliary variables (ranged over by a, b, . . .) which we assume are

always distinct from λ-calculus variables. The encoding has the property that

fv([[e]]a) = fv(e) ∪ {a} for all e.

If e is just a variable, then we just return that variable along a immediately.

If e is a λ-abstraction, we first create a new channel f , which we can think of

as the location of the closure λx.e. We immediately send f along a and start

the replicated process ∗f?[x, b].[[e]]b. This process acts as a compute server: if

we send along f a pair of an argument x and a result channel b, the server will

respond by computing the value of e and returning it on b.

We evaluate an application node e e′ left-to-right: we start e running, wait for

the result, f , to be sent along b, then start e′ running and wait for the result, x,
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to be sent along c. We now have two values: a function f and the its argument

x. We apply f to x by sending the pair [x, a] to f . The function f will send

its result along a once it is finished (recall that the result of the whole term is

supposed to be sent along a).

In the following example, the function λx.x is already a value, so it imme-

diately sends the channel f along b (as well as creating the replicated process

∗f?[x, b].[[x]]b, which implements the function λx.x):

[[(λx.x)y]]a
.= (ν b)(ν c)([[λx.x]]b | b?[f ].([[y]]c | c?[x].f ![x, a]))
.= (ν b)(ν c)((ν f)(b![f ] | ∗f?[x, b].[[x]]b) | b?[f ].([[y]]c | c?[x].f ![x, a]))
→ (ν b)(ν c)(ν f)(∗f?[x, b].[[x]]b | [[y]]c | c?[x].f ![x, a])

The process implementing the application node, now that it has received the

function f along b, evaluates the function argument y. Again, y is already a

value and therefore signals on its result channel c immediately:

.= (ν b)(ν c)(ν f)(∗f?[x, b].[[x]]b | c![y] | c?[x].f ![x, a])
→ (ν b)(ν c)(ν f)(∗f?[x, b].[[x]]b | f ![y, a])

The application node now has two values: f , a channel representing the function

λx.x, and y, the function argument. It therefore sends the pair [y, a] along f ,

causing the replicated process on f to compute the value of λx.x applied to y.

→ (ν b)(ν c)(ν f)(∗f?[x, b].[[x]]b | [[y]]a)

The final result is structurally congruent to the following process

≡ [[y]]a | (ν b)(ν c)(ν f)(∗f?[x, b].[[x]]b)

and it therefore becomes clear that the replicated input on f can execute no

further communications (since no other process has access to the channel f).

Thus, the final result of executing [[(λx.x)y]]a is equivalent to [[y]]a, as expected.
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6.1.2 Encoding let-expressions

The Damas-Milner typing rules [DM82] rely on explicit ‘let’ expressions to indi-

cate where type generalisation is allowable. The expression ‘let x = e1 in e2’ is

intended to have the same behaviour as (λx.e2)e1, but this indirect interpretation

of ‘let’ unfortunately yields a rather complex encoding of ‘let’ in the π-calculus.

We therefore use a direct encoding (which corresponds to the optimisation of ‘let’

that is usually made in compilers for functional languages):

Definition 6.3 (Call-by-value let-expressions)

[[let x = e in e′]]a .= (ν b)([[e]]b | b?[x].[[e′]]a)

We now hint how to prove that the direct encoding of ‘let’ is equivalent to the

indirect one. We let ∼ and ≈ denote the strong and weak congruence respectively

(see [San93c] for definitions of ∼ and ≈).

First, we expand out the definition of [[(λx.e′)e]]:

[[(λx.e′)e]]
.= (ν b)(ν c)([[λx.e′]]b | b?[f ].([[e]]c | c?[x].f ![x, a]))
.= (ν b)(ν c)((ν f)(b![f ] | ∗f?[x, b].[[e′]]b) | b?[f ].([[e]]c | c?[x].f ![x, a]))

We can then execute the communication on the local channel b, yielding the

following process:

≈ (ν b)(ν c)(ν f)(∗f?[x, b].[[e′]]b | [[e]]c | c?[x].f ![x, a])

which can be rewritten, using structural congruence and the fact that (ν b)P ∼ P

if b /∈ fv(P ), as follows:

∼ (ν c)([[e]]c | (ν f)(∗f?[x, b].[[e′]]b | c?[x].f ![x, a]))

The channel f and the replicated input on f can be moved inside the input prefix

c?[x].f ![x, a], since they cannot interact with anything until the input on c has

completed.

∼ (ν c)([[e]]c | c?[x].(ν f)(∗f?[x, b].[[e′]]b | f ![x, a]))

We can then execute the communication on f :
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≈ (ν c)([[e]]c | c?[x].([[e′]]a | (ν f)(∗f?[x, b].[[e′]]b))

yielding a process which is equivalent to [[let x = e in e′]]a, since the channel f

cannot appear in [[e′]]a.

∼ (ν c)([[e]]c | c?[x].[[e′]]a)
.= [[let x = e in e′]]a

6.1.3 Call-by-name reduction

Definition 6.4 presents Ostheimer and Davie’s [OD93] encoding of the call-by-

name λ-calculus. We use Ostheimer and Davie’s encoding, rather than Milner’s,

since it shares much of the structure of the call-by-value encoding we have already

presented and can easily be modified to implement call-by-need evaluation (where

the evaluation of function arguments is shared).

We use the notation 〈〈e〉〉a to denote the call-by-name encoding of e. Just as

in the call-by-value encoding, the auxiliary channel a is used to communicate the

result of evaluating e. The encoding of λx.e is therefore just as before: we create

a new channel f to represent the function λx.e and immediately send f along the

result channel a.

Definition 6.4 (Call-by-name λ-calculus encoding)

〈〈x〉〉a .= x![a]
〈〈λx.e〉〉a .= (ν f)(a![f ] | ∗f?[x, b].〈〈e〉〉b)
〈〈e e′〉〉a .= (ν b)(ν x)(〈〈e〉〉b | b?[f ].(f ![x, a] | ∗x?[c].〈〈e′〉〉c))

The behaviour of an encoded application 〈〈e e′〉〉 is as follows: We start 〈〈e〉〉b
executing and then wait for it to return a function f along b. Now, instead of

forcing the evaluation of the argument e′, as in the call-by-value encoding, we

start a new replicated process on the channel x and apply f to the argument x

and result channel a. If f wishes to get the value associated with its argument

x it must communicate with the replicated process on x. Whenever we send

some result channel c along x, the replicated process ∗x?[c].〈〈e′〉〉c will respond by

starting a new copy of 〈〈e′〉〉c running (which will return its result along c).
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The following example illustrates how the encoding of (λx.y)e is able to reduce

to y without evaluating e: The function λx.y is already a value, so it immedi-

ately sends the channel f along b (as well as creating the replicated process

∗f?[x, b].[[y]]b, which implements the function λx.y):

〈〈(λx.y)e〉〉a
.= (ν b)(ν x)(〈〈λx.y〉〉b | b?[f ].(f ![x, a] | ∗x?[c].〈〈e〉〉c))
.= (ν b)(ν x)((ν f)(b![f ] | ∗f?[x, b].〈〈y〉〉b) | b?[f ].(f ![x, a] | ∗x?[c].〈〈e〉〉c))
→ (ν b)(ν x)(ν f)(∗f?[x, b].〈〈y〉〉b | f ![x, a] | ∗x?[c].〈〈e〉〉c)

The process implementing the application node, now that it has received the

function f along b, starts a replicated process on the channel x and sends the

pair [x, a] to f :

→ (ν b)(ν x)(ν f)(∗f?[x, b].〈〈y〉〉b | 〈〈y〉〉a | ∗x?[c].〈〈e〉〉c)

This has the effect of starting the process 〈〈y〉〉a executing, as required. Note that

b, c and f cannot be equal to y or a (since we assume that all auxiliary variables

are distinct), so the previous process is structurally congruent to

≡ 〈〈y〉〉a | (ν b)(ν x)(ν f)(∗f?[x, b].[[y]]b | ∗x?[c].〈〈e〉〉c)

and it therefore becomes clear that neither the replicated input on f nor the

replicated input on x can participate in further reductions (since no other process

has access to the channels f and x). The above process is therefore equivalent to

the term 〈〈y〉〉a, as required.

We provide an optimised encoding of let-expressions for the call-by-name en-

coding, just as we did for the call-by-value encoding:

Definition 6.5 (Call-by-name let-expressions)

〈〈let x = e in e′〉〉 .= (ν x)(〈〈e′〉〉a | ∗x?[b].〈〈e〉〉b)

6.1.4 Call-by-need reduction

It is easy to refine the previous call-by-name encoding so that it shares the eval-

uation of function arguments, and therefore implements call-by-need reduction

(the correctness of this encoding is proved by Brock and Ostheimer [BO95]). We

just replace the encoding of application in Definition 6.4 with the one below:
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Definition 6.6 (Call-by-need application)

〈〈e e′〉〉a .= (ν b)(ν x)(〈〈e〉〉b | b?[f ].(f ![x, a] | 〈〈x := e′〉〉))
〈〈x := e〉〉 .= x?[c].(ν d)(〈〈e〉〉d | d?[r].(c![r] | ∗x?[c].c![r]))

The above encoding differs in that, rather than starting the replicated process

∗x?[c].〈〈e′〉〉c on the channel x, we start a single input on the channel x. Thus, the

first time we receive a signal on x (i.e. the first time the value of e′ is demanded)

we go ahead and evaluate e′. Once we have received r, the result of evaluating

e′, we return r along c. However, we also start the replicated process ∗x?[c].c![r]

so that any subsequent requests for the value of e′ will be answered directly (by

returning the value r, rather than re-evaluating e′).

Since the encoding of application has changed, the intended semantics of ‘let’

has also changed. It is easy to modify the previous call-by-name encoding of ‘let’

so that it implements call-by-need reduction (the definition of 〈〈x := e〉〉 remains

the same as in Definition 6.6):

Definition 6.7 (Call-by-need let-expressions)

〈〈let x = e in e′〉〉 .= (ν x)(〈〈e′〉〉a | 〈〈x := e〉〉)

6.2 Encoding λ-calculus types

We use the usual notation for λ-calculus types. We assume that the set of λ-

calculus type variables coincides with the set of π-calculus type variables (this

avoids renaming λ-calculus type variables when translating λ-calculus types).

Definition 6.8 (λ-calculus types)

τ ::= α Type variable
τ → τ Function type

A λ-calculus typing context is a (possibly empty) sequence of bindings of the

form x1 : τ1, . . . , xn : τn, where x1, . . . , xn must be distinct variables.
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Definition 6.9 (λ-calculus type contexts) Γ ::= x1 : τ1, . . . , xn : τn

For reference, Definition 6.10 gives the usual typing rules for the simply-typed

λ-calculus. At this stage is matters little whether we use a Church-style or a

Curry-style presentation of the simply-typed λ-calculus. However, we will soon

see that there is a significant difference when we come to consider polymorphic

type systems.

Definition 6.10 (λ-calculus typing rules)

Γ(x) = τ

Γ ` x : τ

Γ, x : τ ′ ` e : τ

Γ ` λx.e : τ ′ → τ

Γ ` e : τ ′ → τ Γ ` e′ : τ ′

Γ ` e e′ : τ

6.2.1 Call-by-value encoding

In the following definition we give an encoding of λ-calculus types as π-calculus

types, written [[τ ]]. The encoding of function types matches our representation of

call-by-value functions in the π-calculus: a function is represented as a channel

along which we send a pair of a value of the argument type τ and a channel

capable of carrying a result of type τ ′.

Definition 6.11 (Type encoding)

[[α]] .= α

[[τ → τ ′]] .= ↑[[[τ ]],↑[[τ ′]]]

(Our encoding introduces a lot of unary channel types, so we allow types of the

form ↑[δ] to be written as ↑δ.) We extend our encoding to contexts, applying our

encoding of types in a point-wise fashion.

Definition 6.12 (Context encoding)

[[x1 : τ1, . . . , xn : τn]]
.= x1 : [[τ1]], . . . , xn : [[τn]]
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The following proposition proves that the type structure of the λ-calculus is

preserved by the call-by-value encoding into the π-calculus. Note that the type

of the auxiliary channel a is ↑[[τ ]], since a is used to return the result of e, which

we know has type τ .

Proposition 6.13 (Preservation of λ-calculus type structure)

If Γ ` e : τ then [[Γ]], a : ↑[[τ ]] ` [[e]]a.

Proof We use induction on the structure of e.

case Γ ` x : τ where Γ(x) = τ

We have that [[Γ]](x) = [[τ ]] and therefore [[Γ]], a : ↑[[τ ]] ` a![x] as required.

case Γ ` λx.e : τ ′ → τ where Γ, x : τ ′ ` e : τ

We have, using induction, that [[Γ, x : τ ′]], b : ↑[[τ ]] ` [[e]]b. Therefore, using
weakening (Lemma 3.8) we have that [[Γ]], f : ↑[[[τ ′]], ↑[[τ ]]], x : [[τ ′]], b : ↑[[τ ]] `
[[e]]b. Now, using the Input and Repl rules we have that [[Γ]], f : ↑[[[τ ′]], ↑[[τ ]]] `
∗f?[x, b].[[e]]b. Using the Output rule we have that [[Γ]], a : ↑[[τ ′ → τ ]], f :
↑[[[τ ′]], ↑[[τ ]]] ` a![f ], since [[τ ′ → τ ]] .= ↑[[[τ ′]], ↑[[τ ]]]. Thus, using weakening
and the Prl and Res rules we have that [[Γ]], a : ↑[[τ ′ → τ ]] ` (ν f)(a![f ] |
∗f?[x, b].[[e]]b) as required.

case Γ ` e e′ : τ where Γ ` e : τ ′ → τ and Γ ` e′ : τ ′

We have, using induction, that [[Γ]], b : ↑[[τ ′ → τ ]] ` [[e]]b and [[Γ]], d : ↑[[τ ′]] `
[[e′]]d. Clearly, the inputs on b and d will give f type [[τ ′ → τ ]] .= ↑[[[τ ′]], ↑[[τ ]]]
and x type [[τ ′]]. Thus, the output f ![x, a] is well-formed if a has type ↑[[τ ′]],
as required. 2

The obvious question we can now ask is whether our π-calculus typing disci-

pline admits any types for [[e]], other than those allowed by the λ-calculus type

discipline. The following result proves that, although the translation of a λ-term

[[e]]a may be assigned a type which does not correspond to a valid typing of e, any

type assigned to [[e]]a contains at least as much structure as some valid λ-calculus

typing for e.

To see why not all typings for encoded λ-terms are the image of some valid

λ-calculus typing consider the λ-term λx.x. There is no type τ such that [[τ ]] =

↑[↑[ ], ↑(↑[ ])], but it is easy to check that a : ↑(↑[↑[ ], ↑(↑[ ])]) ` [[λx.x]]a. Thus,

there are certainly π-calculus types for [[λx.x]]a which do not correspond to the
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encoding of a λ-calculus type for λx.x. However, it is the case that the afore-

mentioned π-calculus type for [[λx.x]]a is a substitution instance of the encoding

of α → α, which certainly is a type for λx.x.

Thus, rather than trying to prove that every π-calculus typing for [[e]]a is the

image of some valid λ-calculus typing for e, we prove that every π-calculus typing

for [[e]]a is a substitution instance of a valid λ-calculus typing for e:

Proposition 6.14 (π-calculus typings reflect λ-calculus type structure)

If ∆, a : δ ` [[e]]a then there exist Γ, τ and σ such that Γ ` e : τ , σ[[Γ]] = ∆ and
σ↑[[τ ]] = δ.

Proof We use induction on the structure of e.

case ∆, a : δ ` [[x]]a .= a![x]

It must be the case that ∆ = y1 : δ1, . . . , x : δx, . . . , yn : δn and δ = ↑δx. The
context Γ = y1 : α1, . . . , x : αx, . . . , yn : αn, type τ = αx and substitution
σ = {α1 7→ δ1, . . . , αx 7→ δx, . . . , αn 7→ δn} give the required result, since
Γ ` x : αx, σΓ = ∆ and σ↑[[αx]] = ↑δx = δ as required.

case ∆, a : δ ` [[λx.e]]a .= (ν f)(a![f ] | ∗f?[x, b].[[e]]b)

It must be the case that δ = ↑(↑[δx, δb]) where ∆, a : δ, f : ↑[δx, δb], x : δx, b :
δb ` [[e]]b. However, using strengthening (Lemma 3.9), we have that ∆, x :
δx, b : δb ` [[e]]b and we can use induction to show that there exist Γ, τx, τ

and σ such that Γ, x : τx ` e : τ , σ[[Γ, x : τx]] = ∆, x : δx and σ↑[[τ ]] = δb.
Therefore, using the rule for abstraction we have that Γ ` λx.e : τx → τ where
σ[[Γ]] = ∆ and σ↑[[τx → τ ]] .= σ↑(↑[[[τx]], ↑[[τ ]]]) = ↑(↑[δx, δb]) = δ as required.

case ∆, a : δ ` [[e1 e2]]a
.= (ν b)(ν c)([[e1]]b | b?[f ].([[e2]]c | c?[x].f ![x, a]))

Using strengthening (Lemma 3.9) to eliminate any unnecessary auxiliary vari-
ables, we have that ∆, b : δb ` [[e1]]b and ∆, c : δc ` [[e2]]c for some δb and δc.
Therefore, using induction, we have that there exist Γ1, τ1 and σ1 such that
Γ1 ` e1 : τ1, σ1[[Γ1]] = ∆ and σ1↑[[τ1]] = δb, and there exist Γ2, τ2 and σ2

such that Γ2 ` e2 : τ2, σ2[[Γ2]] = ∆ and σ2↑[[τ2]] = δc. However, it must also
be the case that δb = ↑(↑[σ2[[τ2]], δ]) = ↑σ1[[τ1]], because of the communica-
tions along the auxiliary channels b, c and f . It is easy to check that, since
↑[σ2[[τ2]], δ] = σ1[[τ1]] and σ1[[Γ1]] = ∆ = σ2[[Γ2]], there exist ρ and σ such that
ρ(τ2 → α) = ρτ1, σ[[ρτ1]] = σ1[[τ1]], σ[[ρ(τ2 → α)]] = ↑[σ2[[τ2]], δ], ρΓ1 = ρΓ2 and
σ[[ρΓ1]] = ∆ = σ[[ρ′Γ2]]. Thus, since typings are preserved under substitution
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in the λ-calculus, we have that ρΓ1 ` e1 : ρτ1 and ρΓ2 ` e2 : ρτ2, where
ρτ1 = ρτ2 → τ for some τ . We therefore have that ρΓ1 ` e1 e2 : τ , σ[[ρΓ1]] = ∆
and σ↑[[τ ]] = δ as required. 2

The previous two propositions are enough to prove that the principal type of

e in the simply-typed λ-calculus coincides with the principal type of [[e]] in the

simply-typed π-calculus:

Theorem 6.15 (Relating principal types)

1) If Γ ` e : τ is a principal typing for e, then [[Γ]], a : ↑[[τ ]] ` [[e]]a is a principal
typing for [[e]]a.

2) If ∆, a : δ ` [[e]]a is a principal typing for [[e]] then there exists a principal
typing Γ ` e : τ for e such that [[Γ]] = ∆ and ↑[[τ ]] = δ.

Proof Part 1. Suppose that Γ ` e : τ is a principal typing for e. We have,
using Proposition 6.13, that [[Γ]], a : ↑[[τ ]] ` [[e]]a. This typing must be principal
for [[e]]a, since Proposition 6.14 tells us that every π-calculus typing for [[e]]a is a
substitution instance of some λ-calculus typing for e (and we know any λ-calculus
typing for e must be a substitution instance of Γ ` e : τ ).

Part 2. Suppose that ∆, a : δ ` [[e]]a is a principal typing for [[e]]a. We have,
using Proposition 6.14, that there exist Γ, τ and σ such that Γ ` e : τ , σ[[Γ]] = ∆
and σ↑[[τ ]] = δ. This typing must be principal for e, since Proposition 6.13 tells
us that every λ-calculus typing correspond directly to a π-calculus typing for [[e]]a
(and we know that any π-calculus typing for [[e]]a must be a substitution instance
of ∆, a : δ ` [[e]]a). 2

6.2.2 Call-by-name encoding

We now prove that Ostheimer and Davie’s encoding of the call-by-name λ-calculus

preserves the type structure of λ-terms. The encoding of types is given in Defini-

tion 6.16. The encoding of function types reflects the fact that function arguments

are not values, but are channels which we can use to trigger the evaluation of the

given argument.

Definition 6.16 (Type encoding)

〈〈α〉〉 .= α

〈〈τ → τ ′〉〉 .= ↑[↑↑〈〈τ〉〉, ↑〈〈τ ′〉〉]



CHAPTER 6. RELATING TYPED λ-TERMS TO TYPED π-TERMS 88

As before, we extend our encoding to contexts. However, unlike the call-by-

value encoding of contexts, we do not apply our encoding of types in a point-

wise fashion, since each free variable xi in an encoded term no longer ranges

over values, but over channels which we can use to trigger the evaluation of the

expression bound to xi.

Definition 6.17 (Context encoding)

〈〈x1 : τ1, . . . , xn : τn〉〉 .= x1 : ↑↑〈〈τ1〉〉, . . . , xn : ↑↑〈〈τn〉〉

The following proposition proves that the type structure of the λ-calculus is

preserved by the call-by-name encoding into the π-calculus. (The same proposi-

tion holds if we replace the call-by-name encoding of application with the call-

by-need encoding.)

Proposition 6.18 (Preservation of λ-calculus type structure)

If Γ ` e : τ then 〈〈Γ〉〉, a : ↑〈〈τ〉〉 ` 〈〈e〉〉a.

Proof Similar to proof of Proposition 6.13. 2

As before, it is not the case that every π-calculus typing of 〈〈e〉〉a is equal to

the encoding of some λ-calculus typing for e. In Proposition 6.14 we got around

this problem by proving that every π-calculus typing is a substitution instance of

some encoded λ-calculus typing. Unfortunately, this trick does not work for the

call-by-name encoding. For example, since the variable x is not a free variable of

the expression λy.y, it may be assigned any type by our π-calculus type system:

x : δ, a : ↑〈〈β → β〉〉 ` 〈〈λy.y〉〉a

In the above example, the type δ is unconstrained, but our encoding of con-

texts requires that every variable bound in the context has a type of the form

↑↑〈〈τ〉〉. In fact, the type δ may be more general that ↑↑〈〈τ〉〉, and we have a

counter-example to the call-by-name equivalent of Theorem 6.15.

The above problem with unused variables may in turn cause λ-abstractions

to have types which are too general. In the following example, the type δ, which

corresponds to the type of the bound variable y, is unconstrained by our π-

calculus type system (and may therefore cause the type of a to fail to be an

instance of a λ-calculus type):
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x : ↑↑α, a : ↑(↑[δ, ↑α]) ` 〈〈λy.x〉〉a

We therefore prove a slightly weaker result about π-calculus typings of call-

by-name encoded terms. We prove that if all encoded λ-calculus variables are

constrained to have a type which is the encoding of some λ-calculus type then

the π-calculus typing for 〈〈e〉〉a is equal to some λ-calculus typing for e. Note that

the previous condition on variables is a global one, it is not sufficient to constrain

just the top-level free variables of an encoded term.

Proposition 6.19 (π-calculus typings reflect λ-calculus type structure)

If all λ-calculus variables in 〈〈e〉〉a are assigned a type of the form ↑↑〈〈τ〉〉, for
some τ , then 〈〈Γ〉〉, a : δ ` 〈〈e〉〉a implies there exists a τ such that Γ ` e : τ and
↑〈〈τ〉〉 = δ.

Proof A simple induction on the structure of e. 2

Note that Propositions 6.18 and 6.19 remain true if we replace the call-by-

name encoding of application with the call-by-need encoding. Thus, in the case

of simply-typed λ-calculus, there is no distinguishable difference between the π-

calculus typing of the call-by-name and call-by-need encodings.

6.3 Encoding recursive types

We can extend both our call-by-value and call-by-name encodings of λ-calculus

types to encompass recursive types. We conjecture that results similar to those

in the previous section can be proved when we have recursive types in both the

λ-calculus and the π-calculus.

Definition 6.20 (Encoding recursive types)

[[µα.τ ]] .= µα.[[τ ]] 〈〈µα.τ〉〉 .= µα.〈〈τ〉〉

It is well-known that every λ-term inhabits the type µα.(α → α), but it is in-

teresting to note that [[µα.(α → α)]] .= µα.↑[α, ↑α], since in [Mil91a] Milner shows

that every call-by-value λ-term inhabits the type µα.↑[α, ↑α] (we have rewritten
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Milner’s type in our notation). In fact, µα.(α → α) is the least informative recur-

sive type we can give to a λ-term: the previous propositions prove that the type

structure of an encoded λ-term in fact contains a much more accurate reflection

of its original λ-calculus type structure.

6.4 Encoding polymorphic λ-terms

We first consider how to encode the explicitly-typed polymorphic λ-calculus of

Girard and Reynolds [Gir72, Rey74], since having explicit term syntax for type

abstraction and type application clarifies some of the semantic issues we encounter

when encoding polymorphic λ-terms in the π-calculus. The syntax for terms is

as follows:

Definition 6.21 (Polymorphic λ-terms)

e ::= x Variable
λx:τ.e Abstraction
e e Application
Λα.e Type abstraction
e [τ ] Type application

The syntax for polymorphic types is given below. Unlike the Damas-Milner

type system, there are no restrictions on the positions where a polymorphic type

may occur.

Definition 6.22 (Polymorphic types)

τ ::= α Type variable
τ → τ Function type
∀α.τ Polymorphic type

The polymorphic typing rules for variables and application are just the same

as in the simply-typed λ-calculus. The typing rule for λ-abstraction is slightly

different, since we now how an explicit type annotation on the bound variable x.

We also have additional rules for type abstraction and type application:
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Definition 6.23 (Polymorphic typing rules)

Γ(x) = τ

Γ ` x : τ

Γ, x : τ ` e : τ ′

Γ ` λx:τ.e : τ → τ ′
Γ ` e : τ ′ Γ ` e′ : τ ′

Γ ` e e′ : τ

Γ ` e : τ

Γ ` Λα.e : ∀α.τ
α /∈ Γ

Γ ` e : ∀α.τ ′

Γ ` e [τ ] : {τ/α}τ ′

The call-by-value and call-by-name encodings of variables, λ-abstraction and

application remain as before, except that we now translate the explicit type

annotations on λ-bound variables to explicit π-calculus type annotations (the

call-by-need encoding can be similarly modified):

Definition 6.24 (Encoding explicitly-typed λ-terms)

[[x]]a .= a![x]
[[λx:τ.e]]a .= (ν f)(a![f ] | ∗f?[x : [[τ ]], b].[[e]]b)

[[e e′]]a .= (ν b)(ν c)([[e]]b | b?[f ].([[e′]]c | c?[x].f ![x, a]))

〈〈x〉〉a .= x![a]
〈〈λx:τ.e〉〉a .= (ν f)(a![f ] | ∗f?[x : ↑↑〈〈τ〉〉, b].〈〈e〉〉b)

〈〈e e′〉〉a .= (ν b)(ν x)(〈〈e〉〉b | b?[f ].(f ![x, a] | ∗x?[c].〈〈e′〉〉c))

The reduction behaviour of type applications is the same for call-by-value,

call-by-name and call-by-need evaluation (since the type argument in a type ap-

plication never needs to be evaluated). The following encodings of type abstrac-

tion and type application ensure that (Λα.e) [τ ] reduces to {τ/α}e, as required.

Note that the call-by-value and call-by-name encodings only differ in the way

they encode the explicit type argument τ (the call-by-need encoding is identical

to the call-by-name encoding).

Definition 6.25 (Encoding type abstraction and application)

[[Λα.e]]a .= (ν f)(a![f ] | ∗f?[α; b].[[e]]b)
〈〈Λα.e〉〉a .= (ν f)(a![f ] | ∗f?[α; b].〈〈e〉〉b)

[[e [τ ]]]a .= (ν b)([[e]]b | b?[f ].f ![[[τ ]]; a])
〈〈e [τ ]〉〉a .= (ν b)(〈〈e〉〉b | b?[f ].f ![〈〈τ〉〉; a])
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The encoding of type abstraction is similar to the encoding of λ-abstraction,

except that the abstracted variable is now a type variable. Thus, when we send

a pair of a type τ and a result channel b to f , the encoding returns along b the

value of e, instantiated at the type τ . The encoding of type application is similar

to the encoding of application in that we evaluate the expression e, wait for it to

return some type function f , and then apply f to the type argument τ . There is

no need to evaluate the type argument τ itself. For example,

[[(Λα.e) [τ ]]]
.= (ν b)([[Λα.e]]b | b?[f ].f ![[[τ ]]; a])
.= (ν b)((ν f)(b![f ] | ∗f?[α; c].[[e]]c) | b?[f ].f ![[[τ ]];a])

→ (ν b)(ν f)(∗f?[α; c].[[e]]c | f ![[[τ ]];a])
→ (ν b)(ν f)(∗f?[α; c].[[e]]c | {[[τ ]]/α}[[e]]a)

The above process is equivalent to {[[τ ]]/α}[[e]]a, since the channels f and b are

unused in {[[τ ]]/α}[[e]]a. It is then easy to check that {[[τ ]]/α}[[e]]a = [[{τ/α}e]]a,

as required.

Now that we have seen the encodings of type abstraction and type application,

we can see how we should encode the type ∀α.τ in the π-calculus, since in all

encodings a value of type ∀α.τ is represented as a channel along which we can

send a pair of a type and a result channel (the polymorphic term will then respond

by returning an appropriately instantiated value along the result channel). (The

encodings of function types and type variables are unchanged, but we reproduce

them here for ease of reference.)

Definition 6.26 (Encoding polymorphic types)

[[α]] .= α 〈〈α〉〉 .= α

[[τ → τ ′]] .= ↑[[[τ ]], ↑[[τ ′]]] 〈〈τ → τ ′〉〉 .= ↑[↑↑〈〈τ〉〉, ↑〈〈τ ′〉〉]
[[∀α.τ ]] .= ↑[α; ↑[[τ ]]] 〈〈∀α.τ〉〉 .= ↑[α; ↑〈〈τ〉〉]

Strictly speaking, the above encoding translates an explicitly-typed λ-term

into a partially-typed π-term (since, for example, we do not give explicit types

for f and b in the encoding of λ-abstraction). However, it turns out that all the

missing type information is uniquely determined by the explicit type information

already present in the encoded term. This is not surprising, since the missing
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π-calculus type information is completely determined by the result type of the

λ-term, and it is well-known that the λ-terms we are encoding have unique result

types (if they are typable).

We write P w Q whenever the type erasures of P and Q are equal and P

contains more explicit type information than Q. The following proposition proves

that if e is typable then there exists a fully-typed version of [[e]]a which is typable

in the π-calculus:

Proposition 6.27 (Preservation of λ-calculus type structure)

If Γ ` e : τ then there exists a P such that [[Γ]], a : ↑[[τ ]] ` P and P w [[e]]a.

Proof We use induction on the structure of e. Most cases are similar to those
in the proof of Proposition 6.13, so we only show the new cases.

case Γ ` Λα.e : ∀α.τ where Γ ` e : τ and α /∈ Γ

We have, by induction, that there exists a P w [[e]]b such that [[Γ]], b : ↑[[τ ]] ` P .
Thus, using the Input rule [[Γ]], f : ↑[α; ↑[[τ ]]] ` f?[α; b : ↑[[τ ]]].P since α /∈
fv([[Γ]]). It is now easy to prove that [[Γ]], a : ↑[[∀α.τ ]] ` (ν f : [[∀α.τ ]])(a![f ] |
∗f?[α; b : ↑[[τ ]]].P ) as required.

case Γ ` e [τ ] : {τ/α}τ ′ where Γ ` e : ∀α.τ ′

We have, by induction, that there exists a P w [[e]]b where [[Γ]], b : ↑[[∀α.τ ′]] `
P . Now it is easy to see that [[Γ]], b : ↑(↑[α; ↑[[τ ′]]]), a : ↑({[[τ ]]/α}[[τ ′]]) `
b?[f : [[∀α.τ ′]]].f ![[[τ ]];a] and the result follows since [[∀α.τ ′]] .= ↑[α; ↑[[τ ′]]] and
[[{τ/α}τ ′]] = {[[τ ]]/α}[[τ ′]]. 2

The next proposition proves that if any fully-typed version of [[e]]a is typable

in the π-calculus then e is typable in the λ-calculus. Note that, unlike Proposi-

tion 6.19, we need not make a global restriction on the types assigned to λ-calculus

variables, since the explicit type annotations present in an encoded term already

make the same restriction.

Proposition 6.28 (π-calculus typings reflect λ-calculus type structure)

If there exists a P such that P w [[e]]a and [[Γ]], a : δ ` P then there exists a τ

such that δ = ↑[[τ ]] and Γ ` e : τ .

Proof We use induction on the structure of e. We omit the cases for variables
and application they are straightforward.
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case [[Γ]], a : δ ` [[λx:τ.e]]a .= (ν f)(a![f ] | ∗f?[x : [[τ ]]; b].[[e]]b)

It must be the case that [[Γ]], x : [[τ ]], b : δ′ ` P for some P w [[e]]b and δ′ (we
can ignore the bindings for a and f since they do not occur in [[e]]b). Hence,
using induction, we have that Γ, x : τ ` e : τ ′ for some τ ′ such that δ′ = ↑[[τ ′]].
We therefore have that the type of f is [[τ → τ ′]] and the result follows, since
δ = ↑[[τ → τ ′]].

case [[Γ]], a : δ ` [[Λα.e]]a .= (ν f)(a![f ] | ∗f?[α; b].[[e]]b)

It must be the case that [[Γ]], b : δ′ ` P for some P w [[e]]b and δ′ (we can
ignore the bindings for a and f since they do not occur in [[e]]b). Hence,
using induction, we have that Γ ` e : τ ′ for some τ ′ such that δ′ = ↑[[τ ′]]. It
must be the case that α /∈ fv([[Γ]]) and hence also α /∈ fv(Γ). Thus, we have
Γ ` Λα.e : ∀α.τ ′ and δ = ↑↑[α; ↑[[τ ′]]] = ↑[[∀α.τ ′]] as required.

case [[Γ]], a : δ ` [[e [τ ]]]a .= (ν b)([[e]]b | b?[f ].f ![[[τ ]];a])

It must be the case [[Γ]], b : δ′ ` P for some P w [[e]]b so, using induction,
there exists a τ ′ such that Γ ` e : τ ′ and δ′ = ↑[[τ ′]]. Now, it must be the
case that δ′ = ↑↑[α; δ′′] for some δ′′ such that {[[τ ]]/α}δ′′ = δ. Hence it must
be the case that τ ′ = ∀α.τ ′′. Thus, we have that Γ ` e [τ ] : {τ/α}τ ′′ and
δ = {[[τ ]]/α}↑[[τ ′′]] = ↑[[{τ/α}τ ′′]] as required. 2

Similar results hold for the call-by-name and call-by-need encodings of poly-

morphic λ-terms since the encoding of type abstraction and application is essen-

tially the same as above:

Proposition 6.29 (Preservation of λ-calculus type structure)

If Γ ` e : τ then there exists a P such that 〈〈Γ〉〉, a : ↑〈〈τ〉〉 ` P and P w 〈〈e〉〉a.

Proof Similar to the proof of Proposition 6.27. 2

Proposition 6.30 (π-calculus typings reflect λ-calculus type structure)

If there exists a P such that P w 〈〈e〉〉a and 〈〈Γ〉〉, a : δ ` P then there exists a τ

such that δ = ↑〈〈τ〉〉 and Γ ` e : τ .

Proof Similar to the proof of Proposition 6.28. 2

Note that the interpretation of λ-terms given here depends crucially on the

fact that type abstraction and type application have real computational content.
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Each instance of a polymorphic value Λα.e is completely separate from all other

instances (since each time we instantiate α with some type τ our encoding recom-

putes the value of e). We will see in the next section that whenever our encoding

fails to have this property we run into trouble encoding polymorphic types.

6.5 Damas-Milner polymorphism

The Damas-Milner type system [DM82] relies on let-expressions to indicate where

type generalisation is allowable, rather than using explicit type abstraction and

type application constructs.

The types used in the Damas-Milner type system have the same syntax as

those used in simply-typed λ-calculus, but typing contexts are generalised so

that variables may be bound to type schemes of the form ∀α̃.τ . (We write x : τ

whenever the variable x is bound to a type scheme which has no type quantifiers.)

Definition 6.31 (Damas-Milner type contexts)

Γ ::= x1 : ∀α̃1.τ1, . . . , xn : ∀α̃n.τn Type context

The following typing rules implement the Damas-Milner type system (the

rules for abstraction and application are the same as for the simply-typed λ-

calculus).

Definition 6.32 (Damas-Milner typing rules)

Γ, x : τ ′ ` e : τ

Γ ` λx.e : τ ′ → τ

Γ ` e : τ ′ → τ Γ ` e′ : τ ′

Γ ` e e′ : τ

Γ(x) = ∀α̃.τ

Γ ` x : {τ̃ /α̃}τ

Γ ` e : τ Γ, x : ∀α̃.τ ` e′ : τ ′

Γ ` let x = e in e′ : τ ′
α̃ /∈ Γ

6.5.1 Call-by-name evaluation

The call-by-name encoding of let-expressions recomputes e every time the value

of x is requested (the process expression ∗x?[b].〈〈e〉〉b responds to each request for
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the value of x by starting a new copy of [[e]]b running, which will eventually send

its result along b):

〈〈let x = e in e′〉〉 .= (ν x)(〈〈e′〉〉a | ∗x?[b].〈〈e〉〉b)

In the polymorphic π-calculus we can extend this interaction so that, instead

of just waiting for a result channel b to be sent along x, we wait for a tuple of

type arguments α̃ to be sent along x. We can then respond by recomputing the

value of e, instantiated at the given types:

〈〈let x = e in e′〉〉 .= (ν x)(〈〈e′〉〉a | ∗x?[α̃ ; b].〈〈e〉〉b)

This means that each use of x (i.e. each occurrence of the variable x in the

expression e′) can now specify that x should be instantiated with some given

types (this neatly matches the Damas-Milner typing rule for variables). Thus,

just as in the previous section, we find that type instantiation is closely coupled

to recomputation, since each time we instantiate x we start a new copy of e

executing.

We now show formally how one can encode the Damas-Milner type system in

the polymorphic π-calculus (assuming a call-by-name reduction strategy). The

encoding of types remains as before (cf. Definition 6.16), but we generalise our

encoding of contexts to take account of the fact that variables may now be bound

to type schemes:

Definition 6.33 (Context encoding)

〈〈x1 : ∀α̃1.τ1, . . . , xn : ∀α̃n.τn〉〉 .= x1 : ↑[α̃1; ↑〈〈τ1〉〉], . . . , xn : ↑[α̃n; ↑〈〈τn〉〉]

The encoding of ∀α̃i.τi as ↑[α̃i; ↑〈〈τi〉〉] captures the fact that we access each

variable xi by sending a tuple of types and a result channel along xi. The process

implementing xi responds by instantiating the expression bound to xi with the

given types, evaluating the expression, and returning the final result along the

given result channel. Note that in the case where xi is monomorphic (i.e. α̃i

is the empty sequence) we get exactly the same encoding as we had before (cf.

Definition 6.17).

The following proposition proves that λ-terms which are typable in the Damas-

Milner type system can be encoded as well-typed polymorphic π-terms.
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Proposition 6.34 (Preservation of λ-calculus type structure)

If Γ ` e : τ then there exists a P such that 〈〈Γ〉〉, a : ↑〈〈τ〉〉 ` P and P w 〈〈e〉〉a.

Proof We use induction on the structure of e. We omit the cases for abstraction
and application, since they are similar to those in the proof of Proposition 6.13.

case Γ ` x : {τ̃/α̃} where Γ(x) = ∀α̃.τ

We have that 〈〈Γ〉〉(x) = ↑[α̃; ↑〈〈τ〉〉]. Thus, since {〈〈τ̃ 〉〉/α̃}〈〈τ〉〉 = 〈〈{τ̃ /α̃}τ〉〉
we have that 〈〈Γ〉〉, a : ↑〈〈{τ̃ /α̃}τ〉〉 ` x![〈〈τ̃〉〉 ; a] as required.

case Γ ` let x = e in e′ : τ ′ where Γ ` e : τ , Γ, x : ∀α̃.τ ` e′ : τ ′ and α̃ /∈ Γ

Using induction twice we have that there exist P and Q such that 〈〈Γ〉〉, b :
↑〈〈τ〉〉 ` P , P w 〈〈e〉〉b, 〈〈Γ, x : ∀α̃.τ〉〉, a : ↑〈〈τ ′〉〉 ` Q and Q w 〈〈e′〉〉a. It is then
easy to see that the input x?[α̃ ; b : ↑〈〈τ〉〉].P is well-formed, and the result
follows. 2

Leroy [Ler93] has already shown that by taking a call-by-name semantics,

the Damas-Milner type system can be proved sound for a language containing

imperative features such as reference cells or exceptions (it is well known that

the Damas-Milner type system is unsound if such a language has a call-by-value

reduction semantics [Tof88]). (Harper and Lillibridge [HL92] consider similar

issues in their study of the typing properties of CPS conversion for an extension

of Fω with control operators.) The π-calculus can encode stateful computation, so

the fact that call-by-name terms are well-typed in the π-calculus confirms Leroy’s

observation. Note that since only let-bound expressions may be polymorphic, the

above proposition remains true even if we evaluate function arguments strictly.

Much as before, we can prove that if all λ-calculus variables in 〈〈e〉〉a are

assigned a type of the form ↑[α̃; ↑〈〈τ〉〉], for some α̃ and τ , then every π-calculus

typing of 〈〈e〉〉a is equal to the encoding of some Damas-Milner typing for e.

Proposition 6.35 (π-calculus typings reflect λ-calculus type structure)

If P w 〈〈e〉〉a and all λ-calculus variables in P are assigned a type of the form
↑[α̃; ↑〈〈τ〉〉], for some α̃ and τ , then 〈〈Γ〉〉, a : δ ` P implies there exists a τ such
that Γ ` e : τ and ↑〈〈τ〉〉 = δ.

Proof A simple induction on the structure of e. 2
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6.5.2 Call-by-value evaluation

If we choose to evaluate let-expressions using a call-by-value semantics, we run

into trouble encoding some terms which are typable in the Damas-Milner type

system. The problem stems from the fact that the encoding of the expression e in

the call-by-value encoding of ‘let’ (reproduced below) is evaluated exactly once,

rather than every time the value x is used, as is the case in the call-by-name

encoding.

[[let x = e in e′]]a .= (ν b)([[e]]b | b?[x].[[e′]]a)

The Damas-Milner typing rule for ‘let’ allows the type of x to be generalised

(assuming that the types we are generalising do not occur free in the type envi-

ronment). However, our π-calculus typing rules do not allow the type of x (in the

encoded let-expression) to be generalised (for reasons we explained in Chapter 5).

The Damas-Milner type system is sound for a call-by-value λ-calculus, so

why don’t our polymorphic π-calculus typing rules allow x to be polymorphic?

The problem stems from the fact that π-calculus processes may interact with

each other in more ways that pure functions may interact with each other in the

call-by-value λ-calculus. The typing rules for π-calculus must therefore be more

conservative about where types may be generalised. There is nothing in our type

system which identifies ‘better behaved’ processes (such as encoded λ-terms), so

there is no easy way to allow the type of x to be generalised.



Chapter 7

An abstract machine for

π-calculus

If the π-calculus could be implemented efficiently, it would clearly serve as a

flexible intermediate language for compilers of concurrent languages (in view of

the diverse high-level constructs which have been shown to be encodable in the

π-calculus). For example, the π-calculus can encode higher-order communication

(the communication of processes along channels) [San93a, San93b], structured

datatypes [Mil91a], mutable data, concurrent objects [Wal91], and even the λ-

calculus [Mil90]. We now describe an abstract machine for the π-calculus which

is simple and yet realistic. In fact, in Chapters 8 and 9 we present a compilation

of π-calculus to C which is directly based on the abstract machine presented here.

We are primarily interested in an abstract machine which is suitable for im-

plementation on a uniprocessor, where concurrent execution is simulated by in-

terleaving the execution of processes. Distributed implementation poses further

challenges, such as distributed garbage collection, which are outside the scope of

this dissertation.

The reduction rules for our abstract machine are deterministic. At first sight

this may seem surprising, since the π-calculus is a non-deterministic language.

However, if we intend to use the π-calculus as a programming language, there is

no need to simulate non-determinism, since such behaviour will naturally arise

because of time-dependent interactions between the abstract machine and the

operating system (for example, during input/output or interrupt handling). It is

99
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much more important for a π-calculus abstract machine to provide fair execution,

guaranteeing that runnable processes will eventually be executed, and that pro-

cesses waiting to communicate on a channel will eventually succeed (if sufficient

communication partners become available).

Our first abstract machine for the π-calculus introduces the basic mechanisms

for process creation, channel creation and communication. We prove that the re-

ductions of our abstract machine correspond to valid π-calculus reductions (we

would not expect the converse property to hold, since our abstract machine is

deterministic, while π-calculus reduction is non-deterministic). We then make a

number of refinements to both our abstract machine and our source language. In

particular, we record variable bindings explicitly in environments, rather than us-

ing a substitution operation, so that the basic operations of our abstract machine

are simple and efficient enough to be implemented directly.

7.1 Source language

We make two simplifications to the polyadic π-calculus before attempting to

formulate an abstract machine for it. First, we restrict the replication operator

∗P so that P can only be an input process. This restriction makes it significantly

simpler to implement replication, since it becomes easy to detect when we need

to create a new copy of the replicated process. We can easily illustrate the effect

of this simplification on the π-calculus semantics from Section 2.2: we remove

the structural congruence rule ∗P ≡ P | ∗P and add the following new reduction

rule (which uses a neater syntax for replicated input, replacing ∗(c?[x̃].P ) with

c?∗[x̃].P ).

c?∗[x̃].P | c![ỹ].Q → c?∗[x̃].P | {ỹ/x̃}P | Q

It is now clear that we only need to create a new copy of P at the instant at

which the replicated input communicates with some other process on c. Compare

this with the structural congruence rule ∗P ≡ P | ∗P , which gives us no hint as

to when we should create new copies of P .

It is worth noting that by removing the replication rule from the structural

congruence relation we significantly simplify the meta-theoretic properties of our
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π-calculus semantics: it is easy to prove that the structural congruence relation

is decidable since, for any process P , there are finitely many processes which

are structurally congruent to P . It takes considerably more effort to prove that

structural congruence is decidable if we retain the replication rule [EG95].

In practice, essentially all occurrences of replication appear in recursive pro-

cess definitions (cf. Section 2.6) and encodings of data structures (cf. Sections 2.8

and 2.9). In both cases, the replicated input operator is all that is required. In

theory, we can even encode full replication in terms of just replicated input:

∗P
.= (ν c)(c?∗[ ].(P | c![ ]) | c![ ]) c /∈ fv(P )

though this encoding would not work well in a real implementation, since it would

quickly fill up the heap (and run queue) with copies of P .

The second simplification we make is more surprising: we disallow the sum-

mation operator! By disallowing summation, we significantly simplify the imple-

mentation of communication. In fact, the mere presence of summation in our

calculus can double the amount of storage required for a channel (see the next

section for details). Experience with the Pict programming language [PT95a]

suggests that essential uses of the summation operator are infrequent. Moreover,

it is actually possible to implement (some versions of) the summation opera-

tor as a library module [PT95a]. By taking such an approach, we only pay the

cost of summation when we use the summation library, rather than during every

communication. In languages such as CML [Rep92] and Facile [GMP89] which

mix functional and concurrent computation, communications are sufficiently in-

frequent that the additional cost of implementing summation may not be sig-

nificant. In Pict, however, all computation is achieved via communication over

channels, so the additional costs imposed by summation are unacceptable.

An additional advantage of implementing summation as a library module is

that it encourages the programmer to use more specialised library modules in

those contexts which do not require the full generality of the summation opera-

tor. For example, the following Ref process uses summation to choose between

accepting messages on the read and update channels, but builds essentially the

same summation at each iteration (modulo changes in the argument to Ref, which

represents the current state).
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defRef [x] = read?[r].(r![x] | Ref ![x]) + update?[n, r].(r![ ] | Ref ![n])

We can therefore use an operator called the replicated choice operator [PT95a]

to implement Ref. The replicated choice operator exploits the fact that Ref re-

peatedly waits for input on either read or update, and therefore manages to im-

plement Ref using a small amount of work to set up the communications at each

iteration. In addition, the replicated choice operator guarantees that concurrent

read and update requests will be interleaved fairly (read and update requests are

stored in a FIFO queue, which guarantees that all requests will be processed

according to their order of arrival). It is very difficult, if not impossible, to im-

plement a general summation operator which guarantees the same behaviour,

since it cannot detect that the summation created during each iteration of the

Ref process has anything to do with the summation created during the previ-

ous iteration. The easiest thing that it can do is to vary the order in which it

checks for communications inside a summation, but this behaviour is insufficient

to guarantee fair processing of requests if requests are being generated at different

rates along the read and update channels.

7.2 Machine states

Channel queues form the key component of our abstract machine state. The

elements suspended in a channel queue may be either readers, writers or replicated

readers. We let rs range over queues of readers (including replicated readers),

and ws range over queues of writers. We let • denote the empty queue, to clarify

those positions where a queue is empty.

Definition 7.1 (Channel queues)

C ::= S1 :: . . . :: Sn Channel queue

S ::= ?[x̃].P Reader
![x̃].P Writer
?∗[x̃].P Replicated reader

It is never the case that a channel needs to contain both blocked readers and

writers (since reader/writer pairs never delay communicating). Note that this
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is not the case in a calculus which allows mixed inputs and outputs inside the

summation operator: in the expression c![ã].P + c?[x̃].Q, the process c![ã].P is

not allowed to communicate with c?[x̃].Q and we therefore have to allow both

c![ã].P and c?[x̃].Q to block on the channel c.

A machine state is a pair of a heap and a run queue. The heap stores those

channels which have been created so far, and any processes which are waiting to

communicate on those channels. The run queue stores those processes which are

currently runnable.

Definition 7.2 (Machine state components)

H ::= x1 7→ C1, . . . , xn 7→ Cn Heap
R ::= P1 :: . . . :: Pn Run queue

The order in which bindings appear in the heap is irrelevant but the order

in which processes appear in the run queue is important, since our abstract

machine always executes the process at the head of the run queue. We therefore

place newly created processes on the end of the run queue, to ensure that all

runnable processes will eventually be executed. Similarly, the ordering of items

in a channel queue is important, since we always wake up the process at the head

of a channel queue whenever a communication becomes possible.

The expression H{x 7→ C} denotes the heap H, where the entry for x is

updated to be C (if x does not already have an entry in H then H{x 7→ C}
denotes the heap H extended with the binding x 7→ C):

Definition 7.3 (Heap update)

•{x 7→ C} .= x 7→ C

(H, x 7→ C ′){x 7→ C} .= H, x 7→ C

(H, x′ 7→ C ′){x 7→ C} .= H{x 7→ C}, x′ 7→ C ′ x 6= x′

7.3 Reduction rules

Our abstract machine is formulated as a set of reduction rules of the form H, R →
H ′, R′. Each rule takes the process at the head of the run queue R and executes
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one reduction step in that process. If the run-queue R is empty, then H, R 6→
and execution has finished.

The nil process has no behaviour, so we simply remove it from the run queue,

enabling the next process in the run queue to start executing.

H, 0 :: R → H, R
Nil

We interpret the parallel composition P | Q in an asymmetric manner, placing

Q at the end of the run queue (to be executed later) and continuing with the

execution of P .

H, (P | Q) :: R → H, P :: R :: Q
Prl

The restriction operator (ν x)P allocates a new channel c in the heap, substi-

tutes c for the bound variable x, and continues executing P . The new channel is

initially empty.

c fresh
H, (ν x)P :: R → H{c 7→ •}, {c/x}P :: R

Res

If the channel c already has some blocked writers in its queue when we execute

the input c?[x̃].P , we remove the first writer from the queue, substitute the

supplied values ã for the bound variables x̃, place the unblocked process Q on

the end of the run queue, and continue executing P .

H(c) = ![ã].Q :: ws
H, c?[x̃].P :: R → H{c 7→ ws}, {ã/x̃}P :: R :: Q

Inp-W

If the channel c already has some blocked readers in its queue when we execute

the input c?[x̃].P (rs ranges of queues of readers), we suspend the current process

and put it at the end of the channel queue. Note that this rule also covers the

case where the queue associated with c is empty.

H(c) = rs
H, c?[x̃].P :: R → H{c 7→ rs :: ?[x̃].P}, R

Inp-R

If the channel c already has some blocked readers in its queue when we execute

the output c![ã].P , we unblock the first reader in the queue, substituting ã for x̃

in the unblocked process. We place the unblocked process at the end of the run

queue and continue executing P .



CHAPTER 7. AN ABSTRACT MACHINE FOR π-CALCULUS 105

H(c) = ?[x̃].Q :: rs
H, c![ã].P :: R → H{c 7→ rs}, P :: R :: {ã/x̃}Q

Out-R

If the channel c already has some blocked writers in its queue when we execute

the output c![ã].P (ws ranges over queues of writers), we suspend the current

process and put it at the end of the channel queue. Note that this rule also

covers the case where the queue associated with c is empty.

H(c) = ws
H, c![ã].P :: R → H{c 7→ ws :: ![ã].P}, R

Out-W

If the channel c contains only readers when we execute the replicated input

c?∗[x̃].P , we place the replicated input at the end of the channel queue.

H(c) = rs
H, c?∗[x̃].P :: R → H{c 7→ rs :: ?∗[x̃].P}, R

Repl-R

If the channel c already has some blocked writers in its queue when we execute

the replicated input c?∗[x̃].P , we fork a new copy of P (substituting the output

values ã for the bound variables x̃) and unblock the writer, placing it at the end

of the run queue. We do not remove the replicated input from the run queue,

so that this rule has the effect of removing all writers from c, after which the

previous rule will apply and the replicated input will be removed from the run

queue.

H(c) = ![ã].Q :: ws
H, c?∗[x̃].P :: R → H{c 7→ ws}, c?∗[x̃].P :: R :: {ã/x̃}P :: Q

Repl-W

If the channel c contains a replicated input when we execute the output c![ã].P ,

we place a new copy of the replicated process at the end of the run queue, and

substitute ã for x̃ in the new process. We do not consume the replicated input,

but we do put it back on the end of the channel queue, so that any other readers

on c are able to proceed.

H(c) = ?∗[x̃].Q :: rs
H, c![ã].P :: R → H{c 7→ rs :: ?∗[x̃].Q}, P :: R :: {ã/x̃}Q

Out-R*

Note that in the case where c contains a single replicated input, the Out-R*

rule has no effect on c’s channel queue, since ?∗[x̃].Q :: rs = rs :: ?∗[x̃].Q when rs

is the empty queue.
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7.4 Example reductions

The following example illustrates how the process (ν x)(x![ ].P | x?[ ].Q) performs

an interaction along the channel x. We first create a fresh channel c, and substi-

tute it for the bound variable x (we assume, for simplicity, that x /∈ fv(P, Q)):

H, (ν x)(x![ ].P | x?[ ].Q)
→ H{c 7→ •}, c![ ].P | c?[ ].Q

Then we fork the process c?[ ].Q, leaving c![ ].P at the head of the run queue:

→ H{c 7→ •}, c![ ].P :: c?[ ].Q

We can then execute the output c![ ].P , which has the effect of suspending c![ ].P

on c’s queue:

→ H{c 7→ ![ ].P}, c?[ ].Q

The next process on the run queue is c?[ ].Q, which unblocks the process P and

continues executing Q:

→ H{c 7→ •}, Q :: P

Now both P and Q can proceed, since they are both on the run queue. Note that

the channel c has reverted back to its empty state.

The following two examples illustrate the behaviour of our replication rules.

The first example shows the reduction of the process (ν x)(x![ ].P | x?∗[ ].Q), where

we again assume that x /∈ fv(P, Q) for simplicity. The process c![ ].P executes

before the process c?∗[ ].Q and therefore blocks on the channel c until c?∗[ ].Q is

executed (we then use the Repl-W rule to remove the blocked writer and the

Repl-R rule to install the replicated input in the channel c).

H, (ν x)(x![ ].P | x?∗[ ].Q)
→ H{c 7→ •}, c![ ].P | c?∗[ ].Q Res
→ H{c 7→ •}, c![ ].P :: c?∗[ ].Q Prl
→ H{c 7→ ![ ].P}, c?∗[ ].Q Out-W
→ H{c 7→ •}, c?∗[ ].Q :: P :: Q Repl-W
→ H{c 7→ ?∗[ ].Q}, P :: Q Repl-R
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In the following example, the process c?∗[ ].Q installs itself in the channel c

before c![ ].P gets executed. Thus, when we execute c![ ].P we can use the Out-R*

rule to fork a copy of Q immediately. There is no need to suspend the process

P as in the previous example. Note that the status of c does not change after

executing the output c![ ].P since there are no other readers blocked on c.

H, (ν x)(x?∗[ ].Q | x![ ].P )
→ H{c 7→ •}, c![ ].P | c?∗[ ].Q Res
→ H{c 7→ •}, c?∗[ ].Q :: c![ ].P Prl
→ H{c 7→ ?∗[ ].Q}, c![ ].P Repl-R
→ H{c 7→ ?∗[ ].Q}, P :: Q Out-R*

7.5 Correctness of the abstract machine

We now prove that our abstract machine produces valid π-calculus reductions.

First, we need to relate channel queues to ordinary π-terms. The expression [[C]]c

denotes the π-calculus equivalent of the channel queue C located at c:

Definition 7.4 (Encoding channel queues as π-terms)

[[•]]c .= 0
[[![ã].P :: C]]c .= c![ã].P | [[C]]c
[[?[x̃].P :: C]]c .= c?[x̃].P | [[C]]c
[[?∗[x̃].P :: C]]c .= c?∗[x̃].P | [[C]]c

The run queue P1 :: . . . :: Pn is equivalent to the parallel process P1 | . . . | Pn,

so we can now easily relate abstract machine states to π-calculus processes:

Definition 7.5 (Encoding machine states as π-terms)

[[c1 7→ C1, . . . , cn 7→ Cn, P1 :: . . . :: Pn]]
.= (ν c1) . . . (ν cn)([[C1]]c1 | . . . | [[Cn]]cn | P1 | . . . | Pn)

The order of bindings in the heap, or processes in the run queue, is irrelevant

when we consider their encodings as π-terms, since the encoding of any permu-

tation of P1 :: . . . :: Pn is structurally congruent to the encoding of P1 :: . . . :: Pn

(we need only use the associativity and commutativity and parallel composition).
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It is now easy to prove that our abstract machine produces valid π-calculus

reductions. In fact, a single reduction in our abstract machine may correspond

to either zero or one reductions in the π-calculus. For example, the Prl reduction

rule, which executes a parallel process P | Q by placing Q at the end of the run

queue (leaving P at the head of the run queue), yields a new machine state which

is structurally congruent to the original machine state. This is not surprising

since the π-calculus reduction rules do not maintain a separate run queue, and

therefore need no reduction steps to move a process onto the run queue. Similarly,

the Res rule has no direct equivalent in the π-calculus reduction rules: it in

fact corresponds to a combination of α-conversion and scope extrusion (one of

the more tricky features of the π-calculus reduction rules). It is perhaps worth

mentioning that α-conversion has real computation meaning in the π-calculus

reduction rules, since it allows creation of fresh channels. This is quite unlike the

λ-calculus, where α-conversion can be completely avoided during execution (of a

closed program).

Theorem 7.6 (The abstract machine produces a valid execution)

If H, R → H ′, R′ then [[H, R]] →∗≡ [[H ′, R′]].

Proof We proceed by case analysis on the abstract machine rules. We have
omitted most of the output and replication cases, since they are similar to the
input cases:

case Nil: H, 0 :: R → H, R

It is easy to see that [[H, 0 :: R]] ≡ [[H, R]], since 0 | P ≡ P .

case Prl: H, (P | Q) :: R → H, P :: R :: Q

Here, [[H, (P | Q) :: R]] ≡ [[H, P :: R :: Q]] using the associativity and
commutativity of parallel composition.

case Res: H, (ν x)P :: R → H{c 7→ •}, {c/x}P :: R where c is fresh

We can prove that [[H, (ν x)P :: R]] ≡ [[H, (ν c){c/x}P :: R]] using α-
conversion (there will be no name clash problems since c is fresh). Now, using
scope extrusion and the fact that [[•]]c .= 0 we have that [[H, (ν c){c/x}P ::
R]] ≡ [[H{c 7→ •}, {c/x}P :: R]] as required.

case Inp-W: H, c?[x̃].P :: R → H{c 7→ ws}, {ã/x̃}P :: R :: Q where
H(c) = ![ã].Q :: ws
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In this case we have that [[H(c)]]c .= c![ã].Q | [[ws]]c. We can therefore use
the reduction rule for communication to prove that c![ã].Q | c?[x̃].P → Q |
{ã/x̃}P and the result follows.

case Inp-R: H, c?[x̃].P :: R → H{c 7→ rs :: ?[x̃].P}, R where H(c) = rs

Here, [[H, c?[x̃].P :: R]] ≡ [[H{c 7→ rs :: ?[x̃].P}, R]] since [[rs :: ?[x̃].P ]]c ≡
[[rs]]c | c?[x̃].P .

case Out-R*: H, c![ã].P :: R → H{c 7→ rs :: ?∗[x̃].Q}, P :: R :: {ã/x̃}Q where
H(c) = ?∗[x̃].Q :: rs

In this case we have that [[H(c)]]c .= c?∗[x̃].Q | [[rs]]c. We can therefore use the
reduction rule for replicated input (cf. Section 7.1) to prove that c?∗[x̃].Q |
c![ã].P → c?∗[x̃].Q | P | {ã/x̃}Q and the result follows. 2

Note that the converse of the above result is not true, nor would be expect it

to be, since π-calculus reduction is non-deterministic and our abstract machine

is deterministic.
However, we can prove that if our abstract machine deadlocks then there are

no possible π-calculus reductions from that machine state. Strictly speaking,
we can only prove such a result if we make some restrictions on machine states.
For example, our abstract machine will deadlock on the following machine state
because the arity of the input expression c?[y, z].Q is incorrect

{c 7→ ![x].P}, c?[y, z].Q :: c?[w].R

but the π-calculus reduction rules can ignore the erroneous term c?[y, z].Q and
infer the following reduction:

[[{c 7→ ![x].P}, c?[y, z].Q :: c?[w].R]]
.= (ν c)(c![x].P | c?[y, z].Q | c?[w].R)

→ (ν c)(P | c?[y, z].Q | {x/w}R)

A slightly different problem occurs if channel queues are allowed to contain
mixtures of readers and writers. For example, our abstract machine deadlocks
on the following machine state

{c 7→ ![x].P :: ?[y].Q}, •

but the π-calculus reduction rules can reduce the input and output expressions
contained in c’s channel queue:
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[[{c 7→ ![x].P :: ?[y].Q}, •]]
.= (ν c)(c![x].P | c?[y].Q)

→ (ν c)(P | {x/y}Q)

We say that a machine state H, R is well-formed if ` [[H, R]] and no channel

queue in H contains a mixture of input and output terms. The fact that [[H, R]]

is well-typed guarantees that [[H, R]] is free from runtime errors (and also ensures

that [[H, R]] is a closed expression). It is easy to check that, starting from an

initial configuration {}, P , our abstract machine rules preserve the invariant that

no channel queue in contains a mixture of input and output terms.

Theorem 7.7 (Deadlocks)

If H, R is well-formed and H, R 6→ then [[H, R]] 6→.

Proof If we inspect the reduction rules for our abstract machine, we find that
every well-formed machine state H, R is reducible if R is non-empty. In the case
where R is empty it must be the case that [[H, R]] 6→ since our invariant on
channel queues ensures that there are no input and output terms active on the
same channel. 2

An important result we might hope to prove about our abstract machine is

that it implements a fair reduction strategy. We do not attempt to prove such

as result here, however, since the formal definition of fairness for π-calculus is a

topic of current research [Pie95]. However, we do conjecture that our abstract

machine guarantees what Pierce calls process fairness: any individual process

that is infinitely often able to communicate (i.e., some communication partner

is simultaneously available infinitely often) must eventually do so. The fact that

we use FIFO queues for both channel queues and the run queue ensures that if a

process is blocked on a channel queue then it will eventually become unblocked

(assuming sufficient communication partners become available).

7.6 Simplifying replicated input

It is useful to make a further restriction on π-terms which guarantees that a

channel never contains a mixture of ordinary and replicated inputs, and that a

replicated input never encounters waiting writers when it executes. For example,
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if replicated inputs only appear in contexts of the following form (where Q never

uses c1, . . . , cn for input and c1, . . . , cn are distinct variables)

(ν c1) . . . (ν cn)(c1?∗[x1].P1 | . . . | cn?∗[xn].Pn | Q)

then we can guarantee that whenever a replicated input c?∗[x̃].P is executed, the

channel c will always be empty. We therefore no longer need the Repl-W rule

(which dealt with the case where c already contained some writers) and need not

check the status of c before executing a replicated input in the Repl rule:

H, c?∗[x̃].P :: R → H{c 7→ ?∗[x̃].P}, R
Repl

Our restriction on replication also guarantees that there will never be any

other readers on a channel containing a replicated reader. Thus, whenever we

output a value on such a channel there is no need to change the state of c, as can

be seen in the new Out-R* rule:

H(c) = ?∗[x̃].Q
H, c![ã].P :: R → H, P :: R :: {ã/x̃}Q

Out-R*

The above restriction on replication is not problematic in practice, since most

uses of replication (for example, in recursively-defined processes) have exactly

this format. In fact, we can translate any replicated input into an equivalent

replicated input of the above form:

c?∗[x̃].P .= (ν d)( d?∗[ ].c?[x̃].(P | d![ ]) | d![ ] )

In the Pict implementation, we enforce this restriction on replicated input

using a combination of syntactic restrictions and special typing rules (Pict im-

plements the I/O channel types proposed by Pierce and Sangiorgi [PS93], and

can therefore easily check that a channel is never used for input in a particular

context).

In fact, we can even do a better job of compiling outputs on the channels

c1, . . . , cn in processes of the form

(ν c1) . . . (ν cn)(c1?∗[x1].P1 | . . . | cn?∗[xn].Pn | Q)

since we know that once Q starts executing, we must have already executed all

the replicated inputs on the channels c1, . . . , cn. Thus, whenever we execute an
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output on the channel ci we need not test the status of ci (since we know that ci

must contain a single replicated input, and that outputs on ci do not change its

status). Of course, if we use ci in a higher-order manner (by sending ci along a

channel to some other process), then the process which receives ci will still have

to test the status of ci, as before.

The above refinements to replicated input and outputs along channels contain-

ing replicated inputs are necessary to get reasonable performance from functions

which are encoded as processes. In a (strict) functional language we do not need

to test the status of a function before calling it. In the π-calculus, we represent

functions as processes which communicate on some distinguished channel. For

example, the identity function might be represented as the following process (r

is the channel along which id returns its result, and the process P represents the

rest of the program)

(ν id)( id?∗[x, r].r![x] | P )

It would be very disappointing if every use of id in P (i.e. every output on the

channel id) required us to test the status of id. Fortunately, the above process

fits our criteria for optimising the Out-R* rule, since id is statically known to

contain only a replicated input when the process P starts executing.

In fact, now that we have disallowed mixtures of inputs and replicated inputs

on a channel, we can test the status of a channel more efficiently. A channel can

now be in just one of four states: empty, containing blocked writers, containing

blocked readers, or containing a single replicated reader. We can represent this

information using a single status value which is stored in the channel. With this

representation we can test a channel’s status using a single multi-way conditional

expression. If we allowed mixtures of readers and replicated readers in a channel

queue, then we would need two conditional expressions to implement an output:

one to test whether the channel contained any readers, and in the case where

there is a reader in the channel, a second test to determine whether the reader is

replicated or not.
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7.7 Asynchronous communication

In the Pict programming language [PT95b], the implementation of communica-

tion is further simplified by the use of asynchronous communication. The asyn-

chronous π-calculus is a simple sub-calculus of the π-calculus where we restrict

the continuation P in every output process c![ã].P to be 0. In fact, asynchronous

outputs are so common that we have already introduced some derived syntax for

them, writing c![ã] instead of c![ã].0.

It is well known that synchronous communication can be simulated using

explicit acknowledgments in an asynchronous calculus. For example, we can

simulate the following synchronous communication

c![ã].P | c?[x̃].Q → P | {ã/x̃}Q

using the asynchronous communication sequence below:

(ν k)(c![ã, k] | k?[ ].P | c?[x̃, k].(k![ ] | Q))
→ (ν k)(k?[ ].P | k![ ] | {ã/x̃}Q)
→ (ν k)(P | {ã/x̃}Q)

The local channel k serves as an acknowledgment channel: Q signals on k when

it has received the data, allowing P to continue.

Of course, the above encoding of synchronous communication in terms of asyn-

chronous communication is much less efficient than implementing synchronous

communication directly, but experience with Pict suggests that synchronous com-

munication is in fact very rare. This is largely due to the fact that functions are

encoded as processes (using essentially the same result-passing convention as we

introduced in Section 2.7). This means there are many processes of the form

f?∗[x̃, r]. . . . r![results] which accept some arguments x̃ and a result channel r,

compute something, and return some results along r. The communication which

returns the results along r is asynchronous. Moreover, the standard calling con-

vention for such processes also uses asynchronous communication, as can be seen

in our derived form for getting results (also from Section 2.7):

let x1, . . . , xn = f(a1, . . . , am) in P
.= (ν r)(f ![a1, . . . , am, r] | r?[x1, . . . , xn].P ) r /∈ fv(P, f, a1, . . . , am)
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There is no point in using a synchronous output to communicate with f , since we

are not interested in detecting when the f starts executing, but when it finishes

(and returns its results on r).

We now show how we can simplify our abstract machine if we only have to

implement asynchronous communication. Firstly, the syntax of channel queues

can be simplified, since we no longer need to put suspended output processes on

a channel queue (we also retain the simplifications to replicated input proposed

in Section 7.6). This is a useful simplification, since it is much cheaper to store

a tuple of values in a channel queue, rather than store both a tuple of values

and a suspended process. We will have more to say about the cost of suspending

processes in Section 7.9.

Definition 7.8 (Asynchronous channel queues)

C ::= ?[x̃1].P1 :: . . . :: ?[x̃n].Pn Queue of readers
![x̃1] :: . . . :: ![x̃n] Queue of writers
?∗[x̃].P Replicated reader

We can now simplify our communication rules to take account of the fact that

all communication is asynchronous. In the case where we read a value from a

channel which already contains a blocked writer, we need only extract the written

values from the channel. There is no longer any need to put any writer processes

back on the run queue:

H(c) = ![ã] :: ws
H, c?[x̃].P :: R → H{c 7→ ws}, {ã/x̃}P :: R

AInp-W

The reduction rules for asynchronous output expressions can also be sim-

plified, since there is no other work to do once we have executed our output

expression:

H(c) = ?[x̃].P :: rs
H, c![ã] :: R → H{c 7→ rs}, R :: {ã/x̃}P

AOut-R

H(c) = ws
H, c![ã] :: R → H{c 7→ ws :: ![ã]}, R

AOut-W

H(c) = ?∗[x̃].P
H, c![ã] :: R → H, R :: {ã/x̃}P

AOut-R*
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In this way, we avoid placing many redundant processes on the run queue

during asynchronous communications. Consider, for example, the reduction of

the asynchronous process c![ ] | c?[ ].P using our new reduction rules (where we

assume that the channel c has already been created, and H(c) = •)

H, c![ ] | c?[ ].P
→ H, c![ ] :: c?[ ].P Prl
→ H{c 7→ ![ ]}, c?[ ].P AOut-W
→ H{c 7→ •}, P AInp-W

It is wasteful to use a synchronous reduction strategy to evaluate the above

process, since we must store the nil process in c’s channel queue, and then unblock

the same nil process after interacting on c (both operations are a waste of time

and space, since the nil process has no behaviour):

H, c![ ].0 | c?[ ].P
→ H, c![ ].0 :: c?[ ].P Prl
→ H{c 7→ ![ ].0}, c?[ ].P Out-W
→ H{c 7→ •}, P :: 0 Inp-W

Note that the initial expressions in both examples are identical, since c![ ] is

just a shorthand for c![ ].0.

7.8 Creating fewer processes

One of the key problems we encounter when executing π-calculus programs is that

processes are very short-lived. Consider, for example, the process (ν r)(f ![ã, r] |
r?[x̃].P ), which creates a result channel r, sends the arguments ã and the result

channel r to f , and waits for a reply on r. Our abstract machine executes the

expressions f ![ã, r] and r?[x̃].P as separate processes. This is rather wasteful,

since both expressions do relatively little work. It would be much better if we

could execute both f ![ã, r] and r?[x̃].P within the same thread of control (i.e.

without having to place either process on the run queue).

We therefore modify our abstract machine so that it is able to execute a

number of actions within the same thread of control. The relation H, P, R ⇓
H ′, R′ formalises how we execute a process within a single thread of control.
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It takes a heap H, a process P and a run queue R and executes a number of

operations in P . This yields an updated heap H ′ and run queue R′. The process

P will either execute completely, or become blocked on some channel queue in

the heap, so we never need to return a process as the result of evaluating P .

The relation H, R → H ′, R′ now formalises just our process scheduling policy

(it picks the first process out of the run queue and executes it):

H, P, R ⇓ H ′, R′

H, P :: R → H ′, R′
Sched

The following reduction rules now do all the work of implementing communi-

cation. As we will see in Section 7.9, there are significant advantages to executing

as many operations as possible within a single thread of control, since, in practice,

suspending a process means preserving the current process context in the heap,

and executing a new process requires us to load a new process context back out

of the heap.

The reduction rule for restriction is very similar to the reduction rule we

gave previously. We simply allocate a fresh channel c and continue executing the

process P :

c fresh H{c 7→ •}, {c/x}P, R ⇓ H ′, R′

H, (ν x)P, R ⇓ H ′, R′
Res

However, our rule for parallel composition is significantly different to what

we have seen before. Instead of putting Q on the end of the run queue (to be

executed later), we evaluate both P and Q within the same thread of control:

H, P, R ⇓ H ′, R′ H ′, Q, R′ ⇓ H ′′, R′′

H, P | Q, R ⇓ H ′′, R′′
Prl

The evaluation rule for the nil process returns the heap and run queue un-

changed:

H, 0, R ⇓ H, R
Nil

Executing a replicated input expression is an atomic operation, since we are

guaranteed to find the channel c empty:
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H, c?∗[x̃].P, R ⇓ H{c 7→ ?∗[x̃].P}, R
Repl

If we execute an input on a channel which already contains a writer, then we

continue executing P within the current thread of control:

H(c) = ![ã] :: ws H{c 7→ ws}, {ã/x̃}P, R ⇓ H ′, R′

H, c?[x̃].P, R ⇓ H ′, R′
AInp-W

If we execute an output on a channel which does not contain any readers, we

store the output values in the channel’s queue:

H(c) = ws
H, c![ã], R ⇓ H{c 7→ ws :: ![ã]}, R

AOut-W

All infinite behaviour in π-terms arises as a result of interactions between

processes and replicated input expressions. The following rule, which implements

such interactions, places the process {ã/x̃}P on the end of the run queue, and

therefore ensures that any evaluation H, P, R ⇓ H ′, R′ is always finite.

H(c) = ?∗[x̃].P
H, c![ã], R ⇓ H, R :: {ã/x̃}P

AOut-R*

For reasons which will become clear in a moment, in the AOut-R rule we do

not execute the unblocked process P within the same thread of control as the

current process, even though we could do so without breaking the property that

every evaluation H, P, R ⇓ H ′, R′ is always finite:

H(c) = ?[x̃].P :: rs
H, c![ã], R ⇓ H{c 7→ rs}, R :: {ã/x̃}P

AOut-R

With the above set of rules, the maximum amount of work required to execute

a process P can always be determined from the structure of P . If we replaced

the AOut-R rule with the following rule, which executes the unblocked process

P within the same thread of control, this would no longer be the case (since we

do not know, in general, how big the unblocked process P will be).

H(c) = ?[x̃].P :: rs H{c 7→ rs}, {ã/x̃}P, R ⇓ H ′, R′

H, c![ã], R ⇓ H ′, R′

It is important to know that a single thread will not execute for too long, since

there may be other processes waiting to execute on the run queue. In the case of

a user interface, for example, it may be important for those waiting processes to

execute soon, so that they can provide quick responses to user input.
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7.9 Machines states with environments

It is unrealistic to use a substitution operation to record variable binding infor-

mation, so we now present a refinement of our previous abstract machine which

uses explicit environments to record the bindings of variables to channels. This

avoids any use of substitution and means that process terms are never modified

during execution. Moreover, by using explicit environments, it becomes clearer

where some of the real costs are in executing π-calculus programs.

An environment E is simply a finite mapping from variables to channels. The

expression E{x 7→ c} denotes the finite map E extended with the mapping x 7→ c

(we assume that x is always distinct from any other variables bound in E). The

expression E(x) denotes the channel associated with x in E and is undefined if x

in not bound in E. We often write E(ã) as an abbreviation for E(a1), . . . , E(an).

Definition 7.9 (Environments)

E ::= x1 7→ a1, . . . , xn 7→ an

We need to store a process’ environment whenever we suspend a process on

a channel. We therefore modify the elements of a channel queue to store this

information (we retain all the proposed simplifications to our abstract machine

proposed in previous sections). Note in particular that we do not need to use

any process environments to implement a queue of writers. This would not be

the case if we allowed synchronous output.

Definition 7.10 (Channel queues)

C ::= (E1, ?[x̃1].P1) :: . . . :: (En, ?[x̃n].Pn) Queue of readers
![x̃1] :: . . . :: ![x̃n] Queue of writers
(E, ?∗[x̃].P ) Replicated reader

As before, a machine state is a pair of a heap and a run queue (which are

defined as below). The run queue now also stores an environment for each process

which is currently runnable.
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Definition 7.11 (Machine state components)

H ::= x1 7→ C1, . . . , xn 7→ Cn Heap
R ::= (E1, P1) :: . . . :: (En, Pn) Run queue

7.10 Reduction rules with environments

Our process scheduling rule now removes both the first process P and its envi-

ronment E from the run queue and executes P :

H, E, P, R ⇓ H ′, R′

H, (E, P ) :: R → H ′, R′
Sched

The reduction rule for the nil process returns the heap and run queue un-

changed:

H, E, 0, R → H, R
Nil

The rule for parallel composition executes both P and Q in the same envi-

ronment E:

H, E, P, R ⇓ H ′, R′ H ′, E, Q, R′ ⇓ H ′′, R′′

H, E, P | Q, R ⇓ H ′′, R′′
Prl

The restriction operator (ν x)P allocates a new channel in the heap and con-

tinues executing P , recording the binding of x to c in the environment E.

c fresh H{c 7→ •}, E{x 7→ c}, P, R ⇓ H ′, R′

H, E, (ν x)P, R ⇓ H ′, R′
Res

If there already is a writer available when we execute the input x?[ỹ].P , we

extract the stored data, record it in the environment E and continue executing

P .

E(x) = c H(c) = ![ã] :: ws
H{c 7→ ws}, E{ỹ 7→ ã}, P, R ⇓ H ′, R′

H, x?[ỹ].P, R ⇓ H ′, R′
AInp-W

If there are no writers available when we execute the input x?[ỹ].P then we

must store the current process and its environment in the channel’s queue.
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E(x) = c H(c) = rs
H, E, x?[ỹ].P, R ⇓ H{c 7→ rs :: (E, ?[ỹ].P )}, R

Inp-R

If the channel c already has some blocked readers in its queue when we execute

the output x![ã], we unblock the first reader in the queue and record the bindings

ỹ 7→ E(ã) in the environment of the unblocked process.

E(x) = c H(c) = (F, ?[ỹ].P ) :: rs
H, E, x![ã], R ⇓ H{c 7→ rs}, R :: (F{ỹ 7→ E(ã)}, P )

AOut-R

If the channel c already has some blocked writers in its queue when we execute

the output x![ã], we store the output values E(ã) in the channel queue.

E(x) = c H(c) = ws
H, E, x![ã], R ⇓ H{c 7→ ws :: ![E(ã)]}, R

AOut-W

Our restrictions on replicated input guarantee that whenever x?∗[ỹ].P is ex-

ecuted, the channel c will always be empty. We therefore need only suspend

x?∗[ỹ].P and place it in the channel c.

H, E, x?∗[ỹ].P, R ⇓ H{E(x) 7→ (E, ?∗[ỹ].P )}, R
Repl

If the channel associated with x contains a replicated input when we execute

the output x![ã], we place a new copy of the replicated process at the end of

the run queue, recording the bindings ỹ 7→ E(ã) in the environment of the new

process.

H(E(x)) = (F, ?∗[ỹ].Q)
H, E, x![ã], R ⇓ H, R :: (F{ỹ 7→ E(ã)}, Q)

AOut-R*

7.11 Using environments more efficiently

In the π-calculus, processes are created very frequently, and tend run for a very

short amount of time before become blocked (or terminating). This stands in

sharp contrast with concurrent languages such as CML [Rep92] or Facile [GMP89],

where each process may do a significant amount of (sequential) work before ter-

minating, or communicating on a channel. It is therefore important to allow

processes to be added and removed from the run queue without allocating any
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permanent storage in the heap. Similarly, since processes are very short-lived, it

makes sense to try and store environment bindings in some kind of temporary

area, rather than allocating environment entries in the heap. Fortunately, as we

will see in Chapter 8, once we have a mechanism in place for storing run queue

entries in a temporary area, it is possible to use the same mechanism to store

many of the environment bindings that are generated during execution.

Whenever the evaluation rules from the previous section place a process on the

run queue, they always need to store a number of argument bindings at the same

time. For example, the AOut-R rule needs to store the bindings for ỹ somewhere

(until the process P is able to consume them):

E(x) = c H(c) = (F, ?[ỹ].P ) :: rs
H, E, x![ã], R ⇓ H{c 7→ rs}, R :: (F{ỹ 7→ E(ã)}, P )

AOut-R

Fortunately, since we need only store the bindings for ỹ in memory until P

starts executing, we can store them in the run queue itself (rather than adding

them to the environment F , as in the rule above).

We therefore add a new component to the elements of our run queue: a local

environment L. Local environments have exactly the same abstract description

as the environments E introduced in the previous section, but we expect them to

be implemented differently. A local environment L is intended to be a very short-

lived entity and cannot be shared amongst more than one process (otherwise it

would be difficult to avoid allocating it in the heap). In fact, in Chapter 8 we will

see that the environments L1, . . . , Ln can actually be stored within the run queue

(which itself lives in a special temporary storage area). A global environment E

may potentially be very long-lived, and is allocated in the heap. Many processes

may share the same global environment E.

Definition 7.12 (Run queue)

R ::= (E1, L1, P1) :: . . . :: (En, Ln, Pn)

The efficient implementation of run queues mentioned earlier relies on the fact

that we allocate and deallocate storage in the run queue in a very regular manner:

we add new processes at the tail of the run queue and remove processes from the
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head of the run queue, but we never attempt to insert or remove a process from

the middle of the run-queue, for instance. Moreover, there is only one run queue.

Storage allocated for channel queues, on the other hand, has a much less well-

defined lifetime: when a process blocks on a channel we generally have no idea

when that process will be unblocked. Thus, whenever a process becomes blocked

on a channel, we must build a new environment in the heap. We ensure that

the environment we build is minimal (i.e. contains only those bindings which

might actually be used when the process is unblocked) so that in the case where

a process remains blocked on a channel queue for a significant amount of time

we do not retain pointers to values which could actually be garbage collected.

Definition 7.13 presents the reduction rules for our final abstract machine.

This abstract machine is the one upon which our compilation of π-calculus to C

is based. Most of the reduction rules are similar to rules we have already seen,

so we just explain a few of the more important features.

For those environment entries which are created within the same thread of

control it is often possible to avoid storing such entries in memory at all. In the

compilation of π-calculus to C, presented in Chapters 8 and 9, we use C’s built-in

variable-binding mechanism to store variable bindings which are created within

the same thread of control. We therefore need not do any explicit allocation for

such bindings, and it is reasonable to expect an optimising C compiler to store

most of them in registers. To capture the fact that we can implement environment

entries within the same thread of control differently from those stored in the run

queue or heap, we add a new local environment L to our evaluation relation.

Evaluations now take the form H, E, L, P, R ⇓ H ′, R′, where E contains those

variable bindings which are stored in the heap and L contains those bindings

created during the current thread of execution.

The binding for a variable x may now be stored in either the global environ-

ment E or the local environment L. The expression (E ∪ L)(x) .= L(x) if x is

bound in L and (E ∪ L)(x) .= E(x) otherwise. Note that it is always possible to

statically determine whether a variable is bound locally or not, so the expression

(E ∪ L)(x) does not require any runtime tests.
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Definition 7.13 (Reduction rules using local environments)

H, E, L, P, R ⇓ H ′, R′

H, (E, L, P ) :: R → H, R
Sched

H, E, L, 0, R ⇓ H, R
Nil

H, E, L, P, R ⇓ H ′, R′ H ′, E, L, Q, R′ ⇓ H ′′, R′′

H, E, L, (P | Q), R ⇓ H ′′, R′′
Prl

c fresh H{c 7→ •}, E, L{x 7→ c}, P ⇓ H ′, R′

H, E, L, (ν x)P, R ⇓ H ′, R′
Res

(E ∪ L)(x) = c H(c) = ![ã] :: ws
H{c 7→ ws}, E, L{ỹ 7→ ã}, P, R ⇓ H ′, R′

H, (E, L, x?[ỹ].P ) :: R ⇓ H ′, R′
Inp-W

(E ∪ L)(x) = c H(c) = rs F = (E ∪ L)bfv(P )
H, E, L, x?[ỹ].P, R ⇓ H{c 7→ rs :: (F, ?[ỹ].P )}, R

Inp-R

(E ∪ L)(x) = c H(c) = (F, ?[ỹ].P ) :: rs (E ∪ L)(ã) = b̃

H, E, L, x![ã], R ⇓ H{c 7→ rs}, R :: (F, {ỹ 7→ b̃}, P )
AOut-R

(E ∪ L)(x) = c H(c) = ws (E ∪ L)(ã) = b̃

H, E, L, x![ã], E, R ⇓ H{c 7→ ws :: ![b̃]}, R
AOut-W

(E ∪ L)(x) = c

H, E, L, x?∗[ỹ].P, R ⇓ H{c 7→ ((E ∪ L)bfv(P ), ?∗[ỹ].P )}, R
Repl

(E ∪ L)(x) = c H(c) = (F, ?∗[ỹ].P ) (E ∪ L)(ã) = b̃

H, E, L, x![ã], R → H, R :: (F, {ỹ 7→ b̃}, P )
AOut-R*

The Res rule now stores the new binding x 7→ c in the local environment of

the current thread. Note that the evaluation rule for parallel composition does

not require any storage allocation, since both P and Q are executed within the

current thread of control (and we therefore need not preserve any environment

entries in the heap).
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Since in the Inp-R and Repl rules we need to suspend the current process

and store it and its environment entries on a channel queue, we build a new,

minimal, environment (E ∪L)bfv(P ) in the heap (the expression b fv(P ) restricts

the domain of E ∪ L to the set of free variables of P ).

The AOut-R and AOut-R* rules now store the argument bindings ỹ 7→ b̃

in the run queue itself, ready to be consumed by P once it starts executing.

This does not require any permanent storage to be allocated in the heap, which

is particularly important in the case of the AOut-R* rule, since all infinite or

recursive behaviour arises as a result of the AOut-R* rule.



Chapter 8

Compiling Pict to C: Design

The primary motivation of the Pict [PT95b] project was to design and implement

a high-level concurrent language purely in terms of π-calculus primitives. There

have been many proposals for concurrent languages [Car86, Hol83, Rep92, Mat91,

GMP89, etc.] which include communication primitives which are very similar to

those of the π-calculus. However, to our knowledge, none have proposed using

π-calculus primitives as the sole mechanism of computation.

The Pict language consists of two layers: a very simple core calculus (which is

just asynchronous π-calculus extended with built-in structured data), and a high-

level language which is defined via translation into the core calculus. This yields

a very compact formal definition (the core language type system can be presented

in four pages, the operational semantics in one page, the derived forms in three

pages and the derived typing rules in two pages). Moreover, this means that Pict

programs can be compiled in the same way as they are formally specified (first

translate the high-level Pict program into the core calculus, and then compile the

core calculus).

The efficiency of Pict therefore relies exclusively on the efficient compilation

of channel-based communication. Compiling such a language poses a number of

challenges to the implementor:

Process creation: Very large numbers of processes are created during execution

(processes are created at least as frequently as functions are called in a functional

language), so process creation must be very fast, and must consume very little

memory.
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Process scheduling: Whenever a process becomes blocked, it is necessary to

preserve the current state of the process, and then remove it from the run-queue.

Since Pict processes tend to run for a very short period of time before blocking,

it is important to ensure that such context switches can be executed very quickly.

Moreover, since there will be many blocked processes in the system, some of which

may remain blocked for a long time, we must ensure that a blocked process is

represented efficiently in memory.

Channel-based communication: The protocol required to implement channel-

based communication is rather expensive, both in terms of code size and execution

time. These costs arise because every channel may be in one of three possible

states: empty, containing blocked readers, or containing blocked writers. The

code for each input or output operation in a process must be able to deal with all

of these possible channel states. Fortunately, the status of a channel is, in many

cases, known at compile-time, enabling us to specialise the code for communica-

tion and sometimes even avoiding testing the status of a channel at all.

Channel representation: A channel may, in general, contain an arbitrary num-

ber of blocked readers or writers. However, it turns out that a large percentage

of channels only ever contain at most one reader or writer. In fact, if the com-

piler has access to linear type information [KPT96], we can even guarantee that

certain channels will contain at most one reader or writer. We therefore opti-

mise our channel representation for this case (enabling a more compact channel

representation and a faster implementation of communication). We pay a small

additional cost in space and time in the case where a channel must hold more

than one reader or writer.

We now describe our compilation of core Pict into C. We compile to C, instead

of native code, since it allows us to generate efficient code without sacrificing

portability (though we do incur slightly increased compilation times and some

loss of efficiency). An additional benefit of this approach is that we can easily

allow C code to be embedded inside Pict programs, enabling one to make use of

the extensive operating system and library functions already available in C. For

example, the author, in collaboration with Benjamin Pierce, has used this feature

to develop an X-windows interface which can be controlled by Pict processes.
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This chapter describes the Pict core language and the decisions we made when

choosing representations for Pict data. (We don’t describe some of Pict’s built-in

datatypes, such as records and tuples, since their implementation is standard.)

Chapter 9 describes the actual compilation of Pict to C.

8.1 Source language

In Chapter 7 we described and motivated a number of simplifications to the π-

calculus (such as omitting summation, using asynchronous communication and

disallowing the general replication operator) which significantly simplify its im-

plementation. Pict’s core language incorporates those same simplifications, but

also makes two extensions to the source language proposed in Chapter 7.

Firstly, we include integers, booleans and conditional expressions as prim-

itives, since it is not feasible to use encodings to implement such important

datatypes. Moreover, by compiling integer and boolean operations into the cor-

responding operations provided by C, we give the C compiler a reasonable chance

of optimising them, and avoid having to reimplement all the ‘standard’ optimi-

sations of arithmetic and boolean operations in our Pict compiler.

Secondly, we allow C code to be embedded in π-terms. This allows easy

access to the operations and libraries available in C. In fact, in the Pict program-

ming language this feature is available to the programmer (not just the compiler

writer).

We let a range over atomic values: variables, integers and booleans. Atomic

values are a generalisation of channel values (which are the only kind of atomic

value we have in the pure polyadic π-calculus).

Definition 8.1 (Atomic values)

a ::= x Variable
0, 1, 2, . . . Integer constant
true, false Boolean constant

The syntax for processes is given below. Note that we may now send arbitrary

atoms along channels, rather than just channel names. (There is no need for the
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subject of a communication to be an arbitrary atom, since integer and boolean

values may not be used for communication.)

Definition 8.2 (Process syntax)

P ::= x![a1, . . . , an] Asynchronous output
x?[y1, . . . , yn].P Input
x?∗[y1, . . . , yn].P Replicated input
(ν x)P Channel creation
P | P Parallel composition
0 Null process
if a then P else P Conditional
let x = "C code" in P Inlined C code

The null process, 0, is actually definable in the above calculus (using the

deadlocked process (ν x)x![ ], for example), but we retain it here, since 0 can be

implemented much more efficiently than (ν x)x![ ].

We make the same restrictions on where replicated input can occur as we did

in Chapter 7, Section 7.6: replicated inputs may only appear in contexts of the

following form (where Q never uses c1, . . . , cn for input and c1, . . . , cn are distinct

variables)

(ν c1) . . . (ν cn)(c1?∗[x1].P1 | . . . | cn?∗[xn].Pn | Q)

Arbitrary C expressions may be included inside π-terms using the expression

form ‘let x = "C code" in P ’. The inlined C code is treated as a string by the Pict

compiler, but is allowed to refer to any Pict variable which is in scope. For ex-

ample, if y and z are integer variables then the expression ‘let x = "y + z" in P ’

has the effect of binding x to the value computed by the C expression y + z.

8.2 Variable binding

One of the benefits of compiling to a (reasonably) high-level language such as

C is that we can reuse its built-in variable-binding constructs. With such a

compilation, a Pict variable is most simply represented by a C variable of the
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same name. In this way we avoid having to consider many of the low-level details

about implementing variable-binding efficiently (such as register allocation).

The problem, of course, is that C has a very restricted notion of variable

binding (since it has no higher-order functions). For example, whenever we wish

to suspend a Pict process and store it on a channel queue, we must capture the

current variable bindings and store them in the channel, along with the code

for that process. C has no built-in mechanism for implementing this operation,

so at such points in the computation we must explicitly preserve the current

variable-bindings in a closure.

Fortunately, this does not mean we are back in the situation where we have

to implement variable-bindings without any help from the C compiler since, in

practice, many variables are consumed before we ever need to create a closure.

The C compiler is free to implement such variable bindings as it chooses (for

example, in registers).

8.3 Data representations

All runtime data is accessed via a single machine word. We use the least-

significant bit of each word as a tag (to inform the garbage collector whether

that word is a pointer into the heap or not).
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Definition 8.3 (Runtime data)

Size

Data

Tag bits

Descriptor Heap-allocated value

Tagged value

Tagged value

Tagged value

Tagged value

Descriptor address 1

0

Tagged value

(Non-pointer)

(Pointer)

The above picture describes the general format of our runtime data. A zero

tag bit indicates that a value is not a pointer into the heap. A tag bit of one

signifies that a value is a pointer to a heap-allocated object. Subtracting one from

such a value yields the address of a descriptor in the heap, which gives further

details about the type of the object.

The three least-significant bits of a descriptor indicate what type of value is

present. The remaining bits give the size of the object (in words, including the

descriptor word). All heap-allocated objects must be an integral number of words

long. The following definition presents all the possible descriptor tag values as

C macro definitions, since it is convenient to refer to the tags by name in the C

code which follows.
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Definition 8.4 (Tag values)

#define Empty 0 Empty channel
#define OneReader 1 Channel with one reader
#define OneWriter 2 Channel with one writer
#define ManyReaders 3 Channel with many readers
#define ManyWriters 4 Channel with many writers
#define Replicated 5 Channel with replicated reader
#define Tuple 6 Tuple of values

The tag values 0 to 5 all indicate both that the object following the descriptor

is a channel and the status of the channel (it would be wasteful to have a separate

channel status word, in addition to the heap descriptor).

Tuples are used to store many different kinds of high-level data, such as clo-

sures and FIFO queues. The garbage collector does not need to distinguish

between such kinds of high-level data, and therefore considers everything as a

simple tuple of tagged values.

Our garbage collector ignores pointers which point to addresses outside the

heap. This means that we can store pointers to C data structures inside Pict

data structures (a necessary feature if we wish to allow the easy transfer of data

between Pict programs and C code). We also allow Pict pointers to be stored

in C data structures (i.e. outside the Pict heap), but we do not describe that

mechanism here.

8.3.1 Integers and booleans

Since we use the least-significant bit of every data value as a tag bit (to tell the

garbage collector whether that value is a pointer or not), we must represent the

Pict integer i using the C integer 2 ∗ i:

Definition 8.5 (Integer representation)

Integer i 0i

C’s built-in boolean operators interpret any non-zero integer as ‘true’ and

zero as ‘false’. However, it is easier to implement conjunction, disjunction and
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negation if we represent ‘true’ using the integer 1, and ‘false’ using the integer

0. C’s built-in comparison operators return values of this form anyway, so we do

not incur any additional cost when implementing Pict comparison operators in

terms of C comparison operators.

Definition 8.6 (Boolean representation)

false

true 0

0 0

1

The above representation for ‘true’ clashes with our tagging scheme for Pict

data, but does not cause the garbage collector any problems, since the garbage

collector ignores pointers which point to addresses outside the heap (and the

address 0 will certainly be outside the heap).

8.3.2 Closures

Processes are represented by heap-allocated closures. A closure stores a code

pointer (the address of a C function) and all the free variables of the process:

Definition 8.7 (Closures)

n+2 Code pointer1 1 0 Value 1 Value n

The garbage collector treats each closure just like any other tuple of tagged

values (it always ignores pointers which point to addresses outside the heap, so

it never gets confused by the presence of a code pointer in a tuple). The function

address stored in a closure will always point to a function of the form described

in Section 9.2.

8.3.3 Channels

It turns out, in practice, that the majority of input operations find that the

channel queue is empty, and the majority of output operations find that the
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channel queue contains exactly one reader (or a replicated reader). This is largely

due to the fact that we encode functions as processes. For example, if we examine

how the encoding of function application (reproduced below) behaves under our

compilation, we find that the input on r always finds the channel queue for r

empty (since r is a fresh channel).

let x1, . . . , xn = f(a1, . . . , am) in P
.= (ν r)(f ![a1, . . . , am, r] | r?[x1, . . . , xn].P ) r /∈ fv(P, f, a1, . . . , am)

Moreover, when f does eventually return its result along r, it will find exactly one

reader already in the channel queue (the process r?[x1, . . . , xn].P ). Furthermore,

it is usually the case that the function f is represented using a replicated input on

f , so the output f ![a1, . . . , am] will usually find that f contains a single replicated

process.

We therefore optimise our channel representation for the case where a channel

contains at most one (possible replicated) reader. In the case where we need to

store more than one reader, or more than one written value, we must allocate

extra storage during communication.

The representation of channels used here is based on experience the author

has gained from implementing the Pict compiler, and tries to do a good job

for the most common types of channel usage in Pict programs. However, it

would be much better to leave the decision about channel representation until

compilation time: if we had a program analysis which could tell us about the

(approximate) usage of each channel we could choose the representation of each

channel according to its expected usage. We will have more to say about such

analyses in Section 9.18.

A channel’s descriptor indicates both the size of the channel (two words) and

the current channel status. The subsequent word contains a tagged data value.

We only use the three least-significant bits of each channel descriptor, since the

garbage collector knows that all channels are two words long.
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Definition 8.8 (Simple channel values)

Closure

Tagged value

Closure

Empty

OneReader

OneWriter

Replicated

0 0 0

0 0 1

010

101

If a channel’s status is Empty then the content of its value field is irrelevant (the

garbage collector never examines the value field in this case). If a channel’s status

is either OneReader or OneWriter then its value field contains a pointer to the

closure for the reader, or the written value respectively. A channel containing a

replicated reader has the same format as a channel containing an ordinary reader

(though it will be treated very differently during communication, of course). Since

we only have one word available to store any written data, we must allocate a

separate piece of storage in the heap for the written data if the arity of a channel

is greater than one.

If we need to store more than one blocked reader or writer, then we must

allocate a separate queue structure in the heap. For instance, if a channel’s

status is ManyReaders then its value field points to a FIFO queue which is used

to store blocked readers, as shown below. (The representation of a channel whose

status is ManyWriters is just like that shown below, except that we store values

in the queue, rather than closures.)
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Definition 8.9 (Complex channel values)

Channel

Reader n

Closure nClosure 1

Reader 1

1

1

3

0

FIFO Queue

0 1 1 1 0

1 13 3 1 0

Channels use FIFO queues to ensure fairness. FIFO queues are implemented

by keeping pointers to both the start and end of the queue. This enables fast

insertion at the end of the queue (when we get a new reader or writer), and fast

removal from the front of the queue (when we unblock a waiting process).

8.3.4 Run queue

Since we add and remove processes from the run queue very frequently, it is

important to implement the run queue in such a way that run queue entries do

not consume permanent storage. We therefore allocate run queue entries at the

opposite end of the heap from where we allocate ordinary storage:

Definition 8.10 (Heap storage)

pointer start

start limitAllocated storage Run queue
Heap Free space Heap

Free Queue
end

Queue

As we add entries to the end of the run queue, it grows towards the middle of

the heap. Similarly, as we allocate memory in the ordinary part of the heap, the

free pointer moves towards the centre of the heap. This memory model has the

benefit that we need only perform a single test to determine whether we need to
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do a garbage collection (we just test whether the difference between the end of

the run queue and the free pointer is sufficiently large for the allocation we wish

to do).

But what about when we remove entries from the start of the run queue?

We end up with a gap at the end of the heap. Fortunately, this gap can easily

be reused: whenever we need to do a garbage collection we first check if there

is enough space in the gap between the start of the run queue and the end of

the heap. If there is, we just shift the run queue back up to the end of the heap

instead of doing a real garbage collection. Now, it turns out that the run queue

is usually very short (containing only one or two processes), so copying the run

queue back to the end of the heap is significantly cheaper than doing a garbage

collection.

After compaction

start limitAllocated storage
Heap

start limitAllocated storage
Heap Free space

Unused space

Before compaction

Run queue Heap

HeapFree space Run queue

The data contained within the run queue has a very simple format:

Definition 8.11 (Run queue)

Value n Value 1 Closure

StartQEndQ

Each closure is followed by some number of values (which correspond to the

arguments given to that process). For instance, if we output two values v1 and v2
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along some channel which already contains a reader (represented by the closure c),

then we add the closure c, followed by the values v1 and v2, to the end of the run

queue. This avoids having to allocate any permanent storage for v1 and v2 (note

that it is not always possible to execute the unblocked process immediately, so

we will in general need to store v1 and v2 somewhere until the unblocked process

can consume them).



Chapter 9

Compiling Pict to C:

Implementation

We present our compilation of Pict to C in three parts: The expression [[a]] denotes

the C expression which implements the Pict atom a, the expression [[P ]] denotes

the C statement sequence which implements the process P , and the expression

[[?[ỹ].P ]] denotes the C statement sequence which builds a closure for the process

abstraction ?[ỹ].P .

9.1 Basic definitions

The following macro definitions are used throughout the C code which follows:

Definition 9.1 (Basic macro definitions)

#define OFFSET(x,i) ((Val *)(x-1))[i]

#define STATUS(x) OFFSET(x,0)

#define VAL(x) OFFSET(x,1)

#define TUPLE(x) (Tuple+(x<<3))

#define TAG(x) ((Val)(x)+1)

The OFFSET macro takes as arguments a tagged word x and an integer i and

extracts the i’th word of the heap object pointed to by x (note that since x is

tagged we must subtract 1 from x to get address of the start of the object in the

138
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heap). We assume that the type identifier Val is already defined to be the type

of integers of the same size as a machine word.

The STATUS macro extracts the first word pointed to by x (which always

contains a descriptor). The VAL macro extracts the second word pointed to by x

which, in the case where x is a channel, contains the value stored in the channel.

The TUPLE macro constructs a valid descriptor for a tuple of size x. The TAG

macro takes a pointer value and tags it (so that it can be stored in the heap).

All processes refer to a small number of global variables which hold pointers

to the start and end of the run queue and the next free allocation space in the

heap:

Definition 9.2 (Global variables)

Val *EndQ; Pointer to the end of the run queue
Val *StartQ; Pointer to the start of the run queue
Val *Free; Pointer to the next free space in the heap

9.2 Encoding processes

As mentioned in Chapter 8, processes are represented using heap-allocated clo-

sures. Each closure contains the address of a C function of the form described in

the following definition.

The function f represents the process abstraction ?[y1, . . . , ym].P whose free

variables are x1, . . . , xn (note that {x1, . . . , xn} = fv(P ) − {y1, . . . , ym}). We

declare local variables in f for both the free variables x1, . . . , xn and the abstracted

variables y1, . . . , ym.

The first thing f does is to check that there is enough free space in the heap.

We allocate ordinary storage at the end of the allocation region (pointed to by

Free), and allocate run queue entries the opposite end of the heap (pointed to by

EndQ). Thus, if Free + heap(P ) > EndQ then there is not enough space in the

heap to allocate heap(P ) words and we call the garbage collector.
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Definition 9.3 (Process template)

void f (void) {

Val closure,y1,. . .,ym,x1,. . .,xn;

if (Free + heap(P ) > EndQ) Gc(heap(P ));
/* Get closure pointer */

closure = StartQ[0];
/* Get arguments */

y1 = StartQ[−1];
. . .

ym = StartQ[−m];

StartQ -= m + 1;
/* Bind free variables */

x1 = OFFSET(closure,2);
. . .

xn = OFFSET(closure,n+ 2);
/* Execute process */

[[P ]]
}

The expression heap(P ) denotes the total number of words we wish to allocate

in both the ordinary storage area and the run queue. We pass heap(P ) as an

argument to the garbage collector, which guarantees that if it returns control

there will be at least heap(P ) words free in the heap (we can always determine

the maximum amount of storage required by a process, see Definition 9.29 in

Section 9.17 for details).

We load the variable closure with the first value in the run queue (which is

always a pointer to a closure for the current process). After that, we initialise

the argument variables y1, . . . , ym, loading their values from the run queue. The

free variables x1, . . . , xn are then loaded with the values stored in closure. (In

the case where P has no free variables, we can can omit the code which loads

closure, since it is never used in the body of f .) We assume that the free

variables x1, . . . , xn are given in some canonical order, so that we know where

they are stored in the closure.

The expression [[P ]] denotes the C code which implements the process P (the

actual translation of processes into C is described later). The code implementing
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P can now refer to the variables x1, . . . , xn and y1, . . . , ym in the same way as we

would in a normal C program. This also means that the C compiler is free to

optimise the storage for both sets of variables in the same way as it would for

any other C program.

9.3 The scheduler

Now that we have described the representations of the run queue and the pro-

cesses that inhabit it, we can explain how we execute processes. The following

top-level C function is responsible for initializing the heap space and run queue,

placing the initial process on the run queue, and executing it (and any other pro-

cesses which are subsequently placed on the run queue). Once there are no more

processes to run, the top-level program returns, and the whole program finishes.

(This code implements the behaviour described in the Sched rule of Section 7.11.)

Definition 9.4 (Main program and scheduler loop)

void main (int argc, char **argv)

{

/* Initialise heap and run queue */

Free = . . .; StartQ = . . .; EndQ = . . .;

/* Put initial process on run queue */

*StartQ-- = initialProcess;

/* Scheduler loop */

while (StartQ != EndQ) {

((void(*)(void))(OFFSET(*StartQ,1)))();

}

}

Recall that StartQ and EndQ are pointers to the start and end of the run queue

respectively. The expression *StartQ therefore denotes the first value in the run

queue, which must be a pointer to a closure. The expression OFFSET(*StartQ,1)

extracts the first data value in the closure, which is always a pointer to a C

function of the form described in the previous section. We therefore cast the

type of OFFSET(*StartQ,1) to void(*)(void) (the type of pointers to functions

which take no arguments and return no result), enabling us to apply the resulting
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value to the empty argument list (). This has the effect of running the first

process on the run queue. When that process terminates, it returns control to

the scheduler loop, which checks if there are any more processes in the run queue,

repeating the above procedure if the run queue is non-empty.

The above scheduler is so simple that there is no reason why it should really be

a separate function: each process, once it has finished executing its own code could

just call the next process in the run queue itself. However, such a compilation

scheme runs into a well-known problem with compiling to C (see [Jon92], for

example): Suppose that the processes P1, P2, . . . are on the run queue. We start

P1 running by calling the function representing P1. Once it has finished doing its

own work, P1 calls the function representing P2, and so on. This behaviour will

eventually cause C’s stack to overflow, since we only return from the functions

representing P1, P2, . . . when there are no processes left to execute (i.e. when the

whole Pict program has finished executing).

Of course, a clever C compiler might notice that in each function Pi the call

to Pi+1 is the last action of Pi, and therefore remove the stack frame for Pi before

calling Pi+1. Unfortunately, we are not aware of any C compiler which does this

optimisation. Instead, the Pict compiler makes a virtue out of necessity and uses

the scheduler to do various useful checks (for example, checking if there have been

any interrupts or if any input/output data is available).

9.4 Atoms

The compilation of integer and boolean atoms into C expressions is straight-

forward (given the representations of integers and booleans from Section 8.3.1).

The compilation of Pict variables is trivial, since we maintain the convention that

every Pict variable is represented by a C variable of the same name:

Definition 9.5 (Compiling atoms)

[[x]] .= x [[true]] .= 1

[[i]] .= 2 ∗ i [[false]] .= 0
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9.5 Process abstractions

Processes are represented using heap-allocated closures, where each closure con-

tains the address of a C function whose general format is described in Section 9.2.

The expression [[?[y1, . . . , ym].P ]] yields a C statement which builds a closure for

the process abstraction ?[y1, . . . , ym].P (allocating the closure at the next free

space in the heap).

Definition 9.6 (Process abstractions) [[?[y1, . . . , ym].P ]] .=

Free[0] = TUPLE(n + 2);
Free[1] = (Val)&f;

Free[2] = x1;

...

Free[n + 1] = xn;

Free += n + 2;

We first write an appropriate descriptor word (which says that this object is a

tuple of size n+ 2). Then we write the address of the function f (which contains

the code implementing ?[y1, . . . , ym].P ) and the values x1, . . . , xn into the closure.

Finally, we increment Free by n + 2 words (the size of the closure we have just

created).

We assume that the variables x1, . . . , xn are given in some canonical order (so

that when we come to implement the code for ?[y1, . . . , ym].P we know which part

of the closure each free variable is stored in). We assume that the name of the

function f is fresh (and that the function f has itself already been defined, using

the template given in Section 9.2 and the encoding of processes which follows).

9.6 The null process

The null process has no behaviour and is implemented as the empty instruction

sequence. This has the effect of returning control to the scheduler if there is

no other work to be done in the current process. (This code implements the

behaviour described in the Nil rule of Section 7.11.)
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Definition 9.7 (The null process) [[0]] .= /* Nothing */

9.7 Channel creation

To create a new channel, we assign the current value of the free space pointer

to the local variable x (after tagging it, to indicate that x it is a pointer into

the heap). We then set the first word of x (the descriptor word) to Empty and

increment the free pointer by the size of the channel (two words). We need not

initialise the value field of the channel, since the garbage collector knows that

if a channel’s status is Empty, it should not scan the value field. The process

P is compiled in the scope of the local variable x. (This code implements the

behaviour described in the Res rule of Section 7.11.)

Definition 9.8 (Channel creation) [[(ν x)P ]] .=

{

Val x = TAG(Free);

Free[0] = Empty;

Free += 2;

[[P ]]
}

9.8 Conditional expressions

The boolean values ‘true’ and ‘false’ are represented by the integers 1 and 0

respectively. This representation is consistent with that used by C’s conditional

statement, so we can just interpret Pict conditionals using C conditionals.

Definition 9.9 (Conditionals) [[if a then P else Q]] .=

if ([[a]]) { [[P ]] } else { [[Q]] }
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9.9 Parallel composition

The compilation of parallel composition is short and sweet: we compile parallel

composition using C’s sequential composition operator! The π-calculus is a con-

current, non-deterministic, language, but C is both sequential and deterministic,

so it should not be surprising if we find that the compilation to C has the effect

of sequentialising the execution of π-terms. (This code implements the behaviour

described in the Prl rule of Section 7.11.)

Definition 9.10 (Parallel composition) [[P | Q]] .= [[P ]] ; [[Q]]

The above compilation of P | Q clearly determines that P will always execute

before Q. Such deterministic behaviour is, not surprisingly, actually very helpful

when tracking down programming errors. However, it is possible to simulate

some form of non-determinism, if required: for instance, we could compile P | Q

so that we test a random number at runtime and then decide which process to

execute on the basis of that test.

It is worth noting that the author has never felt the need to actually do this

in the Pict compiler since, for non-trivial programs, plenty of non-deterministic

behaviour arises due to time-dependent interactions between Pict code and the

operating system (for example, during input/output or interrupt handling).

9.10 Inline C code

Since all Pict variables are represented using C variables, it is easy to insert

user-defined C code into the code produced by our compiler:

Definition 9.11 (Interfacing with C) [[let x = "C code" in P ]] .=

{

Val x = C code;

[[P ]]
}
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The value resulting from the C expression containing in the string "C code"

is bound to the variable x. For example, the usual integer operations can be

defined using inline C code as follows:

Definition 9.12 (Integer operations)

Addition : let x = "x + y" in P

Subtraction : let x = "x - y" in P

Multiplication : let x = "x * (y >> 1)" in P

Division : let x = "x / (y >> 1)" in P

Comparison : let x = "x == y" in P

Recall that a Pict integer i is represented using the C integer 2 ∗ i. Thus, to

implement i + j it is sufficient to just add the C representations of i and j, since

(2 ∗ i) + (2 ∗ j) = 2 ∗ (i + j). Subtraction can be implemented in the same way,

since (2∗i)−(2∗j) = 2∗(i−j). Comparison operations are also unaffected by our

representation of integers since, for example, 2 ∗ i = 2 ∗ j iff i = j. We therefore

pay no additional cost for doing simple arithmetic and comparison operations on

tagged integers.

However, our representation of integers does cause some extra work when we

multiply integers, since (2 ∗ i) ∗ (2 ∗ j) 6= 2 ∗ (i ∗ j): we must divide one of the

C operands by two before multiplying the C representations of i and j (it is

necessary to divide by two before multiplying the integers, otherwise we would

lose precision). In fact, we use a right-shift operation to divide j by two, since

that is usually faster than doing a real division). Note that, in practice, it is

often the case that one of the operands in a multiplication is a constant, in which

case we can compute the right-shift operation at compile-time and we avoid any

additional cost for multiplying tagged integers. The implementation of division

behaves similarly.

Boolean conjunction, disjunction and negation can be implemented using C’s

bitwise operators (there is no need to use C’s more general logical operators,

which are designed to allow any non-zero integer to be interpreted as ‘true’).
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Definition 9.13 (Boolean operations)

Conjunction : let a = "b & c" in P

Disjunction : let a = "b | c" in P

Negation : let a = "b ˆ 1" in P

Our style of code generation gives the C optimiser the chance to place inter-

mediate values in registers. For example, the Pict code

let x = "y - z" in
let b = "x == 0" in

if b then P else Q

is translated into the following C code, which we would expect any reasonable

optimising C compiler to implement using registers to hold the values of x and b:

{

Val x = y - z;

{

Val b = x == 0;

if (b) { [[P ]] } else { [[Q]] }
}

}
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9.11 FIFO queue creation

The following function allocates a new FIFO queue containing the two queue

elements first and last.

Definition 9.14 (FIFO queue creation)

Val CreateQueue (Val first, Val last) {

Val fifo = TAG(Free);

/* Allocate FIFO */

Free[0] = TUPLE(3);

Free[1] = TAG(Free+3);

Free[2] = TAG(Free+6);

/* Allocate first queue element */

Free[3] = TUPLE(3);

Free[4] = first;

Free[5] = TAG(Free+6);

/* Allocate second queue element */

Free[6] = TUPLE(3);

Free[7] = last;

Free[8] = 0;

Free += 9;

return fifo;

}

The resulting data structure has the following structure. The FIFO contains

two pointers (to the first and last queue elements). The first queue element

contains first, and is linked to the last queue element, which contains last.

1

13

FIFO Queue

11 0

x

first 0

0 1 3 1 1 0

3 last1 0
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9.12 FIFO queue insertion

The following function inserts the value val at the end of fifo. The local variable

last is a pointer to the last element in the queue, so we make the second field

of last point to TAG(Free), the location of the new queue element, and then

update fifo so that it also points to the new element. We then build the new

queue element and increment Free by the number of words we have allocated.

Definition 9.15 (FIFO queue insertion)

void InsertLast (Val fifo, Val val) {

Val last = OFFSET(fifo,2);

OFFSET(last,2) = TAG(Free);

OFFSET(fifo,2) = TAG(Free);

Free[0] = TUPLE(3);

Free[1] = val;

Free[2] = 0;

Free += 3;

}

9.13 FIFO queue removal

The function RemoveFirst returns the first element in the channel x’s queue (x

must always contain a fifo queue). If, after removing the first element, we find

that the queue has length one, we remove the whole queue structure from x and

change x’s status to status.
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Definition 9.16 (FIFO queue removal)

void RemoveFirst (Val x, int status) {

Val fifo = VAL(x);

Val first = OFFSET(fifo,1);

Val next = OFFSET(first,2);

if (next == OFFSET(fifo,2)) {

STATUS(ch) = status;

VAL(ch) = OFFSET(next,1);

} else {

OFFSET(fifo,1) = next;

}

return OFFSET(first,1);

}

The value first is a pointer to the first element in fifo. The value next is

a pointer to the next element in the queue. Thus, if next == OFFSET(fifo,2)

then next is the last element in the queue, and we reset x’s status and put the

contents of next in x’s value field.

9.14 Output expressions

The behaviour of an asynchronous output expression is dependent on the status

of the channel we are outputting on. We therefore use a switch statement to

select the appropriate thing to do when outputting on a channel. The following

code presents just the outer structure of the switch statement, since we present

the actual code for each case separately.

Definition 9.17 (Output) [[x![a1, . . . , an]]]
.=

switch (STATUS(x)) {

...

}

If x already contains one reader, then we reset the status of x to Empty and

place the closure for the reader (which is stored in the value field of x) on the run
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queue. We then place the translations of the output atoms a1, . . . , an after the

closure on the run queue, ready to be consumed by the reader when the scheduler

restarts it. (This code implements the behaviour described in the AOut-R rule

of Section 7.11, but is specialised for the case where there is only one reader.)

Definition 9.18 (Output: OneReader)

case OneReader:

STATUS(x) = Empty;

EndQ[0] = VAL(x);

EndQ[-1] = [[a1]];
...

EndQ[-n] = [[an]];
EndQ -= n + 1;
break;

If x contains a replicated reader, we do exactly the same thing, except that

we do not reset the status of x to Empty (since communicating with a repli-

cated reader does not consume that reader). It is worth noting that in both the

OneReader and the Replicated cases we need not allocate any permanent stor-

age (storage allocated in the run queue can be reclaimed without doing a garbage

collection, as explained in Section 8.3.4). (This code implements the behaviour

described in the AOut-R* rule of Section 7.11.)

Definition 9.19 (Output: Replicated)

case Replicated:

EndQ[0] = VAL(x);

EndQ[-1] = [[a1]];
...

EndQ[-n] = [[an]];
EndQ -= n + 1;
break;

If the status of x is Empty, we set the status of x to OneWriter, allocate a

tuple to store the output atoms a1, . . . , an, and place a (tagged) pointer to that

tuple in the value field of x. If n = 1 we need not allocate a tuple at all, since we
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already have enough space to store the output atom in the value field. Similarly,

if n = 0, we need not allocate a tuple, we need only write a dummy value (say

zero) in the value field of x (it is necessary to write something in the value field of

x, since the garbage collector will scan the value field of any non-empty channel,

though we could get around this problem by having a special descriptor tag for

this case, just as we have a special case already for empty channels). (This code

implements the behaviour described in the AOut-W rule of Section 7.11, but is

specialised for the case where the channel is empty.)

Definition 9.20 (Output: Empty)

case Empty:

STATUS(x) = OneWriter;

VAL(x) = TAG(Free);

Free[0] = TUPLE(n + 1);
Free[1] = [[a1]];
...

Free[n] = [[an]];
Free += n + 1;
break;

If x already contains one writer, then we must allocate a FIFO data structure

of the form described in Section 8.3.3. We change the status of x to ManyWriters,

allocate a FIFO data structure containing two queue elements (one for the value

which was already stored in x, and the other for the tuple of values a1, . . . , an).

We arrange the queue so that the value which was already stored in x is placed

first in the queue. (This code implements the behaviour described in the AOut-W

rule of Section 7.11, but is specialised for the case where there is just one writer.)
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Definition 9.21 (Output: OneWriter)

case OneWriter:

{

tuple = TAG(Free);

Free[0] = TUPLE(n + 1);
Free[1] = [[a1]];
...

Free[n] = [[an]];
Free += n + 1;
VAL(x) = CreateQueue(VAL(x),tuple);

}

break;

If there are already many writers in x, the situation is slightly simpler, since

the FIFO data structure has already been allocated, and we need only allocate

an extra queue element (and a tuple for a1, . . . , an). We insert the new queue

element, which is at address Free, at the end of the FIFO. (This code implements

the behaviour described in the AOut-W rule of Section 7.11, but is specialised

for the case where the channel contains more than one writer.)

Definition 9.22 (Output: ManyWriters)

case ManyWriters:

{

Val tuple = TAG(Free);

Free[0] = TUPLE(n + 1);
Free[1] = [[a1]];
...

Free[n] = [[an]];
Free += n + 1;
InsertLast(VAL(x),tuple);

}

break;

In the case where x holds many readers we must implement the inverse of the

previous operation and remove the first reader from the FIFO queue of readers.
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If, after removing one reader from the FIFO queue, there is only one reader left,

the RemoveFirst function sets the status of x back to OneReader. (This code

implements the behaviour described in the AOut-R rule of Section 7.11, but is

specialised for the case where there is more than one reader.)

Definition 9.23 (Output: ManyReaders)

case ManyReaders:

EndQ[0] = RemoveFirst(x,OneReader);

EndQ[-1] = [[a1]];
...

EndQ[-n] = [[an]];
EndQ -= n + 1;
break;

Clearly, the code for implementing an output expression is very large in com-

parison to the constructs we have presented earlier! What is more, output ex-

pressions are a fundamental part of the computation mechanism used by Pict,

and are therefore very common in programs. If we actually tried to compile every

asynchronous output as indicated above, we would generate huge amounts of C

code for anything other than toy programs.

We could trade off code size against execution time by inlining the code for

the commonly executed cases and putting all the other cases in a library function

(in the hope that the library function will be called relative infrequently). In

Section 9.18 we describe a more flexible technique for optimising communication

based on finding approximations of a channel’s status at compile time.

9.15 Replicated input expressions

Because of the restrictions we made on the occurrences of replicated input (see

Section 7.6 for details), we can be sure that the status of x is always Empty when

we execute the expression x?∗[y1, . . . , yn].P . We therefore set the status of x to

Replicated and place a (tagged) pointer to the closure for x?∗[y1, . . . , yn].P in

the value field of x (recall that the expression [[?[y1, . . . , yn].P ]] returns a sequence
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of C statements which builds a closure for the given process abstraction at the

next free space in the heap). (This code implements the behaviour described in

the Repl rule of Section 7.11.)

Definition 9.24 (Replicated input) [[x?∗[y1, . . . , yn].P ]] .=

{

STATUS(x) = Replicated;

VAL(x) = TAG(Free);

[[?[y1, . . . , yn].P ]]
}

9.16 Input expressions

The behaviour of input expressions is in most cases similar to that of output

expressions. The main difference is that before we check the status of x, we

allocate a closure for the process abstraction ?[y1, . . . , yn].P at the next free space

in the heap (the local variable closure is bound to the tagged address of this

closure). In the case where there already is an output value in the channel, this is

rather wasteful, since we build a closure for ?[y1, . . . , yn].P and then immediately

put it on the run queue, when we could have just executed P directly. Fortunately,

this case is sufficiently rare that we can make do with this simpler, more uniform,

treatment of input.

Definition 9.25 (Input) [[x?[y1, . . . , yn].P ]] .=

{

Val closure = TAG(Free);

[[?[y1, . . . , yn].P ]]
switch (STATUS(x)) {

...

}

}

Is the case where there is one writer in the channel, we put our closure on

the run queue, followed by the elements of the stored tuple of values. (This code
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implements the behaviour described in the Inp-W rule of Section 7.11, but is

specialised for the case where the channel contains just one writer.)

Definition 9.26 (Input: OneWriter)

case OneWriter:

{

Val tuple = VAL(x)

STATUS(x) = Empty;

EndQ[0] = closure;

EndQ[-1] = OFFSET(tuple,1);

...

EndQ[-n] = OFFSET(tuple,n);

EndQ -= n + 1;
}

break;

It is rather a shame that we have to copy the individual values onto the run

queue instead of just copying a pointer to the tuple. However, if we wish to avoid

this cost we need multiple entry points to each process abstraction, since in the

case where a closure is put on the run queue by an output operation, it will find

its arguments on the run queue, while in the case where a closure is put on the

run queue by an input operation it will find its arguments in a tuple.

In the case where the channel is empty, we store our closure in the channel

and set the channel’s status to OneReader. (This code implements the behaviour

described in the Inp-R rule of Section 7.11, but is specialised for the case where

the channel is empty.)

Definition 9.27 (Input: Empty)

case Empty:

STATUS(x) = OneReader;

VAL(x) = closure;

break;
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The remaining cases use the FIFO queue manipulation functions in a similar

way to those used in the compilation of output expressions. (This code imple-

ments the behaviour described in the Inp-R and Inp-W rules of Section 7.11, but

is specialised for the case where the channel contains just one reader, more than

one reader, or more than one writer.)

Definition 9.28 (Input: OneReader,ManyReaders,ManyWriters)

case OneReader:

STATUS(x) = ManyReaders;

VAL(x) = CreateQueue(VAL(x),closure);

break;

case ManyReaders:

InsertLast(VAL(x),closure);

break;

case ManyWriters:

{

Val tuple = RemoveFirst(x,OneWriter);

EndQ[0] = closure;

EndQ[-1] = OFFSET(tuple,1);

...

EndQ[-n] = OFFSET(tuple,n);

EndQ -= n + 1;
}

9.17 Heap usage

Now that we have seen all of the compilation of processes, it is easy to deter-

mine the maximum number of words that a process may need to allocate. This

information is used in the process template given in Definition 9.3, since the first

action of every process is to check whether there is enough free space for all of

the allocation it might do.
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Definition 9.29 (Heap usage)

heap(0) .= 0
heap((ν x)P ) .= 2 + heap(P )
heap(P | Q) .= heap(P ) + heap(Q)

heap(if b then P else Q) .= max(heap(P ), heap(Q))
heap(let x = "C code" in P ) .= heap("C code") + heap(P )

heap(x![a1, . . . , an])
.= 10 + n

heap(x?∗[y1, . . . , yn].P ) .= closureSize(?[y1, . . . , yn].P )
heap(x?[y1, . . . , yn].P ) .= 9 + closureSize(?[y1, . . . , yn].P )

The expression heap("C code") denotes the number of words allocated by the

inline C code (in Pict, this number is provided explicitly by the programmer).

We calculate the number of words required to hold the closure for the process

abstraction ?[y1, . . . , yn].P by calculating the size of the set of free variables of

?[y1, . . . , yn].P , and adding two (one word for the descriptor and one word for the

code pointer).

Definition 9.30 (Closure size)

closureSize(?[y1, . . . , yn].P ) .= |fv(P ) − {y1, . . . , yn}| + 2

9.18 Optimising communication

The code required to implement input and output expressions is very large (con-

sidering the fact that they are the fundamental operations of Pict, and are there-

fore pervasive throughout Pict programs). Fortunately, there is plenty of scope

for optimisation: any program analysis which is able to determine the state of a

channel at compile time (or at least, a set of possible states) is potentially very

useful. For example, if the channel x is known to contain a replicated process

(a very common situation, since functions are implemented as replicated pro-

cesses), then we can avoid testing the status of x and execute the appropriate

code directly:
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Definition 9.31 (Optimised output) [[x![a1, . . . , an]]]
.=

EndQ[0] = VAL(x);

EndQ[-1] = [[a1]];
...

EndQ[-n] = [[an]];
EndQ -= n + 1;

Specialising the code for input and output expressions has two benefits: the

code becomes small enough that we can inline it, and we avoid testing the status

of x. The Pict compiler uses a local program analysis (i.e. an analysis which does

not attempt to track higher-order uses of channels) to determine when channels

are guaranteed to contain replicated readers and when channels are guaranteed

to be empty (two of the most common cases).

A number of other researchers have proposed more sophisticated analyses

which produce similar information (usually about the maximum size of a channel

queue) [KNY95, NN94]. The author, in collaboration with Kobayashi and Pierce,

has recently developed a linear type system for Pict which can determine when

a channel is used by exactly one reader/writer pair [KPT96]. If x is has a linear

type then the code presented in Definition 9.32 is sufficient to implement an

output on x (the case for linear input expressions is similar).

The linear type system ensures that if x has linear type then it is used by

exactly one reader/writer pair. Thus, since the expression above is using x’s write

capability, the rest of the program must only have the capability to do a single

read from x. This means that x can either be empty (because the rest of the

program has not yet used its read capability), or x can contain a single reader (if

the rest of the program has already done a read on x).
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Definition 9.32 (Linear output) [[x![a1, . . . , an]]]
.=

if (STATUS(x) == Empty) {

STATUS(x) = OneWriter;

VAL(x) = TAG(Free);

Free[0] = TUPLE(n);

Free[1] = [[a1]];
...

Free[n] = [[an]];
Free += n + 1;

} else {

EndQ[0] = VAL(ch);

EndQ[-1] = [[a1]];
...

EndQ[-n] = [[an]];
EndQ -= n + 1;

}

Note that in the case where x already contains a reader we do not need to

reset the status of x to Empty, since the linearity of x ensures that no other

processes will use it in the future (both the input and output capabilities have

been consumed).

9.19 Performance

The purpose of this chapter was to investigate whether the π-calculus can be

implemented efficiently enough for it to be considered as a reasonable opera-

tional foundation for concurrent programming. To get a rough idea of the per-

formance of the code generated by our Pict compiler we wrote three solutions to

the “nqueens” problem. We first wrote an ML program to solve the problem, and

then translated that into Pict (using Pict’s high-level derived forms for functions).

The table below indicates that the Pict version of the program is approximately

five times slower than that produced by the New Jersey ML compiler (version

0.93). Considering the simplicity of our compilation (Pict’s code generator is

implemented using just 900 lines of ML), the performance of Pict was quite a

surprise!
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Time Code size
New Jersey ML 2.3s 380Kb
Pict 12s 25Kb
CML 46s 545Kb

To get an idea how fast our implementation of communication is, we converted

our ML program into a CML [Rep92] program (CML is a concurrent extension of

ML which implements channel-based communication on top of New Jersey ML).

We converted all functions so that, instead of returning their results directly,

they returned their results along an explicit result channel (this matches the

way we return results from functions encoded in Pict). We did not use channels

to implement the functions themselves, since CML has no built-in support for

replicated inputs. As can be seen above, CML ran our example almost four times

slower than Pict.

The reader should not attach too much importance to the exact figure quoted

here, since there are a number of differences which are difficult to quantify (such

as differences in garbage collection strategy). However, it is reassuring to find

that the performance of Pict code, which uses just channel-based communication,

is in the same ball-park as that of functional code. It is especially worth bearing

in mind that Pict loses some performance just because we compile to C rather

than to native code. Tarditi, Acharya and Lee [TAL90] found that compiling

to C rather than to native code costs almost a factor of two for New Jersey ML

code. If we are paying a similar price by compiling Pict to C, we might reasonably

expect a native code generator to improve the performance of Pict to within a

factor of two or three from New Jersey ML.

Our Pict compiler produces much smaller programs than the New Jersey

compiler. This is not because we are compiling π-calculus, but because Pict

has a tiny runtime system (just 800 lines of C). Much of the code which would

normally live in the runtime system appears as inline C code in Pict programs.

This gives our Pict compiler the ability to discard any C code which is unused in

the program being compiled, and helps contribute to the very small code size of

Pict programs.



Chapter 10

Related work

In this chapter we review related work on type systems and implementation

techniques for concurrent calculi. We have already shown in Chapter 6 that

there is a very strong relation between π-calculus types and λ-calculus types, so

we will not discuss λ-calculus type systems here.

10.1 Type systems

We first compare our type system with Milner’s original sort system [Mil91a,

Mil91b] for the polyadic π-calculus (which inspired our π-calculus type system).

Milner’s sort system partitions the channels in a π-term using subject sorts. Each

subject sort X is associated with an object sort [X1, . . . , Xn] (this association

is written as X 7→ [X1, . . . , Xn]). An object sort describes how members of a

particular subject sort may be used for communication. For example, in the

following process we say x has sort X and y has sort Y . Channels of sort X carry

pairs of channels of sort Y , and channels of sort Y carry the empty tuple.

x : X 7→ [Y, Y ] y : Y 7→ [ ] x![y, y].y![]

The above example is well-sorted, since x is only ever used to communicate

the pair [y, y], which has the expected sort [Y, Y ]. Similarly, y is only ever used

to communicate the empty tuple.

The sort Y is equivalent to the type ↑[ ] in our type system, and the sort X

is equivalent to the type ↑[↑[ ], ↑[ ]]. Our typing for the previous example is:
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x : ↑[↑[ ], ↑[ ]], y : ↑[ ] ` x![y, y].y![]

Milner also allows recursive sorts. For example, the sort of integer lists might

be List, where

List 7→ [Nil ,Cons] Nil 7→ [ ] Cons 7→ [Int ,List]

Compare this with the corresponding recursive type in our type system:

µList.↑[↑[ ], ↑[Int ,List]]

We conjecture that the well-typed π-terms of our type system coincide with

Milner’s well-sorted π-terms. Note, however, that Milner’s sorts allow us to

partition channels more carefully than we can with our types. For example, the

sorts P and V below are not considered to be equivalent.

P 7→ [ ] V 7→ [ ]

This matching of sorts ‘by name’ rather than ‘by structure’ is quite attractive.

Suppose p and v have different intended uses and we wish to avoid p being

accidentally used in place of v (as might well be the case if p and v are part

of a semaphore). If we set p : P and v : V then Milner’s sorting system will

detect any confusion of p and v, but note that this technique is only useful in an

explicitly-typed calculus.

As previously mentioned, our type system evolved from work on Milner’s sort

system. We decided to use more traditional type-theoretic techniques for three

reasons:

1. Milner’s sort system is very simple, but all sort information is global. For

example, a closed π-term does not have a trivial type – all the sort informa-

tion required inside the π-term is visible at the top-level. This seems rather

unsatisfactory, and also causes a number of technical problems in proving

subject-reduction.

2. Although it is possible to formulate polymorphic sorts, they are much more

complicated than polymorphic types in our system.
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3. Once one has a sufficiently powerful polymorphic type system, it is pos-

sible to distinguish values of isomorphic type using the abstract datatype

encodings presented in Section 5.7.

Vasconcelos and Honda [VH93] have independently proposed a monomorphic

type system for the polyadic π-calculus which is very similar to ours (except

that they treat recursive types in a more traditional way, interpreting recursive

types as regular trees). They prove that their type system is sound and has the

principal type property using essentially identical techniques to those proposed

here.

Pierce and Sangiorgi [PS93] have developed a π-calculus type system which

uses the idea of I/O tags to capture additional information about how a channel is

used, controlling whether a channel may be written to, read from, or both. Their

type system can be thought of as a refinement of the type system presented here

(though it was developed independently). We give the essence of the idea below,

using our own notation. We introduce two new channel types: ?δ and !δ, the

types of input-only and output-only channels respectively. Clearly, an ordinary

channel of type ↑δ, which allows either input or output, can be used in place of

an input-only or an output-only channel. In terms of the subtyping relation we

have:

↑δ ≤ ?δ ↑δ ≤ !δ

As is usual in subtyping systems, we introduce a rule of subsumption for

values:

∆ ` v : δ′ δ′ ≤ δ

∆ ` v : δ

We then refine the typechecking rules for the input and output operators so

that they use the new channel types:

∆ ` c : !δ ∆ ` v : δ ∆ ` P

∆ ` c!v.P

∆ ` c : ?δ ` p : δ; ∆′ ∆, ∆′ ` P

∆ ` c?p.P
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Clearly, we can derive our original rules for input and output from the above

rules since, if ∆ ` c : ↑δ, we can use subsumption to show that either ∆ ` c : !δ

or ∆ ` c : ?δ as required.

Suppose, for the purposes of explanation, we introduce record patterns and

values, with the following typing rules:

∆ ` v1 : δ1 . . . ∆ ` vn : δn

∆ ` {l1 = v1, . . . , ln = vn} : {l1 : δ1, . . . , ln : δn}

` p1 : δ1; ∆1 . . . ` pn : δn; ∆n

` {l1 = p1, . . . , ln = pn} : {l1 : δ1, . . . , ln : δn}; ∆1, . . . , ∆n

We also allow subtyping on records in the usual way. Pierce and Sangiorgi

also give subtyping rules for each new channel types.

δ1 ≤ γ1 . . . δn ≤ γn

{l1 : δ1, . . . , ln : δn, . . .} ≤ {l1 : γ1, . . . , ln : γn}

δ ≤ δ′

?δ ≤ ?δ′
δ′ ≤ δ

!δ ≤ !δ′
δ ≤ δ′ δ′ ≤ δ

↑δ ≤ ↑δ′

The subtyping rule for input-only channels says that we can forget information

about the value we receive from input-only channels. For example, we can forget

the field age : Int in the record being sent along c below:

∆, n : String ` P

c : ?{name : String , age : Int} ` c?{name = n}.P

The subtyping rule for output-only channels is the dual of the above, since it

says that we can send extra information along output-only channels. For example,

we can send a record with an extra field male = true along c below:

c : !{name : String , age : Int} ` P

c : !{name : String , age : Int} ` c!{name = Dave, age = 25, male = true}.P

The rule for ordinary channel types states that they are invariant in the sub-

typing relation: subtyping is only safe on input-only or output-only channels.

Suppose we allow covariant subtyping on input/output channels (a similar exam-

ple can be constructed if allow contravariant subtyping). We can now typecheck
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the following example by using the subsumption and (incorrect) channel subtyp-

ing rule to promote the type of c to be ↑{name : String}. Clearly, this example

can cause a runtime error, since it has sent a record along c which is lacking the

age field.

δ ≤ δ′

↑δ ≤ ↑δ′

c : ↑{name : String , age : Int} ` P

c : ↑{name : String , age : Int} ` c!{name = Dave}.P

The Pict type system [PT95b] uses Pierce and Sangiorgi’s channel subtyping,

as well as subtyping for record values and patterns.

10.2 Type inference

Vasconcelos and Honda [VH93] have independently developed a type inference

algorithm very similar to the one presented here. Their algorithm, takes only

a process P as argument, and constructs the principal context in which P is

well-formed. We can easily derive a similar algorithm from our type inference

algorithm X:

Definition 10.1 (New type inference algorithm)

If ∆ = x1 : α1, . . . , xn : αn and X(∆)(P ) = σ where x1, . . . , xn are the free
variables of P and α1, . . . , αn are distinct type variables then return σ∆.

We conjecture that the above algorithm is equivalent to that proposed by

Vasconcelos and Honda (modulo the fact that we do not do type inference for

recursive types). Note that in the case of a closed π-term P our algorithms

already coincide, since Vasconcelos and Honda’s algorithm returns a trivial type

for P .

Gay [Gay93] has developed an algorithm which infers principle sorts for π-

terms in Milner’s sort system. The algorithm is based on a unification algorithm

for sorts. For example, we can unify the sorts A and D below
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A 7→ [B, C] B 7→ [A] C 7→ [ ]
D 7→ [E, F ] E 7→ [D] F 7→ [ ]

yielding a substitution which identifies A and D, B and E and C and F . Sort

unification is similar to unification for regular trees [Cou83] (the algorithm used

by Vasconcelos and Honda in their type inference algorithm).

The use of subject sorts is particularly convenient when unifying recursive

sorts. Many unification algorithms for recursive trees use tags to record nodes

which have already been visited, thereby ensuring that the unification algorithm

always terminates. This is unnecessary in sort unification, since each node (object

sort) is already labelled with a subject sort. We need only keep a record of which

subject sorts have already been visited.

10.3 Polymorphic types

Vasconcelos [Vas94] has independently proposed a polymorphic type system for

π-calculus which is a special case of the polymorphic type system presented here.

It relies on explicit let-expressions to indicate where type generalisation may

occur (just like the Damas-Milner type system does). The form of let-expression

used in Vasconcelos’ type system is essentially the same as our derived form for

process definitions:

defX1[x̃1] = P1 and . . . andXn[x̃n] = Pn in Q

His type system allows the process definitions X1, . . . , Xn to be given given

polymorphic types, while forcing ordinary channels to be used monomorphically.

In Section 5.2 we showed how our typing rules for polymorphic channels give

rise to a derived typing rule for polymorphic process definitions. We conjecture,

therefore, that Vasconcelos’ polymorphic calculus is a strict sub-calculus of our

polymorphic π-calculus. Note, however, that one benefit of restricting type gen-

eralisation to process definitions is that type inference becomes much simpler

(in fact, just like the Damas-Milner type system, Vasconcelos’ type system has

principal types which can be computed automatically).

Languages such as PFL [Hol83], Poly/ML [Mat91], CML [Rep92] and Facile

[GMP89] which are concurrent extensions of Standard ML [MTH90] all allow a
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limited form of channel polymorphism, since they retain Standard ML’s polymor-

phic type system. It is well-known that the Damas-Milner type system is unsound

in the presence of side-effecting computation, so some care has to be taken with

the typing of any channel creation operator. For example, in CML [Rep92] the

channel function creates new channels, and has the type unit -> ’_a channel.

The weakly polymorphic type ’_a in the type of channel is necessary to avoid

giving types to unsound programs such as the one below:

let

val ch = channel()

in

... send(ch,33) ... (if accept(ch) then x else y) ...

end

The expression channel() has type ’_a channel. The fact that ’_a is a

weak type variable means that it is unsafe to generalise that type. If we allowed

the type of ch to be polymorphic in ’_a then we could instantiate the type of

ch to be int channel in the expression send(ch,33), and bool channel in the

expression if accept(ch) then x else y. This is clearly unsound since one

process is sending an integer along ch while the other is expecting a boolean.

A side-effect of the above treatment of channel creation is that channels do

not have the same status as functions and other datatypes when it comes to

polymorphic typing. For instance, the following server function is supposed to

wait for a pair (x,y) to be sent along id and then reply by sending x along

r. As explained in Chapter 5, there is no reason why the channel id cannot

be polymorphic (the server example is essentially a transliteration of the first

example in Chapter 5). Unfortunately, the type of id can never be polymorphic,

because the type of channel is weakly polymorphic.

val id = channel()

fun server() = let

val (x,r) = receive(ch)

in

send(r,x); server()

end
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Thomsen [Tho93] illustrates how one can improve upon the behaviour of poly-

morphic channels using an effect system (in the context of the Facile language).

However, even though his type system is quite complicated he is still not able to

allow the type of id be polymorphic.

10.4 Implementation

There have been a number of proposals for abstract machines for concurrent

calculi [Ama94, Car85, GMP89, etc.]. At a high-level, our implementation of

communication is almost identical to that described by Cardelli [Car85]. However,

our abstract machine is unique in that it implements nothing but communicating

processes. For example, the abstract machines proposed by both Amadio [Ama94]

and Giacalone et. al. [GMP89] use a separate SECD machine to implement each

process (since the execution of a Facile processes may involve both λ-calculus

reduction and communication).

In practice, the fact that we rely on communication as our sole computational

mechanism means that we have to take more care when representing channels and

processes. For instance, we are unaware of any implementation of channel-based

communication which implements a replicated input construct (most concurrent

languages rely on the functional part of the language to express infinite behaviour,

or prove built-in recursive process definitions)

We are not aware of any compiler which implements a language whose sole

computational mechanism is channel-based communication. However, the com-

pilation of π-calculus to C presented in this dissertation is quite closely related to

the SML to C compiler described in [TAL90]. The stackless representation used

here for π-calculus processes is very reminiscent of the continuation-passing style

of code generation used in the New Jersey ML compiler [AM87] (upon which the

SML to C compiler is built).
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Conclusions and further work

Throughout this dissertation we have looked at the π-calculus from the perspec-

tive of concurrent programming. We have shown that the π-calculus admits a

simple type system which can be extended to include many of the more advanced

type-theoretic features familiar from the λ-calculus. In fact, in the Pict program-

ming language [PT95b] the author, in collaboration with Benjamin Pierce, has

developed a higher-order polymorphic π-calculus, which also includes subtyping,

higher-order subtyping and extensible records. Experience to date suggests that

refinements one can make to λ-calculus type systems are also applicable to the

typed π-calculus.

The fact that communication protocols can be enforced using abstract data-

types (see Section 5.7 for details) gives us real reason to believe that our type

system will be able to catch a significant number of the most common errors in

π-calculus programs. For this reason, we have avoided complicating our channels

types with complex protocol-like information (which often make type checking

and type inference much more difficult). In Pict, the abstract datatypes provided

by our polymorphic type system are used extensively throughout most library

code [PT95c], as well as being used to ensure that the internal representations of

built-in datatypes such as integers and booleans can only be manipulated using

the functions supplied by the compiler.

Of course, that it not to say that there are no useful refinements one can

make to channel types. The Pict type system includes one very useful refinement,

proposed by Pierce and Sangiorgi [PS93], which distinguishes input and output
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capabilities on channels (see Chapter 10 for details). The linear type system

developed by the author, in collaboration with Kobayashi and Pierce [KPT96],

presents another useful refinement to channel types. However, both of these

refinements add only a modest amount of information to channel types, and

therefore retain simple type inference and type checking algorithms.

The problem of how to do type inference for the polymorphic π-calculus is

an interesting problem where further work is required. The expressiveness of

our polymorphic type system makes it very unlikely that type inference will be

decidable in general. The Pict compiler currently gets around this problem by

using a partial type inference algorithm. This allows most, but not all, explicit

type information to be omitted. Experience with Pict suggests that a partial type

inference algorithm is quite usable in practice, since one often writes explicit type

information in programs anyway (as a simple form of program documentation).

However, if any sort of type inference is to appear in the formal definition of Pict,

a more abstract description of partial type inference is required.

The compilation of π-calculus to C presented in this dissertation now forms

the basis of the Pict language implementation. The compilation implemented

in the Pict compiler really does match what we have presented here (modulo a

few simple refinements which avoid incrementing the free space pointer too often,

and which cache the values of global variables as local variables to enable the C

compiler to do a better job of optimising Pict programs). It is nice to find that the

π-calculus has such a simple and concise compilation which, despite its simplicity,

is able to provide reasonable performance. Having an efficient implementation

of π-calculus makes it possible to do real programming in Pict. The largest Pict

programs developed so far (which comprise approximately four thousand lines of

Pict code) implement a graphical user interface toolkit, the performance of which

is perfectly acceptable, though some form of incremental garbage collection would

be helpful.

Our compilation of π-calculus to C is designed so that it can easily exploit

information about a channel’s status at compilation time. An interesting area for

further work is the development of appropriate program analyses for π-calculus.

The linear type system proposed by Kobayashi, Pierce and the author [KPT96] is

one example of such an analysis, but there are many further potential refinements.
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The examples presented in Chapter 2 hint at a problem one encounters when

programming in the π-calculus: the π-calculus is quite a low-level language (its

most irritating feature is the need to always deal with result channels explicitly).

We solved this problem here by defining a number of derived forms. The Pict

language takes a similar approach: it starts with a core language (which is just

asynchronous π-calculus extended with built-in structured data), and then defines

a high-level language via a series of derived forms. This style of formal language

definition is very concise (the type system can be presented in four pages, the

operational semantics in one page, the derived forms in three pages and the

derived typing rules in two pages). It is not necessary to extend the Pict type

system when we add new derived forms, since we can simply derive high-level

typing rules from our basic π-calculus typing rules (as we did in Sections 3.3

and 3.4, for example). This has the additional benefit that the soundness of the

high-level Pict type system depends only on the soundness of Pict’s core language

type system.

In conclusion, we believe that the π-calculus type system presented here en-

ables one to use the π-calculus as a simple type-theoretic foundation for con-

current programming. Moreover, our compilation of π-calculus to C is efficient

enough to allow one also to use the π-calculus as a basis for compiling high-level

concurrent programming languages.
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