
Logical Full Abstraction and PCF

John Longley Gordon Plotkin∗

Abstract

We introduce the concept of logical full abstraction, generalising the
usual equational notion. We consider the language PCF and two exten-
sions with “parallel” operations. The main result is that, for standard
interpretations, logical full abstraction is equivalent to equational full ab-
straction together with universality; the proof involves constructing enu-
meration operators. We also consider restrictions on logical complexity
and on the level of types.

1 Introduction

The study of denotational semantics seeks to provide mathematical descriptions
of programming languages by giving denotations of programs in terms of pre-
viously understood mathematical structures. For example, if P is a program
that takes an input and produces an output, we might take its denotation to
be a function from a set of input-values to a set of output-values. The most
widely-known approach to denotational semantics is that of traditional domain
theory, see e.g., Plotkin (1977), where the mathematical structures involved are
certain kinds of complete partial order (cpo). Other kinds of mathematical struc-
ture have also been used successfully—for a selection of different approaches
see Abramsky, Jagadeesan and Malacaria (1994), Longley (1995) and O’Hearn
and Riecke (1995).

One of the principal aims of denotational semantics is to deepen our under-
standing of the logic of programming languages, and to provide conceptual and
mathematical tools for reasoning about programs. A more specific goal is to
provide mathematical foundations for “program logics” of a kind that could be
used by ordinary programmers.

Denotational semantics can be used to establish relationships between a pro-
gramming language L and a logic J. By giving interpretations of both L and J in
some common mathematical structureM, we may be able to show that if certain
∗To appear in J. Ginzburg, ed., Tbilisi Symposium on Language, Logic and Computation,

SiLLI/CSLI Publications, 1997.

1

theorems are provable in the logic then certain properties of programs hold—for
example, that if the sentence P (3) = 5 is provable in J then the program P (3)
returns the answer 5. Such a result would show that the logic J was indeed useful
for proving certain facts about programs in L.

In this kind of situation we have a way of directly understanding the meaning
of certain simple sentences of J (e.g., P (3) = 5) as statements about computations
in L. One is then prompted to ask whether one could extend this to all sentences
of the logic, and give an interpretation of J purely in terms of the language L
and its evaluation rules, without reference to the structureM. For example, one
might interpret quantifiers as ranging over closed programs or terms of appro-
priate type. We might call this an operational interpretation of J, in contrast
to its denotational interpretation inM. Besides the intrinsic interest of such an
interpretation, it seems likely that an operational interpretation would be more
easily grasped by a non-specialist than a denotational one.

Now, given a logic J with both an operational interpretation in terms of L and
a denotational interpretation inM, it is natural to ask whether these “agree” in
the sense that a sentence is true under one interpretation if and only if it is true
under the other. In this case, we will say that the interpretation of L in M is
logically fully abstract (or LFA) for J. A logically fully abstract interpretation can
be used to show that all sentences provable in J express true facts about L under
the operational interpretation. Note that the familiar notion of (equational) full
abstraction can be seen as a special case of logical full abstraction: consider a logic
J whose only assertions are equations between terms of L, and whose operational
interpretation is “observational equivalence”.

Both the general concept and the name “logical full abstraction” are due to
the second author, though the idea was first worked out in the first author’s
Ph.D. thesis, see Longley (1995). The idea as we have outlined it above is of
course extremely general, as it depends not only on L and J but also on the
kinds of operational and denotational interpretation we have in mind. The aim
of the present paper is to illustrate the basic idea by discussing one particular
kind of logical full abstraction, in the context of a simple logic for the prototypical
functional language PCF, see Plotkin (1977) and Curien (1993). We anticipate
that the study of other notions of logical full abstraction (whether for PCF or
other languages) will prove a very interesting area for further research.

The study of equational full abstraction commonly results in theories of exten-
sional objects, often of functions and data structures; these objects have a nat-
ural mathematical structure, perhaps of order-theoretic, topological or algebraic
character. The study here of logical full abstraction results rather in intensional
concerns, such as the study of definability and so of computability. These distinc-
tions harken back to Scott’s original explicit choice—see Scott (1970) and Scott
and Strachey (1971)—to investigate first extensional theories and only then to
consider questions of computability and of the relation with symbolic computa-
tion. They also bring to mind the much more recent programme of synthetic

2

domain theory, where one tries to integrate the different approaches by working
in, for example, the effective topos, see Hyland (1990). One should also remark
that intensional aspects may nonetheless play a role in the study of equational full
abstraction—see the studies of games in Abramsky, Jagadeesan and Malacaria
(1994) and Hyland and Ong (1995).

The rest of the paper is structured as follows. In Section 2 we review the
definitions of the three versions of PCF that we will consider. We also define the
syntax of a program logic for these languages, and propose a simple operational
interpretation of this logic. In Section 3 we introduce a very general notion of
denotational interpretation for our languages, and show how such an interpret-
ation gives rise to a denotational interpretation of the logic. We thus obtain a
notion of logical full abstraction. In Section 4 we prove the main result of the
paper: a standard interpretation is LFA if and only if it is both equationally fully
abstract (EFA) and universal (meaning, roughly, that every element of the model
is definable). We end in Section 5 with a few further observations, and mention
some open questions and some avenues for future investigation. In particular,
we consider restrictions on logical complexity and on the level of types. For ex-
ample, it follows from our main theorem that a standard interpretation is LFA
iff it is Π2-LFA (i.e., LFA for Π2-sentences). There are standard interpretations
which are EFA, but not Π1-LFA; it is an open question whether there are any
interpretations which are Π1-LFA but not Π2-LFA.

2 PCF and its Logic

PCF is an extension of the simply-typed λ-calculus with arithmetic operators and
general recursion. It can be regarded as a prototypical “sequential” functional
language; an understanding of PCF is thus an important step towards an under-
standing of modern functional languages such as Haskell, Miranda and ML. We
begin by reviewing the syntax and evaluation rules for PCF, and for two exten-
sions, PCF+ and PCF++, obtained by adding “parallel” operations. All three of
these languages appear essentially in Plotkin (1977); the formulations here differ
in two inessential respects: one is the absence of a Boolean type; the other is
the use of a “parallel-or” constant rather than a parallel conditional, for which
see Stoughton (1991).

The types of PCF are built up from a single ground type ι (the natural
numbers) using the right-associative binary type constructor →; we write M : σ
to mean “M is a term of type σ”. For each type σ we have a countably infinite
set of variables of type σ, ranged over by xσ, yσ, zσ, . . .; we also have the following
collection of constants :

0, 1, 2, . . . : ι, cond : ι→ ι→ ι→ ι,
succ , pred : ι→ ι, Yσ : (σ → σ)→ σ.

3

The terms of PCF are built up from the variables and constants as usual in
the simply-typed λ-calculus:

• if M : τ , then (λxσ.M) :σ→ τ ;

• if M :σ→ τ and N :σ, then (MN) : τ .

We often omit unnecessary parentheses, treating juxtaposition as a left-associa-
tive operator; we also omit type superscripts on variables, when this causes no am-
biguity. We identify terms up to change of bound variables (that is, α-conversion);
we write M [N1/x

σ1
1 , . . . , Nn/x

σn
n] for the capture-avoiding simultaneous substitu-

tion of the terms N1 :σ1, . . . , Nn :σn for xσ1
1 , . . . , xσnn in M .

An environment is a finite non-repetitive list xσ1
1 , . . . , xσnn of variables (where

n ≥ 0); the empty environment is written 〈〉. We say that M is a term of type
σ in environment Γ (and write Γ ` M : σ) if M : σ and all the free variables of
M occur in Γ. If xσ is a variable not in Γ, we write Γ, xσ for the environment
obtained by appending xσ to Γ.

The evaluation rules for PCF are given by defining a notion of reduction (or
rewriting) on closed terms. Specifically, we inductively define a binary relation
M → N on closed terms of the same type as follows (here n ranges over the
numerals 0, 1, 2, . . .):

• (λxσ.M)N →M [N/xσ];

• succ n→ (n + 1), pred (n + 1)→ n, pred 0→ 0, cond 0NP → N ,
cond (n + 1)NP → P , YσM →M(YσM);

• if M →M ′ then MN →M ′N ;

• if M →M ′ : ι then succ M → succ M ′, pred M → pred M ′,
cond MNP → cond M ′NP .

We think of → as a “one-step reduction relation”; we write →+ for its trans-
itive closure, and →∗ for its transitive reflexive closure. We say that a term M : ι
terminates if M →∗ n for some (necessarily unique) numeral n.

The language defined above is intuitively “sequential”—no two subterms of a
term are ever evaluated “in parallel”. We now introduce two extensions of PCF
including parallel operators. The language PCF+ is defined in the same way
as PCF except that we add an extra constant por : ι → ι → ι (“parallel-or”),
together with the reduction rules:

• por 0M → 0, por M0→ 0, por (m + 1)(n + 1)→ 1;

• if M →M ′ : ι then por MN → por M ′N , por NM → por NM ′.

The syntax of PCF++ is defined in the same way as PCF+, except that we add a
further constant exists : (ι → ι)→ ι (“existential quantification”). Its reduction
rules are those for PCF+ together with the following, writing Ωσ for Yσ(λxσ.x):

4

• if Mn→+ 0 for some n, then exists M → 0;

• if MΩι →+ m + 1, then exists M → 1.

We say that a one-step reduction M →M ′ is deterministic if whenever M →
M ′′ then M ′ = M ′′, and write M →d M ′ for this relationship. Note that whereas
for PCF every one-step reduction is deterministic, this is not so for PCF+ and
PCF++. Nevertheless, in all these languages evaluation is deterministic: if M →∗
n and M →∗ n′ then n = n′. (In fact the more general Church-Rosser Property
holds, that if M →∗ Ni, for i = 1, 2, then for some P , Ni →∗ P , for i = 1, 2).

We need some standard notions. Suppose L is one of the three languages PCF,
PCF+ or PCF++. A (one-place) term context C[] of L is a term of L with zero
or more holes, to be filled by a term of appropriate type. Two terms M, M ′ : σ
are observationally equivalent (and we write M ≈ M ′) if for all term contexts
C[] such that C[M], C[M ′] are closed terms of type ι we have C[M] →∗ n iff
C[M ′]→∗ n. The Context Lemma characterises this equivalence. When M and
M ′ are both closed, the lemma asserts that for σ = σ1 → · · · → σh → ι, M ≈M ′

iff for all closed terms N1 : σ1, . . . , Nh : σh and numerals n, MN1 . . .Nh →∗ n
iff M ′N1 . . . Nh →∗ n (a more general version for open terms is easily derived).
An operational proof of the Context Lemma for PCF can be found in Milner
(1977) and Curien (1993), and similar proofs can be obtained for PCF+ and
PCF++; for these latter two languages it is also a consequence of the facts that
the usual cpo model is adequate and that all finite elements are definable (see
Section 3 below for a definition of adequacy). Operational soundness (that is, if
M →∗ N then M ≈ N) is a consequence of the Context Lemma, together with
the Church-Rosser Property.

Now that we have defined the languages of interest, we introduce the syntax of
a simple many-sorted program logic JL, much in the spirit of LCF, see Gordon,
Milner and Wadsworth (1978). We believe that this is the kind of logic that
would in principle be useful for specifying and proving properties of programs.
The sorts of JL are the types of L; the expressions of sort σ in JL are precisely
the terms of type σ in L; and the logical variables of sort σ are just the term
variables of type σ. The syntax of the formulae of JL is as follows (here M, N
are expressions of the same type and P : ι):

φ ::= ⊥ |M = N | P ⇓ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 ⊃ φ2 | ∀xσ.φ1 | ∃xσ.φ1.

Note that JL is really a many-sorted first-order logic—we have a separate ground
sort for each type σ. We identify formulae up to change of bound variables (α-
conversion); we write φ[N1/x

σ1
1 , . . . , Nn/xσnn] for capture-avoiding simultaneous

substitution into formulae (where N1 : σ1, . . . , Nn : σn). We will not be specific
here about the axioms and inference rules of JL, however we essentially have in
mind those of classical first-order logic.

Next we give a simple operational interpretation of JL; this gives us a way
of translating formulae into statements about computations in L. We define a

5

relation |=op φ (read “φ is operationally true”) on sentences (i.e., closed formulae)
of JL as follows:

• |=op⊥ doesn’t hold;

• |=op (M = N) iff M ≈ N ;

• |=op (P ⇓) iff P terminates;

• |=op ϕ ∧ ψ iff |=op ϕ and |=op ψ;

• |=op ϕ ∨ ψ iff |=op ϕ or |=op ψ;

• |=op ϕ ⊃ ψ iff either 6|=op ϕ or |=op ψ;

• |=op ∀xσ.ϕ iff |=op ϕ[M/x] for all closed M :σ;

• |=op ∃xσ.ϕ iff |=op ϕ[M/x] for some closed M :σ.

We extend the relation |=op to all formulae as follows: if φ has free variables among
x1, . . . , xn, then |=op φ iff |=op φ[M1/x1, . . . , Mn/xn] for all closed expressions
M1, . . . , Mn of appropriate types.

Notice that the notion of operational truth only requires concepts relating to
L itself—we are thus hopeful that this interpretation of the logic would be readily
understood by a non-specialist. However, we should point out that operational
interpretations of the formulae of JL other than the “classical” one we have given
are possible—for an alternative (arguably more “computational”) interpretation,
see Longley (1995), Section 8.2.

3 Denotational Interpretations of PCF

We now introduce a very general notion of denotational interpretation for our
languages; it is convenient to use the language of category theory. Given a
category C with finite products, we interpret types of L by objects of C, and
terms of L by morphisms of C; we also need a semantic correlate of termination.
We therefore say that an interpretation I of L in C is given by the following data:

• for each type σ an object I[[σ]] of C (and for each environment
Γ = xσ1

1 , . . . , xσnn we write I[[Γ]] for I[[σ1]]× · · · × I[[σn]]);

• for each L-term M :σ in environment Γ a morphism I[[Γ `M]] from I[[Γ]]
to I[[σ]] (and if M is closed we write I[[M]] for I[[〈〉 ` M]]);

• a set T ⊂ Hom(1, I[[ι]]) (to be thought of as the set of “fully defined” or
“terminating” elements of I[[ι]]).

We impose two requirements. First, for any environment Γ = xσ1
1 , . . . , xσnn we

require, for 1 ≤ i ≤ n, that I[[Γ ` xσii]] : I[[Γ]] → I[[σi]] be the evident

6

projection. Second, we require that I be compositional in the following sense: if
Γ = xσ1

1 , . . . , xσnn , Γ `M : τ and ∆ ` Ni :σi, for 1 ≤ i ≤ n, then

I[[∆ `M [N1/x1, . . . , Nn/xn]]] = I[[Γ ` M]] ◦ 〈I[[∆ ` N1]], . . . , I[[∆ ` Nn]]〉.

That is, tupling and composition in C corresponds to substitution in L.
This definition of interpretation for L is extremely weak (we do not require

C to be cartesian-closed, for instance), but it suffices for our purposes. The
most familiar concrete example is given by the category of cpos: all three of our
languages have a canonical interpretation in this category, see Plotkin (1977).

The following concepts play a significant role:

• I is sound if M →M ′ implies I[[M]] = I[[M ′]];

• I is adequate if for all closed M : ι we have I[[M]] = I[[n]] iff M →∗ n;

• I is equationally fully abstract (EFA) if for all closed M, M ′ : σ we have
I[[M]] = I[[M ′]] iff M ≈M ′;

• I is atomically fully abstract (AFA) if it is EFA and for all closed M : ι we
have I[[M]] ∈ T iff M terminates;

• I is universal if every morphism f : 1 → I[[σ]] in C is definable (meaning
that there is a closed term M :σ such that I[[M]] = f);

• I is standard if every morphism 1 → I[[ι]] is definable and the set T of
fully defined elements is {I[[n]] | n is a numeral}.

Our definitions of equational full abstraction and universality are weak in
that they involve only closed terms—in our general setting it is not possible to
deduce the corresponding stronger facts for open terms (and arbitrary morph-
isms). However, the two notions of full abstraction coincide if the interpretation
models β-conversion. Further, the two notions of universality coincide if the in-
terpretation is cartesian-closed (by which we mean that the underlying category
is cartesian closed, and that the higher-order types, λ-abstraction and application
are interpreted accordingly—see Lambek and Scott (1986); this property implies
that the interpretation models βη-conversion). It follows from operational sound-
ness that any EFA interpretation is sound. Note that the usual interpretation in
cpos is sound, adequate, standard and cartesian closed; it is AFA for PCF+ and
PCF++ but not EFA for PCF, see Plotkin (1977).

Next we show how any interpretation I of L gives rise to a denotational inter-
pretation of JL. First some notation: For each type σ let Sσ be Hom(1, I[[σ]]);
we may think of Sσ informally as the set of “elements” of I[[σ]]. For each envir-
onment Γ we also let SΓ be Hom(1, I[[Γ]]). Then whenever Γ ` M : σ we have
the set-theoretic function I[[Γ `M]]◦− : SΓ → Sσ.

For any formula φ with FV(φ) ⊆ Γ, we can now define a subset [[φ]]Γ of SΓ,
corresponding intuitively to the set of tuples of elements for which the predicate
φ holds:

7

• z ∈ [[⊥]]Γ never;

• z ∈ [[M = N]]Γ iff I[[Γ ` M]] ◦ z = I[[Γ ` N]] ◦ z;

• z ∈ [[P ⇓]]Γ iff I[[Γ ` P]] ◦ z ∈ T ;

• z ∈ [[φ∧ ψ]]Γ iff z ∈ [[φ]]Γ and z ∈ [[ψ]]Γ;

• z ∈ [[φ∨ ψ]]Γ iff z ∈ [[φ]]Γ or z ∈ [[ψ]]Γ;

• z ∈ [[φ ⊃ ψ]]Γ iff z 6∈ [[φ]]Γ or z ∈ [[ψ]]Γ;

• z ∈ [[∀xσ.φ]]Γ iff 〈z, w〉 ∈ [[φ]]Γ,xσ for all w ∈ Sσ;

• z ∈ [[∃xσ.φ]]Γ iff 〈z, w〉 ∈ [[φ]]Γ,xσ for some w ∈ Sσ.

(in the last two cases, we assume—without loss of generality—that xσ does not
occur in Γ). We say that φ is denotationally true under the interpretation I (and
write |=I φ) if [[φ]]Γ is the whole of SΓ, where Γ contains all the free variables
of φ. In particular, if φ is closed then |=I φ iff ∗ ∈ [[φ]], where ∗ is the unique
element of S〈〉 and we write [[φ]] for [[φ]]〈〉.

Now that we have given both operational and denotational interpretations of
JL, we have a natural notion of logical full abstraction:

Definition 1 An interpretation I of L is logically fully abstract (LFA) if for all
sentences φ of JL we have |=op φ iff |=I φ. More generally, if F is a class of
sentences of JL, we say I is LFA for F if for all φ ∈ F we have |=op φ iff |=I φ.

Note that if an interpretation is LFA for a class of sentences, then it is also
LFA for the Boolean closure of that class. The next lemma shows that such
notions as adequacy1 and equational full abstraction can be recovered as special
instances of logical full abstraction.

Proposition 2 Let I be an interpretation of L. Then
(i) I is EFA (respectively AFA) iff it is LFA for all sentences of the form

M = N (respectively, and P ⇓);
(ii) I is adequate iff it is LFA for all sentences of the form P = n;
(iii) Suppose that I is adequate. Then the definable elements of T are those

of the form I[[n]] iff I is LFA for all sentences of the form P ⇓.

Proof (i) is immediate. For (ii), it suffices to note that, by the Context Lemma,
P ≈ n iff P →∗ n for closed P : ι. For (iii), note that the condition on T is
equivalent to the statement that for all closed P : ι, |=I P ⇓ iff |=I P = n for
some n and also that the statement that I is LFA for all sentences of the form
P ⇓ holds is equivalent to the statement that for all closed P : ι, |=I P ⇓ iff
|=op P ⇓. But it is an easy consequence of adequacy and the Context Lemma
that for all closed P : ι, |=I P = n for some n iff |=op P ⇓. 2

1This observation is due to Eugenio Moggi.

8

The above lemma makes it clear that any EFA interpretation is adequate.
Further, such an interpretation is AFA iff the definable elements of T are those
of the form I[[n]]. In particular, a standard EFA interpretation is AFA.

4 A characterization of LFA Interpretations

In this section we prove the following theorem characterizing LFA interpretations.
This is the main result of the paper.

Theorem 3 Let I be a standard interpretation of L. Then it is LFA for JL iff
it is both EFA and universal.

The standardness condition is a mild requirement that seems to hold in all
natural interpretations. (We will see below that this condition is in fact necessary
for the conclusion.) Our theorem can be used to show that LFA interpretations
exist, and that particular interpretations are LFA for particular languages; it also
guides us in the search for LFA interpretations.

The right-to-left implication in the theorem is fairly straightforward:

Lemma 4 Let M :σ be closed, and take z in SΓ. Then 〈z, I[[M]]〉 ∈ [[φ]]Γ,xσ iff
z ∈ [[φ[M/x]]]Γ.

Proof First note that if Γ, xσ ` N : τ then, by the requirements placed on
interpretations, I[[Γ, xσ ` N]] ◦ 〈z, I[[M]]〉 = I[[Γ ` N [M/xσ]]] ◦ z. The proof of
the lemma is now a routine induction on φ. 2

Proposition 5 Suppose I is a standard, EFA and universal interpretation of L.
Then it is LFA.

Proof We first show by induction that |=op φ iff |=I φ for all sentences φ of
JL. For the sentence ⊥ this is trivial. For sentences of the form M = N or P ⇓
it is given by Proposition 2(i) and the fact that a standard EFA interpretation is
AFA. The cases for the connectives ∧,∨,⊃ are all trivial.

For sentences ∀xσ.φ, suppose first that |=I ∀xσ.φ. Then given any closed
M :σ we have 〈∗, I[[M]]〉 ∈ [[φ]]xσ by definition of [[∀xσ.φ]], hence, by Lemma 4,
∗ ∈ [[φ[M/x]]] and so |=op φ[M/x] by the induction hypothesis. Thus |=op ∀xσ.φ.
Conversely, suppose |=op ∀xσ.φ. For any w ∈ Sσ, by universality we have that
w = I[[M]] for some closed M : σ. But we have |=op φ[M/x], and so, by the
induction hypothesis, ∗ ∈ [[φ[M/x]]]. Hence by Lemma 4 〈∗, w〉 ∈ [[φ]]xσ. Thus
[[φ]]xσ = Sx

σ , so |=I ∀xσ.φ. The argument for ∃ is similar.
This completes the proof for sentences. To see that the result extends to all

formulae, just observe that if ∀~x.φ is the universal closure of φ then |=op φ iff
|=op ∀~x.φ, and |=I φ iff |=I ∀~x.φ. 2

9

For the converse direction, we know from Proposition 2(i) that every LFA
interpretation is AFA. Thus it only remains to show that every standard LFA
interpretation is universal. To show this, we will for each type σ construct a
closed term Eσ : ι→ σ (called an enumerator for type σ) such that for all closed
M : σ there exists n such that Eσn ≈ M . It is easy to see that this suffices: we
have |=op ∀xσ.∃yι.Eσy = x, and so if I is LFA then also |=I ∀xσ.∃yι.Eσy = x.
That is, for all x ∈ Sσ there exists y ∈ Sι such that I[[zι ` Eσzι]] ◦ y = x. But
I is standard so y = I[[N]] say, hence x = I[[EσN]]. Thus I is universal.

The fact that such enumerators exist is of some interest in its own right. In
the case of PCF++, suitable terms Eσ are already defined in Plotkin (1977), but
for PCF and PCF+ we need a different technique. The method we use is, essen-
tially, to construct a “simulator” for the relevant language within itself. A very
similar method has recently (and independently) been employed in Abramsky,
Jagadeesan and Malacaria (1994) to prove a definability result for an interpreta-
tion of sequential PCF based on games; a similar result has been proved in Hyland
and Ong (1995). This yields an alternate semantic proof of the existence of enu-
merators for PCF, analogous to that in Plotkin (1977) for PCF++. It is worth
remarking that there is no corresponding definability result for PCF+. It may well
be that there can be none; it is not at all clear, however, how to even formulate
a precise statement to that effect.

In what follows, L stands for either PCF or PCF+, and d−e is some effective
Gödel-numbering of L-terms as natural numbers.

Proposition 6 For each type σ there exists a closed term Eσ : ι → σ of L such
that EσdMe ≈M for all closed terms M :σ of L.

We now fix σ = σ1 → · · · → σh → ι (h ≥ 0) and consider the construction
of Eσ; we will not be completely explicit as all we require is its existence. The
basic idea is that—given closed terms M : σ and Nj : σj, for j = 1, . . . , h—
the computation of EσdMeN1 . . . Nh will simulate the reduction of MN1 . . . Nh

via the Gödel-numbering. The problem here is that we do not have access to
the Gödel-numbers of the Nj, but only to the terms themselves; so, in fact, we
symbolically reduce (via Gödel-numbers) the term Mx1 . . . xh, where the xj are
variables used to stand for the Nj. This results in a further problem when, in the
course of the symbolic reduction, we come to a term of the form xjM1 . . .Ma. In
this case we do not reduce, but rather interpret, “passing” suitable simulations
of M1, . . . , Ma to Nj.

For the idea to work, it turns out that we need variables not only of the types
σj, but also of all their subtypes. Let us define the relation ≺ between types to be
the transitive relation generated from all instances of γj ≺ (γ1 → · · · → γm → ι),
for j = 1, . . . , m. Let τ1, . . . , τk be the (possibly repetitive) enumeration of all
types τ ≺ σ in breadth-first order (regarding σ as a binary tree). Notice that for
each i with 1 ≤ i ≤ k there exist pi ≤ qi such that τi = τpi+1 → · · · → τqi → ι;

10

we drop the subscripts on p and q when they are clear from the context. Note
also that τi = σi for 1 ≤ i ≤ h.

To simulate MN1 . . . Nh we may need arbitrarily many variables of each
type τi. We thus suppose that we have a countably infinite supply of vari-
ables xji : τi for each i, and that the mapping (i, j) 7→ dxjie is recursive; we
say a term is σ-open if its free variables are among the xji . To “store” the
“values” of these variables we will use closed terms Fi : ι → τi, where Fi j
stores the value of xji . Since at any given stage only finitely many variables
will be in use, we need a way to introduce new variables. Take pushi to be
λvτif ι→τijιλy

τp+1
p+1 . . . yτqq . cond j (vyp+1 . . . yq) (f(pred j)yp+1 . . . yq). The effect of

pushi V F is to store the value given by a closed term V in the “register” x0
i ,

and the previous value of xji in the register xj+1
i ; we have pushi V F0 ≈ V and

pushi V F (j + 1) ≈ Fj. To compensate for the use of pushi, we also need an
operation ↑i on terms of L that “bumps up” the indices on the appropriate vari-
ables; the term N↑i is defined to be the term obtained by the capture-avoiding
simultaneous substitution of V j

i for xji for every xji occurring freely in N . Clearly
the mapping dNe 7→ dN↑ie is partial recursive.

So, to define Eσ we construct an “ι-simulator” S : ρ (where ρ is defined to
be the type (ι → τ1) → · · · → (ι → τk) → ι → ι) such that if N : ι is a σ-open
term then SF1 . . . FkdNe simulates N , taking xji to stand for Fi j. Following the
idea outlined above, S will perform repeated one-step reductions, but terms of
the form xjiNp+1 . . . Nq are interpreted by passing simulations of the arguments
Np+1, . . . , Nq to Fi j : τi. For this, we need “τi-simulators” Si : ρi, where ρi is
defined to be the type (ι → τ1) → · · · → (ι → τk) → ι → τi; these are defined
from the ι-simulator S : ρ by the terms Θi : ρ → ρi given in Lemma 7, below.
Formally, S is obtained as a fixed-point of the term Φ:ρ→ ρ given in Lemma 8,
below; its definition makes use of the Θi, and the terms R :ρ used there and in
Lemma 7 are to be thought of as “approximants” to S.

We need some special notation. First, for any vector ~F of terms F1, . . . , Fk
we write M ~F for (. . . (MF1) . . . Fk). Second, we write pushp,q(Vp+1, . . . , Vq; ~F) for
F1, . . . , Fp, (pushp+1Vp+1Fp+1), . . . , (pushqVqFq), Fq+1, . . . , Fk, where 1≤ p≤ q≤ k.
Third, for any term M and 1 ≤ p ≤ q ≤ k we write M ↑p,q for (. . . (M ↑p+1

) . . . ↑q). Finally, the notation C[|N1 |, . . . , |Na |] →+
d C ′[|N ′1 |, . . . , |N ′a′ |] means

that given PCF terms U1, . . . , Ua such that Uj →∗ Nj (1 ≤ j ≤ a) there exist
PCF terms U ′1, . . . , U

′
a′ such that U ′j′ →∗ N ′j′ (1≤ j′≤ a′) and C[U1, . . . , Ua] →+

d

C ′[U ′1, . . . , U ′a′]; notice that the Uj and U ′j′ must be closed. (Here C[, . . . ,]
and C ′[, . . . ,] are “multi-place” contexts and →d is the deterministic one-
step reduction relation defined in Section 2.) This is useful because the call-by-
name evaluation mechanism of L means that we cannot force subterms such as
the U ′j′ to be evaluated when we would like. The consideration of deterministic
reduction (and hence of PCF terms) is only needed for Lemma 11 below. Note
that transitivity holds, in that if C[|N1 |, . . . , |Na |] →+

d C ′[|N ′1 |, . . . , |N ′a′ |] →+
d

C ′′[|N ′′1 |, . . . , |N ′′a′′|] then we have that C[|N1|, . . . , |Na|]→+
d C ′′[|N ′′1 |, . . . , |N ′′a′′|].

11

Lemma 7 There exist closed L-terms Θi :ρ→ ρi for 1 ≤ i ≤ k, such that for all
σ-open N : τi and closed R :ρ, F1 : ι→ τ1, . . . , Fk : ι→ τk we have

ΘiR~F |dNe| →+
d λy

τp+1
p+1 . . . yτqq . R pushp,q(yp+1, . . . , yq; ~F) |d(N↑p,q)x0

p+1 . . . x0
qe| .

Proof Define Θi to be the term

λrρf ι→τ11 . . . f ι→τkk zιy
τp+1
p+1 . . . yτqq . r pushp,q(yp+1, . . . , yq; ~f)(Gz)

where G : ι→ ι is a closed PCF term such that for any σ-open N : τi we have that
GdNe→+ d(N↑p,q)x0

p+1 . . . x0
qe. 2

We now consider the term Φ. Notice that the clauses given below cover all
syntactic shapes for terms of type ι. (The clause marked † applies only to PCF+.)

Lemma 8 There exists a closed L-term Φ:ρ→ ρ such that for all closed terms
R :ρ, F1 : ι→ τ1, . . . , Fk : ι→ τk we have

ΦR~F |dne| →+
d n;

ΦR~F |dsucc Me| →+
d succ (R~F |dMe|);

ΦR~F |dpred Me| →+
d pred (R~F |dMe|);

ΦR~F |dcond LMNe| →+
d cond (R~F |dLe|)(R~F |dMe|)(R~F |dNe|);

ΦR~F |dYτN1N2 . . .Nae| →+
d R~F |dN1(YτN1)N2 . . . Nae| (a ≥ 2);

ΦR~F |d(λzτ .M)N1 . . . Nae| →+
d R~F |dM [N1/z]N2 . . .Nae| (a ≥ 1);

† ΦR~F |dpor MNe| →+
d por (R~F |dMe|)(R~F |dNe|);

ΦR~F |dxjiNp+1 . . .Nqe| →+
d Fi j (Θp+1R~F |dNp+1e|). . .(ΘqR~F |dNqe|).

Proof (Hint) We construct Φ via a “case split” with at most (k + 7) cases.
The need for the consideration of PCF terms arises here, in order to ensure
deterministic reduction. 2

Note that terms of the forms succ M , pred M , cond LMN or por MN are
interpreted rather than symbolically reduced; this is needed to handle terms
such as succ xjiNp+1 . . . Nq where the operator must be interpreted since an ar-
gument is. It is also worth noting that there is no way to interpret terms such
as YτN1N2 . . . Na or (λzτ .M)N1 . . . Na as the type τ there is arbitrary and our
method enables us to deal only with a finite number of given types (here the τi).

We now define S = YρΦ and Si = ΘiS, for i = 1, . . . , k. Note that:

S ~F |dne| →+
d n;

S ~F |dsucc Me| →+
d succ (S ~F |dMe|);

etc., and that:

Si ~F |dNe| →+
d λy

τp+1
p+1 . . . yτqq . Spushp,q(yp+1, . . . , yq; ~F) |d(N↑p,q)x0

p+1 . . . x0
qe| .

12

Finally, we take Eσ : ι→ σ to be a closed term such that

EσdMe →+
d λyσ1

1 . . . yσhh . Spush0,h(y1, . . . , yh; ~Ω) |dMx0
1 . . . x0

he|

where ~Ω is Ωι→τ1 , . . . , Ωι→τk .
We need to prove that EσdMe ≈ M for all closed M : σ. By the Context

Lemma, it is enough to show that for all closed N1 : σ1, . . . , Nh : σh we have
EσdMeN1 . . . Nh →∗ n iff MN1 . . .Nh →∗ n. Clearly the following lemma suffices:

Lemma 9 Suppose Fi j ≈ V j
i : τi for each i, j, where the Fi and V j

i are closed.
Then for all σ-open N : ι and PCF terms U such that U →∗ dNe we have
S ~FU →∗ n iff N [V j

i /xji]→∗ n.

The notation N [V j
i /xji] denotes the term obtained from N by the simultaneous

substitution of V j
i for xji , for every xji occurring freely in N .

The lemma is proved by relating the possible reduction sequences of N [V j
i /x

j
i]

with those of its simulation S ~F dNe. Define “encoding” relations � between
terms of type ι, �i between terms of type τi, for i = 1, . . . , k, and � between
terms of the same type as follows:

• if U →∗ dNe where U is a PCF term and N : ι is a σ-open term and if, for
each i, j, Fij ≈ V j

i : τi with Fi and V j
i closed, then S ~FU � N [V j

i /xji];

• if U →∗ dNe where U is a PCF term and N : τi is a σ-open term and if, for
each i, j, Fij ≈ V j

i : τi with Fi and V j
i closed, then Si ~FU �i N [V j

i /xji];

• if Ps � Qs or Ps �i Qs (for some 1 ≤ i ≤ k) for 1 ≤ s ≤ r, then, for any
r-place context C[, . . . ,], C[P1, . . . , Pr] � C[Q1, . . . , Qr].

Note that � is reflexive; note too that � is closed under substitution in the sense
that if we have that P � Q and P ′ � Q′ : τ then P [P ′/zτ] � Q[Q′/zτ]. We write
C[|dN1e|, . . . , |dNae|]�Q (where a ≥ 0), to mean that for any PCF terms U1, . . . , Ua
such that Uj →∗ dNje (j = 1, . . . , a) we have C[U1, . . . , Ua] � Q.

Lemma 9 is an immediate consequence of the next two lemmas.

Lemma 10 If P : ι is closed, P � Q and Q→∗ n then P →∗ n

Proof The proof proceeds by induction on the length l of a shortest reduction
sequence from Q to n. If this is 0, then either P is n or else P � n, and so, by
the remarks after Lemma 8, P →+

d n. For l > 0, fixing P and Q, we first note
that there is an r-place context C[, . . . ,] (r ≥ 0) and there are Ps and Qs

(1 ≤ s ≤ r) such that Q = C[Q1, . . . , Qr], P = C[P1, . . . , Pr] and for 1 ≤ s ≤ r,
Ps � Qs or Ps �i Qs, for some 1 ≤ i ≤ k.

There are three main cases. In the first two C[, . . . ,] has the form
[]C1[, . . . ,] . . . Ct[, . . . ,]—that is, there is a context hole in “head
position”; the third is where there is not. In the first case, the proof proceeds

13

either by reducing the length of the shortest reduction sequence (and applying
the induction hypothesis) or else by reducing to the third case, with the same
reduction sequence. The second case reduces to the first, with the same reduction
sequence. In the third case, the length is always reduced.

So let us suppose there is indeed a context hole in head position. The first
case is where C[~Q] = Qs = Q and C[~P] = Ps = P , for some 1 ≤ s ≤ r, and
P � Q (and t = 0). The second case is where C[~Q] = QsC1[~Q] . . . Ct[~Q] and
C[~P] = PsC1[~P] . . . Ct[~P], for some 1 ≤ s ≤ r, and Ps �i Qs, for some 1 ≤ i ≤ k
(and t = q − p).

Let us now consider the first case. Here P = S ~FU and Q = N [V j
i /xji] where

N : ι is σ-open, where Fij ≈ V j
i : τi for each i, j, where the Fi and V j

i are closed,
and where U is a PCF term such that U →∗ dNe. The proof now proceeds
according to the form of N ; it is here that the workings of the simulator are seen.

First, let us suppose N = por N1N2. Then, by the remarks after Lemma 8 we
have S ~FU →+

d por (S ~FU1)(S ~FU2), where U1 and U2 are PCF terms such that
U1 →∗ dN1e and U2 →∗ dN2e. Therefore S ~FU1 � N1[V j

i /xji] and similarly for
U2. Now, as (por N1N2)[V

j
i /xji] = N [V j

i /xji] reduces to n in l steps, then, in < l
steps, either one of N1[V

j
i /xji], N2[V

j
i /xji] reduce to 0 or both reduce to a positive

numeral. So we may apply the induction hypothesis and obtain corresponding
reductions of S ~FU1 and S ~FU2, and hence of S ~FU . The cases where N has any
of the forms succ N1, pred N1 or cond N1N2N3 are similar.

Next, let us suppose that N = (λzτ .M)N1 . . .Na. Then we have that S ~FU →+
d

S ~F |dM [N1/z]N2 . . . Nae| �(M [N1/z]N2 . . . Na)[V j
i /xji] = Q′, say. We can now

apply the induction hypothesis, as there is a reduction of Q′ to n in l−1 steps since
we have the deterministic reduction Q→d Q′. The case where N = YτN1N2 . . .Na

is similar.
Finally, suppose that N = xjiNp+1 . . . Nq. Here we have that P = S ~FU →+

d

Fi j (Sp+1 ~FUp+1) . . . (Sq ~FUq), where, for p < i′ ≤ q, Ui′ is a PCF term such that
Ui′ →∗ Ni′. Then

V j
i (Sp+1 ~FUp+1) . . . (Sq ~FUq) � V j

i (Np+1[V j
i /xji]) . . . (Nq[V j

i /xji]) = Q,

and we are in the third case with the same shortest reduction sequence. So,
V j
i (Sp+1 ~FUp+1) . . . (Sq ~FUq)→∗ n, by induction, and then, as Fi j ≈ V j

i , P →+ n.
In the second case, P = Si ~FU ~C[~P] (abbreviating C1[], . . . , Ct[] to

~C[]) and Q = N [V j
i /xji] ~C[~Q] where N :τi is σ-open, where Fij ≈ V j

i : τi for
each i, j, where the Fi and V j

i are closed, and where U is a PCF term such that
U →∗ dNe. Then Si ~FU→+ λy

τp+1
p+1 . . . yτqq .Spushp,q(yp+1, . . . , yq; ~F)U ′ where U ′ is a

PCF term such that U ′ →∗ d(N↑p,q)x0
p+1 . . . x0

qe. So we have that Si ~FU ~C[~P]→+

Spushp,q(~C[~P]; ~F)U ′.

14

Now, for i′ = 1, . . . , k, define W j
i′ so that, for i′ = p+1, . . . , q, W 0

i′ is Ci′[~Q],
W j+1
i′ is V j

i′ and, for all other i′, W j
i′ is V j

i′ . Then we have that

Spushp,q(~C[~P]; ~F)U ′ � ((N↑p,q)x0
p+1 . . . x0

q)[W
j
i′/x

j
i′] = N [V j

i′ /x
j
i′] ~C[~Q],

and we have reduced to the first case, with the same reduction sequence.
Finally, we consider the third case, where no hole is in “head” position in

C[, . . . ,] (which we abbreviate to C[]). The proof divides into subcases
according to the form of C[] We consider two of these; the others are similar.
The first is where C[] is por C1[]C2[]. Here we have reductions to numerals
in < l steps of one or both of C1[~(Q)], C2[~(Q)], as in the previous case involving
por , and we can again apply the induction hypothesis. The second is where
C[] is (λzτ .C ′[])C1[] . . . Ca[]. Here P = (λzτ .C ′[~P])C1[~P] . . . Ca[~P] →
(C ′[~P][C1[~P]/z])C2[~P] . . . Ca[~P] � (C ′[~Q][C1[~Q]/z])C2[~Q] . . . Ca[~Q] = Q′, say (we
use the closure of � under substitution here). We may now apply the induction
hypothesis, for, as Q→d Q′, there is a reduction of Q′ to n in l − 1 steps. 2

Lemma 11 If P : ι is closed, P � Q and P →∗ n then Q→∗ n.

Proof By induction on the length of shortest reduction sequence from P to n.
If this is 0, the result is immediate. Otherwise, the cases are organised as in the
proof of Lemma 10(ii), but—unlike there—the length is always reduced. Let us
consider the first case, where P = S ~FU and Q = N [V j

i /xji] where N : ι is σ-open,
where Fi j ≈ V j

i : τi for each i, j, where the Fi and V j
i are closed, and where U is

a PCF term such that U →∗ dNe.
Let us first suppose N = por N1N2. Then S ~FU →+

d por (S ~FU1)(S ~FU2),
where U1, U2 are PCF terms which reduce to dN1e and dN2e, respectively. As the
reduction from P to por (S ~FU1)(S ~FU2) is deterministic, the shortest reduction
from P to n must proceed via por (S ~FU1)(S ~FU2), and the proof is now similar
to that of Lemma 10. The cases where N has any of the forms succ N1, predN1

or cond N1N2N3 are similar.
Next, let us suppose that N = (λzτ .M)N1 . . .Na. Then we have that S ~FU→+

d

S ~FU ′ where U ′ is a PCF term such that U ′→∗ dM [N1/z]N2 . . . Nae. So S ~FU ′ �
(M [N1/z]N2 . . .Na)[V j

i /xji], and we may now apply the induction hypothesis as
there is a shorter reduction sequence of S ~FU ′ to a numeral. The case where
N = YτN1N2 . . . Na is similar.

Finally, suppose that N = xjiNp+1 . . . Nq. Here we have that P = S ~FU →+
d

Fi j (Sp+1 ~FUp+1) . . . (Sq ~FUq) = P ′, say, where, for p < i′ ≤ q, Ui′ is a PCF term
such that Ui′ →∗ Ni′. But P ′ � Fi j (Np+1[V

j
i /xji]) . . . (Nq[V

j
i /xji]), and so, by

induction, we have that Fi j (Np+1[V
j
i /xji]) . . . (Nq[V

j
i /xji]) →∗ n. But then as

Fi j ≈ V j
i and V j

i (Np+1[V
j
i /xji]) . . . (Nq[V

j
i /xji]) = Q we have that Q→∗ n.

In the second case, P = Si ~FU ~C[~P] and Q = N [V j
i /xji] ~C[~Q] where N : τi

is σ-open, where Fij ≈ V j
i : τi for each i, j, where the Fi and V j

i are closed,

15

and where U is a PCF term such that U →∗ dNe. We have that Si ~FU ~C[~P]→+
d

Spushp,q(~C[~P]; ~F)U ′ where U ′ is a PCF term such that U ′ →∗ d(N↑p,q)x0
p+1 . . . x0

qe.
We now have

S pushp,q(~C[~P]; ~F)U ′ � ((N↑p,q)x0
p+1 . . . x0

q)[W
j
i′/x

j
i′] = N [V j

i′ /x
j
i′] ~C[~Q],

defining W j
i′ as before; we may therefore apply the induction hypothesis.

Finally, in the third case no hole is in head position in C[] and the proof
again proceeds according to the form of C[]; the details are omitted. 2

The proof of Theorem 3 is complete.

5 Remarks and Open Problems

We conclude by drawing together some miscellaneous observations and suggesting
some directions for further research.

It is easy to show using Proposition 5 that standard LFA interpretations for
each of our languages L do in fact exist. Specifically, let CL be the “syntactic
category” whose objects are environments Γ, and whose morphisms from Γ to
∆ are appropriate tuples of terms in environment Γ modulo observational equi-
valence. Then the canonical standard interpretation IL of L in CL is clearly
EFA and universal, and thus LFA. In fact IL is essentially the only “sensible”
LFA interpretation for L. For suppose that I is a standard and cartesian-closed
LFA interpretation of L in D. Then, by Theorem 3 and a previous remark, it is
EFA and universal in the strong sense. It follows that the full subcategory of D
consisting of the objects I[[σ]] is equivalent to CL, and then that IL and I are
identical, modulo the equivalence.

Given that standard LFA interpretations exist, one can prove, using an ap-
propriate form of the Upward Löwenheim-Skolem Theorem, that non-standard
(and thus non-universal) LFA interpretations also exist. This shows that the
standardness condition in Theorem 3 is indeed necessary.

The syntactic interpretations CL assure us of the existence of LFA interpreta-
tions, but these interpretations may not be very useful since questions about CL
are no easier than questions about L itself. It is more interesting to ask whether
one can give more “semantic” constructions of LFA interpretations. Note that
since any standard LFA interpretation is universal it must have some notion
of “computability” built in; the classical category of cpos does not provide an
LFA interpretation for PCF++, for instance, because of the existence of non-
computable elements (this observation is sharpened in Proposition 12 below). For
PCF++, there are several natural examples of LFA interpretations: the category
of effective Scott domains, see Plotkin (1977), and many realizability interpret-
ations, see Longley (1995), provide instances. Examples of LFA interpretations
for sequential PCF are given by the recursive versions of categories of games,

16

see Abramsky, Jagadeesan and Malacaria (1994) and Hyland and Ong (1995).
provide an LFA interpretation, as there We do not know of any natural LFA
interpretations for PCF+.

Although in this paper we have concentrated mainly on LFA interpretations
for the whole of JL, it is also natural to consider logical full abstraction for frag-
ments of the language. One way to obtain such a fragment is to restrict attention
to sentences of a certain logical complexity, e.g., the Πn-sentences, for some n.
(Note that, by a previous remark, logical full abstraction for Πn-sentences and
Σn-sentences are equivalent.) Our proof of Theorem 3 shows that if a standard
interpretation is LFA for Π2-sentences then it is LFA for the whole of JL. In fact,
the proof shows more, that it suffices to be LFA for Π2-sentences with equational
matrix, that is, of the form ∀xσ.∃yτ . M = N—one can even take τ to be ι.

The next result shows that logical full abstraction for Σ1-sentences with equa-
tional matrix is already stronger than equational full abstraction (for any of
PCF+, PCF+ or PCF++).

Proposition 12 Neither Milner’s EFA interpretation for PCF, nor the standard
cpo interpretation, whether taken for PCF+ or PCF++, are LFA for sentences of
the form ∃f ι→ι. M = N .

Proof Let K denote Kleene’s singular tree (see Beeson (1985), Chapter IV)—
recall that K is a recursive prefix-closed set of finite binary sequences such that
K contains arbitrarily long finite sequences but no recursive infinite path. Let
d−e be an effective coding of finite binary sequences as natural numbers, and let
T : ι→ ι be such that T dse →+ 0 iff s ∈ K. We also require a term P : ι→ ι→ ι
such that Pdsedte →+ 0 iff s is a proper prefix of t, and a term Z : ι → ι → ι
such that Z mn→+ 0 iff m = n = 0. Now consider the sentence

∃f ι→ι. (λxι. Z (T (fx)) (P (fx)(f(succ x)))) = (λxι. cond x 0 0).

It is easy to see that this sentence is denotationally true in all the interpretations
since by König’s Lemma there exists an infinite path through K, but not opera-
tionally true as there is no recursive such path (Milner’s interpretation coincides
with the cpo interpretation at type ι→ ι). 2

The (open) problem is now to distinguish LFA for Π1-sentences from LFA.
Another way to obtain fragments of JL is via a notion of type complexity. The

level of a type is defined recursively:

level(ι) = 0; level(σ → τ) = max(level(σ) + 1, level(τ)).

The level of a formula is then taken to be the maximum of the levels of its quan-
tified variables. (One could also consider stronger alternative definitions placing
restrictions on the level of subexpressions.) A standard EFA interpretation is
(evidently) logically fully abstract for sentences of level 0. For PCF++ one can

17

say more, but first we need a lemma. A type σ is said to be an L-retract of
a type τ if there are closed L-terms Lστ : σ → τ and Rτ

σ : τ → σ such that
λxσ.Rτ

σ(Lστ (x)) ≈ λxσ.x holds in L.

Lemma 13 Every type is a PCF++-retract of ι→ ι.

Proof We use the “effective universality” remarked in Plotkin (1978), that
every effectively given coherent ω-continuous cpo is a computable retract of T ω.
In the interpretation C of PCF++ provided by the classical category of cpos, every
C[[σ]] is such a cpo; further T ω is a computable retract of the cpo C[[ι→ ι]]. Since
any computable element of any C[[τ]] is PCF++-definable, see Plotkin (1977), we
therefore have PCF++-terms defining the retracts. The conclusion follows, as the
classical interpretation is EFA for PCF++. 2

With this we can see that a standard interpretation I of PCF++ is LFA iff it is
for sentences of the form ∀f ι→ι.∃mι. M = N . Any such interpretation must be
EFA. But now we can apply the above remarks on LFA for Π2-sentences, as:

|=I ∀xσ.∃mι. M = N iff |=I ∀f ι→ι.∃mι. M [Rι→ι
σ f/x] = N [Rι→ι

σ f/x].

It is an open question as to whether PCF or PCF+ permit any such reduction
in type complexity. It would also be interesting to understand which retractions
hold for these languages.

The results in this paper should apply not just to the languages we have con-
sidered but to a wider class. As regards functional languages, one would certainly
wish to consider the lazy and call-by-value variants of PCF, see Gunter (1992)
and Longley (1995). A further useful extension would be to recursively typed lan-
guages, such as FPC—see Gunter (1992) and Fiore and Plotkin (1994). It would
then be natural to consider polymorphic extensions of PCF; this seems not to
be a straightforward matter. It would be also interesting to formulate an appro-
priate notion that would allow our results to be presented at their natural level
of generality. This should at least include suitable extensions of PCF, in which
regard see Jim and Meyer (1991), and perhaps a greater degree of abstraction is
obtainable.

Finally, we have said very little about axioms and inference rules for JL.
It would be useful to work out the details of an axiomatization for our logics
and show that our axioms were valid in some LFA interpretation. This would
establish that they were also valid under the operational interpretation—thus
we would obtain an attractive program logic. It seems that the appropriate
axioms would be very similar to those of LCF, with a few additional “effectivity”
principles. Of course, in this simple situation one can imagine that the validity of
the axioms could be proved just as easily by syntactic methods, without the aid
of a denotational interpretation. It would therefore be interesting to carry out a
similar programme for more complex programming languages—it seems plausible
that here semantic methods might show a distinct advantage over syntactic ones.

18

Acknowledgments

We would like to thank John Power for many helpful discussions.

References
S. Abramsky, R. Jagadeesan & P. Malacaria, Full Abstraction for PCF (Extended

abstract), in Proceedings of TACS ’94, eds. M. Hagiya and J. Mitchell, LNCS
789, pp. 1–15, Springer-Verlag, Berlin, 1994; see also Full Abstraction for PCF,
by the same authors, to appear.

M. Beeson, Foundations of Constructive Mathematics, Springer-Verlag, Berlin, 1985.

P-L. Curien, Categorical Combinators, Sequential Algorithms, and Functional Pro-
gramming, Birkhäuser, Boston, 1993.

M. Fiore and G. D. Plotkin, An Axiomatisation of Computationally Adequate Domain
Theoretic Models of FPC, in Proceedings of the Ninth Symposium on Logic in
Computer Science, Paris, pp. 92 –102. Washington, IEEE Computer Society
Press,1994.

M. Gordon, R. Milner and C. Wadsworth, Edinburgh LCF, LNCS 78, Springer-Verlag,
Berlin, 1978.

C. A. Gunter, Semantics of Programming Languages, MIT Press, Cambridge, 1992.

J. M. E. Hyland, First Steps in Synthetic Domain Theory, in Category Theory,
Proceedings, Como 1990, eds. A. Carboni, M. C. Pedicchio and G. Rosolini,
LNM 1488, pp. 131–157, Springer-Verlag, Berlin, 1990.

J. M. E. Hyland and C.-H. L. Ong, Pi-calculus, Dialogue Games and PCF, in
Proc. 7th ACM Conf. Functional Programming and Computer Architecture, ACM
Press, 1995; see also On Full Abstraction for PCF: I, II and III, by the same
authors, to appear.

T. Jim and A. R. Meyer, Full Abstraction and the Context Lemma (Preliminary
Report), in Proceedings of TACS ’91, eds. T. Ito and A. R. Meyer LNCS 526,
pp. 131–151, Springer-Verlag, Berlin, 1991.

J. Lambek and P. J. Scott, Introduction to Higher-Order Categorical Logic, Cambridge
University Press, Cambridge, 1986.

J. R. Longley, Realizability Toposes and Language Semantics, Ph.D. thesis, University
of Edinburgh, LFCS technical report number ECS-LFCS-95-332, 1995.

R. Milner, Fully Abstract Models of Typed λ-calculi, Theoretical Comp. Sci., Vol.4,
pp. 1–22, 1977.

19

P. W. O’Hearn and J. G. Riecke, Kripke Logical Relations and PCF, Invited Lecture:
Workshop on Logic Domains and Programming Languages, Darmstadt, 1995, to
appear in Information and Computation.

G. Plotkin, LCF Considered as a Programming Language, Theoretical Comp. Sci.,
Vol. 5, pp. 223–255, 1977.

G. Plotkin, Tω as a Universal Domain, JCSS, Vol. 17, pp. 209–236, 1978.

D. Scott, Outline of a Mathematical Theory of Computation, in Proc. 4th Annual
Princeton Conference on Information Sciences and Systems, pp. 169–176, Prin-
ceton University, 1970.

D. Scott and C. Strachey Towards a Mathematical Semantics for Computer Languages,
in Proc. Symp. on Computers and Automata, Microwave Research Institute Sym-
posia Series, Vol. 21, pp. 19–46, Polytechnic Press, Brooklyn, New York, 1971.

A. Stoughton, Interdefinability of Parallel Operations in PCF, Theoretical Comp. Sci.,
Vol. 79, pp. 357–358, 1991.

M. B. Trakhtenbrot, On Representation of Sequential and Parallel Functions, in Proc.
4th Symposium on Mathematical Foundations of Computer Science, LNCS 32,
pp. 411–417, Springer-Verlag, Berlin, 1975.

20

