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The purpose of this course is to provide an introduction to λ-calculi,
specifically the simply typed lambda calculus (λ→).

λ-calculi are formalisms that are useful in computer science. They are
languages that express both computational and logical information.

Computational information in that they can be see as functional pro-
gramming languages, or more realistically, a solid core on which to build a
functional language.

Logical information in two ways. First, typed λ-calculi can be used dir-
ectly as logics—these are ‘intuitionistic type theories’ such as the calculus of
constructions (e.g., used in the ‘Lego’ theorem proving software developed
in this department). Second, typed λ-calculi underly the term structure of
higher order logics.

There are many different λ-calculi—everyone working in the field has their
own pet language(s)—but they generally fall into a few classes of broadly
similar languages. This course does not provide a wide ranging survey, but
instead aims to explain a good range of theoretical techniques, most of which
are applicable to a much wider range of languages than we will actually study.

The first half of the course gives a fairly thorough introduction to fairly
traditional and fundamental results about λ-calculi. The second half of the
course gives a detailed, quantitative analysis of λ→.

The book [3] covers much of the material in this course, especially sections
1–3. In section 1, we look at the untyped λ-calculus; [1] is a fairly compre-
hensive work on this. The article [2] is a fairly comprehensive work on pure
type systems, which include the simply typed λ-calculus and impredicative
intuitionistic type theories.
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1 Untyped Lambda Calculus

A typed λ-calculus has a language in two parts: the language of types, and
the language of terms. In order to introduce some basic notions, we shall
first look at the untyped λ-calculus Λ, so that we can consider terms
independently of types.

1.1 Syntax

The set T terms of the untyped λ-calculus is given by the following:

• A countably infinite set V of variables. Each variable is a term.

• If t and r are terms, then so is t r.

• If s is a term, and x is a variable, then λx. s is a term.

Each term has a unique representation in one of the above forms, and the
set of terms is the smallest set closed under the three clauses above.

In short, this is given by the following grammar:

T := V | T T |λV . T

Induction and unique reading of terms are given as follows.
Induction: Suppose that S is a set (of terms) such that (a) x ∈ S for

each variable x, (b) if t, r ∈ S then t r ∈ S and (c) if s ∈ S then λx. s ∈ S.
Then S contains all terms.

Unique reading: Each term is exactly one of the following: a variable,
an application, or an abstraction. If t r = t′ r′ then t = t′ and r = r′. If
λx. s = λx′. s′ then x = x′ and s = s′. (Also, if two variables are equal as
terms, then they are equal as variables—this one is confusing.)

These two principles enable us to define functions on T by recursion:
Recursion: Let S be a set, and Fvar : V −→ S, Fapp : S × S −→ S and

Fabs : V×S −→ S be functions. Then there is a unique function F : T −→ S
such that

F (x) = Fvar(x), F (t r) = Fapp(F (t), F (r)), F (λx. s) = Fabs(x, F (s)).

As an application of the above, take S to be the set of natural numbers, and
let lvar(x) = 1, lapp(m, n) = n + m + 1 and labs(x, m) = m + 1. Then the
function l given by recursion satisfies:

l(x) = 1, l(t r) = l(t) + l(r) + 1, l(λx. s) = l(s) + 1.
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The number l(r) is the length of the term r.
Another instance of recursion: Let S = Pfin(V), the set of finite sets of

variables. Let FVvar(x) = {x}, FVapp(c, a) = c∪a and FVabs(x, b) = b−{x}.
Then the function FV given by recursion satisfies:

FV(x) = {x}, FV(t r) = FV(t) ∪ FV(r), FV(λx. s) = FV(s)− {x}.

The finite set FV(r) is called the set of free variables occurring in r. A
term t is closed if FV(t) = ∅.

The bound variables of a term are given by the following equations:

BV(x) = ∅, BV(t r) = BV(t)∪ BV(r), BV(λx. s) = {x} ∪ BV(s).

The set of sub-terms of a term r is the set defined by:

sub(x) = {x}, sub(λx. s) = {λx. s} ∪ sub(s),

sub(t r) = sub(t) ∪ sub(r) ∪ {t r}.

1.2 Occurrences

Consider the term r = x x. The variable x occurs twice in r. In order to
reason about such situations, we shall give a formal definition of the notion
of occurrence of a sub-term or variable, in terms of a path π telling us how
to descend into a term. The reader who has an intuitive grasp of the notion
of occurrence may wish to skip its formalisation. . .

The set of paths is {R, L, ∗}<ω, the set of finite sequences of Rs, Ls and
∗s. For each term t we define path(t), the set of paths in t, by

path(x) =
{
〈〉
}

path(λx. s) =
{
〈∗, σ〉

∣∣ 〈σ〉 ∈ path(s)
}
∪
{
〈〉
}

path(t r) =
{
〈L, σ〉

∣∣ 〈σ〉 ∈ path(t)
}
∪
{
〈R, σ〉

∣∣ 〈σ〉 ∈ path(r)
}
∪
{
〈〉
}

We define a function occ such that if t ∈ T and σ ∈ path(t), then occ(t, σ)
is a sub-term of t.

occ(t, 〈〉) = t

occ(t r, 〈L, σ〉) = occ(t, 〈σ〉) occ(t r, 〈R, σ〉) = occ(r, 〈σ〉)

occ(λx. s, 〈∗, σ〉) = occ(s, 〈σ〉)

A path σ is an occurrence of s in r if occ(r, σ) = s.
When it is convenient (i.e., nearly always) we shall abuse our terminology,

confusing a sub-term with a particular sub-term occurrence. E.g., referring
to an “occurrence s in r”, rather than a “sub-term s of r and some occurrence
σ of s in r”.
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Exercise 1.1 Refine the notions of free and bound variables of a term to
free occurrences and bound occurrences of a variable in a term.

Suppose that σ is a path in r, that τ is a path in s, where s is the sub-
term at σ in r, and t is the sub-term at τ in s. Show that the concatenation
στ is a path in r, and that t is the sub-term of r at στ .

Given a bound occurrence ρ of a variable x in r, the binder of ρ is the longest
initial sub-sequence σ of ρ, such that occ(r, σ) is the form λx. s.

Exercise 1.2 Give a definition of the binder of a bound variable occurrence
by recursion on the term r.

1.3 Alpha Equivalence

One of the most basic operations we need to consider is the replacement
of a variable y in a term r by another term s. This operation is called
substitution, and is denoted r[s/y].

Unfortunately, there is an immediate complication in the definition of
this. Consider the terms r = λx. x y and s = x x. Then simply replacing y
by s in r gives the term r′ = λx. x (x x). The free variable x in s has been
‘captured’ by the λ-abstraction, making it a bound variable in r′. This is
undesirable for our purposes.

The solution is to first rename the bound variable x in r to some other
variable, before carrying out the replacement. E.g., renaming x to z in r
gives the term λz. z y. Then replacing y by s = x x gives λz. z (x x). The
variable x is free in this term, as desired.

The formalisation of the ‘renaming of bound variables in a term’ is called
α-equivalence. Two terms r1 and r2 are α-equivalent (r1 ≡α r2) if one can
be obtained from the other by (a sensible) renaming of bound variables.

We could define α-equivalence in terms of a step-by-step renaming of
bound variables in a term. Instead, we define α-equivalence in terms of
occurrences. Two terms r1 and r2 are α-equivalent if the following hold:

1. path(r1) = path(r2).

2. The sets of free variable occurrences in r1 and r2 are equal. The sets
of bound variable occurrences in r1 and r2 are equal.

3. If σ is a free variable occurrence in r1 (and by 2., in r2 also), then
occ(r1, σ) = occ(r2, σ).

4. If σ is a bound variable occurrence in r1 and r2, then the binder of σ
in r1 is equal to the binder of σ in r2.
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Exercise 1.3 Show that α-equivalence is an equivalence relation.
Let r1 and r2 be terms with path(r1) = path(r2). (1) Take σ ∈ path(r1) =

path(r2) and let s1 and s2 be the corresponding sub-terms occurring at σ.
Show that s1 and s2 are either both variables, or both applications, or both
abstractions. Show that the two parts of 2. in the definition of ≡α are equi-
valent for r1 and r2.

Exercise 1.4 Give a formal definition of what it means to replace a bound
variable x by y in a term r. Give a definition of α-equivalence in terms of
this replacement, and prove that it gives the same relation as our definition.
You must be careful to avoid variable capture (e.g., avoid renaming λx. λy. x
to λx. λx. x).

The exercise below shows that every term has plenty of nice α-equivalents.

Exercise 1.5 A term t is regular if it satisfies the condition that for every
variable x, there is at most one occurrence in t of a sub-term in the form
λx. s, and no variable is both free and bound in t.

Let t0 be a term, and let S be a finite set of variables (more generally,
such that V − S is infinite). Show that there is a regular t ≡α t0 such that
no member of S is bound in t.

When it is convenient, we consider the set T /≡α of α-equivalence classes of
terms, rather than the set T of terms. Often we will not distinguish between
a term and its α-equivalence class, and write such things as λx. x = λy. y.

Observe that the basic syntactical operations of abstraction and applic-
ation are well-defined on α-classes, and that we may prove that a predicate
holds for all α-classes by structural induction. However, the unique-reading
property does not hold for α-classes, as the α-class of a λ-abstraction λx. s
does not determine the variable x. Hence, to define a function on α-classes
by structural recursion, we must carry out the recursion on terms, and verify
that the function on terms leads to a well-defined function on α-classes.

1.4 Substitution

Let r and s be terms, and y be a variable, such that no variable is both free
in s and bound in r, and y is not bound in r. The substitution r[s/y] is
defined by recursion on r, as follows:

• y[s/y] = s, and x[s/y] = x for x 6= y.

• (t r)[s/y] = (t[s/y])(r[s/y]).
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• (λx. r)[s/y] = λx.(r[s/y]).

The following exercise shows that the substitution above gives a well defined,
and total, operation on α-equivalence classes.

Exercise 1.6 Show that the paths in r[s/y] are (a) the paths ρ in r, (b) con-
catenations ρσ where ρ is a free occurrence of y in r and σ is a path in s.
Express the sub-term at a path in r[s/y] in terms of sub-terms at paths in r
and s.

Show that if r1 ≡α r2 and s1 ≡α s2 are such that r1[s1/y] and r2[s2/y]
are both defined, then these two terms are α-equivalent.

Show that for any r, s and y, there is r′ ≡α r such that r′[s/y] is defined.

Exercise 1.7 Show that if a variable x′ is neither free nor bound in s′, then
s ≡α s′ iff λx. s ≡α λx′. s′[x′/x].

Exercise 1.8 Formulate a notion of simultaneous substitution, carrying
out several substitutions at once: s[r1/x1 . . . rm/xm]. Note that in general
s[r1/x1, r2/x2] 6= s[r1/x1][r2/x2].

1.5 Beta Conversion

The intuition behind the syntactical constructs of abstraction and applica-
tion, is that λx. s is the function F defined by F x = s (i.e., F (r) is given by
replacing x by r in s), and that t r is the result of applying the function t to
argument r. This intuition is captured by the notion of β-reduction.

A redex is a term in the form (λx. s) r. The basic β-reduction relation
is given by (λx. s) r −→b s′[r/x], whenever s′ ≡α s is such that s′[r/x] is
defined.

The one step β-reduction relation −→β1 is given by allowing a basic
β-reduction of redex occurrence. In other words, −→β1 is the least relation
containing −→b and closed under

t −→β1 t′

t r −→β1 t′ r
,

r −→β1 r′

t r −→β1 t r′
,

s −→β1 s′

λx. s −→β1 λx. s′
.

The n step β-reduction relations −→β n are given inductively by r −→β 0 r
and, if r −→β n r′ −→β1 r′′, then r −→β n+1 r′′. β-reduction −→β is the
least pre-order containing −→β1, so that r −→β r′ iff there is n such that
r −→β n r′. β-conversion (≡β) is the least equivalence relation containing
−→β1.
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Exercise 1.9 For each of the reduction relations −→•, give an analogous
definition of −→• as a relation on α-equivalence classes. Show that you
have made the correct definition, by showing that for α-classes r and r′, the
following are equivalent (a) r −→• r′, (b) there are r0 ∈ r and r′0 ∈ r′ such
that r0 −→• r′0, and (c) for every r0 ∈ r there is r′0 ∈ r′ such r0 −→• r′0.

Show that (a) if s −→β1 s′ then s[r/x] −→β1 s′[r/x], and (b) if r −→β r′,
then s[r/x] −→β s[r′/x].

A term is called normal if no redexes occur in it. A term is weakly nor-
malising (WN) if it β-reduces to a normal term. A term r is strongly
normalising (SN) if there is no infinite sequence r = r0 −→β r1 −→β · · · .
Given a term t, we define sn(t) = sup{n | ∃t′ s.t. t −→β n t′} ∈ N ∪ {∞}.

Exercise 1.10 Show that every strongly normalising term is weakly norm-
alising, but not conversely. Show that sn(t) <∞ iff t is SN.1

1.6 Some Examples—Recursive Functions

We give some examples of terms, and their behaviour under reduction.
The Church Numerals are an encoding of the natural numbers, given

by
pnq = λf. λx. fn(x)

where fn(x) indicates the usual iterated application: f0(x) = x, fn+1(x) =
f (fn(x)). A term F encodes a function f if F piq −→β pf(i)q for each n.2

More generally, F encodes a function f of N arguments if

F pi1q . . . piNq −→β pf(i1 . . . iN)q

for all i1 . . . iN .
The successor function n 7→ n+1 is encoded by

S = λn. λf. λx. f (n f x),

so that S pnq −→β pn+1q. Addition is given by

add = λm. λn. λf. λx. m f (n f x),

so that add pnq pmq −→β pn + mq, and multiplication by

mult = λm. λn. λf. m (n f).
1Note that one direction of this is not constructive. Everything else in these notes is

constructive.
2By theorem 1.18 (Church-Rosser), a term encodes at most one function.
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There is a zero test

?0 = λn. λx. λy. n (λz.y) x

with the property that ?0 p0q r s −→β r and ?0 pn+1q r s −→β s.
There is the Church pairing, with

pair = λx. λy. λz. z x y π1 = λp. p (λx. λy. x) π2 = λp. p (λx. λy. y)

so that
π1 (pair r s) −→β r and π2 (pair r s) −→β s.

This enables us to encode primitive recursion. Let

step = λp. p
(
λx. λy. pair (S x) (fx y)

)
so that step (pair pnq a) −→β pair pn+1q (f a). Defining

recp = λn. n step (pair p0q x)

we have
recp p0q −→β pair p0q x

and, if recp pnq −→β pair pnq a, then

recp pn+1q −→β pair pn+1q (f pnq a).

Letting rec = λf. λx. λn. π1(recp f x n), we have that

rec f a p0q ≡β a rec f a pn+1q ≡β f pnq (rec f a pnq).

Not every term has a normal form. For example, letting

Ω = (λx. x x)(λx. x x),

we have that Ω −→β1 Ω −→β1 · · · . Some terms without normal forms are
useful, as the example following shows. Programming languages usually allow
recursive function definitions: F x = t, where t is some expression containing
both x and F . In λ-calculus notation, F = λx. t. Of course, we cannot
solve this up to equality; the next best thing is to find a term F such that
F −→β λx. t. More generally, letting G = λF. λx. t, it suffices to find YG
such that YG −→β GYG. For example, take

YG =
(
λx. G (x x)

)(
λx. G (x x)

)
.
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Exercise 1.11 Check all claims made above.

Exercise 1.12 Find a fixed-point combinator Y that β-reduces to the
term λf. f (Y f). (Given Y , we could have taken the YG above to be Y G.
You can also go the other way round, and find G such that Y = YG has the
required property.)

Using Y , we can encode minimisation. If f is a function on the natural
numbers such that f(i) = 0 for some i, then µf is the least such i. Similarly,
let µ>nf be the least i > n such that f(i) = 0, if such exists. This is given
recursively by:

µ>nf =
{

n if f(n) = 0
µ>n+1f if f(n) 6= 0

Hence, we want a term µ>, such that µ> nf −→β ?0 (f n)n (µ> (S n) f).
Letting

µ> = Y
(
λM. λn. λf. ?0 (f n) n (M (S n) f)

)
does the trick, and then let µ = µ> p0q. With these definitions, if F encodes
a function f , and f has a zero, then

µF −→β pµfq.

Exercise 1.13 The total recursive functions are the least set of functions
(of arbitrary arity) on the natural numbers, that

1. Contains the constant functions, the successor function and the projec-
tions (x1 . . . xm) 7→ xi (whenever 1 6 i 6 m).

2. Is closed under composition: h(x) = f(g1(x) . . . gn(x)).

3. Is closed under primitive recursion: h(x, 0) = f(x), h(x, n + 1) =
g(x, n, f(x, n)).

4. Is closed under minimisation, whenever this gives a total function: if
for each x there is n such that f(x, n) = 0, then take g(x) to be the
least such n.

Show that every total recursive function can be encoded by a λ-term.

It was conjectured by Church that the computable functions on the natural
numbers are precisely those that can be encoded by a λ-term. This is the
famous Church’s Thesis. The exercise above is one half of showing that the
functions encodable in Λ coincide with the recursive functions. Unsurpris-
ingly, the functions on the natural numbers encodable in Λ coincide with the
functions computable in lots of other mathematical models of computability.
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Theorem 1.14 The predicate of being weakly normalising is not decidable.

Proof Sketch: Suppose that WN were decidable. Then we could define
a computable function F on λ-terms such that F (t) is the normal form of
t if there is one, and F (t) = λx. x otherwise. Then F would be a total
computable function majorising every total recursive function, which is not
possible. �

1.7 Church-Rosser (Confluence) Property

Our reduction relation is not deterministic—given a term r, it may contain
several redexes, and hence several different ways of reducing it.

However, there is a certain determinism to the intuition behind our
calculus—function application gives a unique value. This is expressed locally
in the fact that there is (up to ≡α) only one way of reducing a given redex.
It can also be expressed globally in the confluence, or Church-Rosser, prop-
erty: if r −→β r1 and r −→β r2, then there is r′ such that r1 −→β r′ and
r2 −→β r′. In particular, a term has at most one normal form.

The proof of Church-Rosser is based on a quite simple idea—if r contains
two redexes, then the reduction of one redex does not stop the reduction of the
other redex, and it does not matter in what order the reductions are carried
out. This makes it quite simple to show that if r −→β1 r1, r2, then there is r′

such that r1, r2 −→β r′. However, note the β1- and β- reductions in this. To
extend this result to confluence for β-reduction, we must be careful to avoid
an infinite regress. The proof we give (due to Hyland) replaces −→β1 with a
‘parallel’ reduction, which simultaneously reduces any collection of redexes
in a term.

Let R be a relation, and 6 be the least pre-order containing R. R is
confluent, if whenever a R a1 and a R a2, there is a′ such that a1 R a′ and
a2 R a′. R is weakly confluent, if whenever a R a1, a2, there is a′ such that
a1, a2 6 a′ .

Exercise 1.15 Let R be a relation and 6 the least pre-order containing R.
Show that if R is confluent, then so is 6. Find a weakly confluent R such
that 6 is not confluent.

The parallel reduction relation, −→p, is the relation on α-classes given
inductively by:

x −→p x

t −→p t′ r −→p r′

t r −→p t′ r′
s −→p s′

λx. s −→p λx. s′
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s −→p s′ r −→p r′

(λx. s′) r −→p s′[r′/x]

The lemma below follows easily from the definitions of the various reduction
relations.

Lemma 1.16 If r −→β1 r′ then r −→p r′. If r −→p r′, then r −→β r′.
The least pre-order containing −→p is −→β. If s −→p s′ and r −→p r′,
then s[r/x] −→p s′[r′/x]. �

Lemma 1.17 −→p is confluent.

Proof: We show that if t, t1 and t2 are α-classes, with t −→p t1 and t −→p

t2, then, then there is t′ such that t1 −→p t′ and t2 −→p t′. We perform the
construction by induction on t.

The non-trivial step is for t in the form (λx. s) r. Then (for i = 1, 2) there
are si and ri such that s −→p si, r −→p ri, and either ti = (λx. si) ri or
ti = si[ri/x]. By the induction hypothesis, there are r′ and s′ such that (for
i = 1, 2) ri −→p r′ and si −→p s′. Let t′ = s′[r′/x]. Then we have that both
(λx. si) ri −→p t′ and si[ri/x] −→p t′, so that t1, t2 −→p t′.

The other cases are easy: e.g. if t is in the form s r, but is not a redex, then
the ti are in the form si ri where s −→p s1, s2 and r −→p r1, r2. Applying
the induction hypothesis, there are s′ and r′ such that s1, s2 −→p s′ and
r1, r2 −→p r′. Letting t′ = s′ r′, we have t1, t2 −→p t′, as required. �

Theorem 1.18 (Church-Rosser) The relation −→β is confluent (on α-
classes). �

Corollary 1.19 If a term β-reduces to a normal form, then the normal form
is unique (up to ≡α). �

Exercise 1.20 (Standardisation) The standard reduction relation −→s

is given by:

r1 −→s r′1 . . . rm −→s r′m
x r1 . . . rm −→s x r′1 . . . r′m

s[r0/x] r1 . . . rm −→s t

(λx. s) r0 r1 . . . rm −→s t

s −→s s′ r1 −→s r′1 . . . rm −→s r′m
(λx. s) r1 . . . rm −→s (λx. s) r′1 . . . r′m

Show that if r −→s r′, then r −→β r′, and give a characterisation of the
reduction sequences obtained (in terms of what redexes are reduced in what
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order). Show that if r′ is normal, then r −→β r′ by a reduction sequence
that always reduces the leftmost redex (appropriately defined).

Show that −→s is closed under the following:

s −→s s′ r −→s r′

s[r/x] −→s s′[r′/x]
t −→s (λx. s′) r′

t −→s s′[r′/x]
t −→s t′ −→β1 t′′

t −→s t′′

and that −→s and −→β are the same relation.
Conclude that if r −→β r′, then r reduces to r′ with a reduction sequence

in some special form. In particular, if r −→β r′, and r′ is normal, then left-
most reduction reduces r to r′. These are the standardisation theorems.

The notion of a term F encoding a (total) function f , is extended to F
encoding a partial function f , by requiring that if f(n) is undefined, then
F pnq does not β-reduce to a λ-abstraction.3

In exercise 1.13, we referred to only total recursive functions. This is
because we didn’t have results useful for showing partiality as encoded above.
The standardisation results in the previous exercise are such results.

Exercise 1.21 The partial recursive functions are given by removing the
condition (in exercise 1.13) that functions given by minimisation are total.
Show that every partial recursive function can be encoded by a λ-term. You
will need to take care of the fact that mathematical functions are strict, in
that f(x1 . . . xm) is undefined if any of the xi are, while the obvious encodings
in Λ are not strict.

2 Simply Typed Lambda Calculus

So far, we have dealt with the untyped λ-calculus. There is no restriction on
how we can use objects—for example, any value can be used as a function.
In real life, this is undesirable; what does it mean to apply the number 5
to the function cos? Type systems are one way of (statically) ensuring that
operations are only applied to appropriate objects. We shall introduce a type
system for the λ-calculus, obtaining the simply typed λ-calculus, λ→ for
short.

2.1 Syntax

The syntax of λ→ is presented in stages.
3Perhaps not having a normal form would seem more intuitive. However, the stronger

condition given is easier to work with.
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1. The types are defined.

2. The pre-terms are defined. Pre-terms are essentially terms of Λ, and
include things that we do not wish to consider in λ→, such as λx:o.x x.

3. A system of typing judgements is given, that identifies the terms—those
pre-terms that we wish to consider in λ→.

We take an arbitrary non-empty set G of ground types. For concreteness and
simplicity, we shall take G = {o}; there is no reason why some other (larger)
set should not be used. Types are then given by the following grammar:

τ := G | τ → τ.

In order to avoid ambiguity in λ→, we decorate λ-abstractions with types.
The grammar for pre-terms of λ→ is:

T := V | T T |λV :τ. T .

The notions such as α-equivalence, substitution and reduction can be carried
across more or less verbatim from Λ to λ→. The definition of α-equivalence
must be modified to ensure that the type decorations are preserved, e.g., so
that λx:A. x ≡α λy:B. y if and only if A = B. Our proof of the Church-Rosser
theorem still works for the pre-terms of the typed calculus.

A context is a function mapping a finite set of variables into the set of
types. Contexts will be written in the form x1:A1 . . . xm:Am. They should be
read as a typing declaration: the context x1:A1 . . . xm:Am indicates that each
variable xi will be considered to have the corresponding type Ai. We present
a ternary relation Γ ` s : B on contexts Γ, pre-terms s and types B by the
following clauses:

x1:A1 . . . xm:Am ` xi : Ai

for 1 6 i 6 m

Γ ` f : A→B Γ ` r : A

Γ ` f r : B

Γx:A ` s : B

Γ ` λx. s : A→B

A pre-term s is said to be a term (of type B in context Γ) if Γ ` s : B.
We also define the relation Γ ` s : B for α-classes s of pre-terms, using

identical clauses.

Exercise 2.1 Show that the relations ` for pre-terms, and for α-classes,
are related as follows: an α-class s has Γ ` s : B derivable if and only if
there is s0 ∈ s such that Γ ` s0 : B is derivable.
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2.2 Basic Properties

Lemma 2.2 (Renaming) If Γz:C ∆ ` s : B for some α-class s, and z′ is
not in the context, then Γz′:C ∆ ` s[z′/z] : B.

Proof: We in fact show that simultaneous renaming is possible, in that if
x1:A1 . . . xm:Am ` s : B, and x′1 . . . x′m is a sequence of distinct variables, then
x′1:A1 . . . x′m:Am ` s[x′1/x1 . . . x′m/xm] : B.

We show this by induction on derivations. We do the case of a derivation
ending

x1:A1 . . . xm:Am x:A ` s : B

x1:A1 . . . xm:Am ` λx:A. s : A→B.

Let x′ be a variable distinct from the x′i. By the induction hypothesis,

x′1:A1 . . . x′m:Am x′:A ` s[x′1/x1 . . . x′m/xm, x′/x] : B

and hence

x′1:A1 . . .x′m:Am ` λx′:A.
(
s[x′1/x1 . . .x′m/xm, x′/x]

)
: B

are derivable. The equation

λx′:A.
(
s[x′1/x1 . . . x′m/xm, x′/x]

)
= (λx:A. s)[x′1/x1 . . . x′m/xm]

holds, and the induction step follows. �

Lemma 2.3 (Weakening) Let s be an α-class such that Γ∆ ` s : B. Let
z be a variable not in Γ∆. Then Γz:C ∆ ` s : B

Proof: By the renaming lemma, it suffices to show that there is z such that
Γz:C ∆ ` s : B. This can be shown by an easy induction on derivations. �

Lemma 2.4 (Uniqueness of Derivations) If s is a pre-term, with Γ `
s : B, then the derivation of this fact is unique. �

Lemma 2.5 (Unicity of Typing) If s is an α-class, with Γ ` s : B and
Γ ` s : B ′, then B = B′. �

Exercise 2.6 Prove the two lemmas above.

Lemma 2.7 (Substitution) Let r and s be α-classes such that Γ ` r : A
and Γx:A ∆ ` s : B. Then Γ∆ ` s[r/x] : B. �

Exercise 2.8 Prove it. Use induction on a derivation of Γx:A ∆ ` s : B.
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Lemma 2.9 (Subject Reduction) Let s be an α-class with Γ ` s : B,
and s −→β s′. Then Γ ` s′ : B also.

Proof: The case when s −→b s′ reduces to the substitution lemma above.
Closing under the term constructs of application and abstraction shows that
the lemma holds for s −→β1 s′. An induction shows that the lemma holds
for −→β also. �

2.3 Models

We give a notion of model of λ→. What is given here is far from the most
general notion of model possible. A model is a mapM assigning a setM(o)
to each ground type. We define the interpretation J·K, first for types, and
then for terms. Put JoK = M(o), and JA → BK = JBKJAK (the set of all
functions from JAK to JBK).

Given a context Γ = x1:A1 . . . xm:Am, we define a valuation σ on Γ to
be a function defined on the xi such that σ(xi) ∈ JAiK for 1 6 i 6 m.
Given another variable x and a ∈ JAK, we define σ[x := a](xi) = σ(xi) and
σ[x := a](x) = a, so that σ[x := a] is a valuation on Γx:A.

We define JsKσ ∈ JBK whenever Γ ` s : B and σ is a valuation on Γ, by

JxKσ = σ(x) Jt rKσ = JtKσ
(
JrKσ

)
and, for a ∈ JAK,

Jλx:A. sKσ(a) = JsKσ[x:=a].

The following lemma shows that our semantics gives some meaning to β-
reduction, as well as to syntax.

Lemma 2.10 If Γ ` r : A and Γx:A ` s : B, then

Js[r/x]Kσ = JsKσ[x := JrKσ]
.

If Γ ` s : B and s −→β s′, then JsKσ = Js′Kσ. �

Exercise 2.11 Prove the lemma. Be careful about contexts!

3 Strong Normalisation

The set-theoretic semantics of λ→ of section 2.3 gives a sense in which λ→

meaningful—it formalises the intuition that A→ B is a type of functions,
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that terms of a function type are functions, and that terms are values of some
sort. The semantics gives meaning to β-reduction, by lemma 2.10.

The meaning given to λ→ by the semantics is static and external. Static in
the sense that terms are represented by values, rather than by computations;
it gives no sense of the term t computing the value JtK. External in the
sense that terms are given meaning in terms of some structure outside of the
syntax.

The normalisation theorem proved in this section gives meaning to λ→ in
a way that is dynamic and internal, by showing that every term is strongly
normalising. This is dynamic in the sense that the meaning of a term is given
by a computational process: the reduction of a term t to a normal form v
is in a series of steps t = t0 −→β1 t1 −→β1 · · · −→β1 tn = v. These steps
can be seen as the successive states of a computer running the program t to
reach a value v. Strong normalisation is internal, in that it gives meaning to
the calculus without reference to another structure.

A common way to prove the termination of some sequence t0, t1, . . . is
to find some measure |ti| ∈ N that is strictly decreasing in i. Later, we
will carry out such a construction, in order to give a quantitative analysis
of strong normalisation for λ→. However, such a proof is non-trivial. A
first attempt might be to take |t| to be the length of the term t. This fails
as reduction of a redex (λx. s) r to s[r/x] can increase length. In the proof
of strong normalisation that follows, we avoid this problem by taking into
account the meaning of terms: we show that a term f : A→ B is not just
SN, but that f maps SN terms of type A to SN terms of type B.

Normalisation for λ→ was first proved by Turing, although Gentzen had
earlier given similar cut-elimination results for sequent calculi. The proof
method we use is due to Tait. Girard extended it to prove normalisation
for F , the second order λ-calculus, and since then it has been used to prove
normalisation for just about everything.

3.1 Preliminaries

We start by noting some properties of SN, the set of strong normalising terms
of Λ. We leave it as an exercise to rewrite these for λ→.

Exercise 3.1 If t ∈ SN and t −→β t′, then t′ ∈ SN. If t′ ∈ SN for all t′

such that t −→β1 t′, then t′ ∈ SN. If t ∈ SN and t′ is a sub-term of t, then
t′ ∈ SN.
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Lemma 3.2 The set SN is closed under the following:

r1 . . . rm
x r1 . . . rm

s

λx. s

s[r0/x] r1 . . . rm r0

(λx. s) r0 r1 . . . rm
(1)

Proof: The first two clauses are more or less trivial. We do the last clause.
Recall that sn(t) is the l.u.b. of the length of the reduction sequences starting
from t. Suppose that s[r0/x] r1 . . . rm ∈ SN and r0 ∈ SN.

We show by induction on the number sn
(
s[r0/x] r1 . . . rm

)
+ sn

(
r0
)
, that

(λx. s) r0 r1 . . . rm ∈ SN.
Suppose (λx. s) r0 r1 . . . rm −→β1 t. We show that t is SN by considering

the possibilities for t.
If t = s[r0/x] r1 . . . rm, then t ∈ SN.
If t = (λx. s) r′0 r1 . . . rm where r0 −→β1 r′0, then we get the β-reduction

s[r0/x] r1 . . . rm −→β s[r′0/x] r1 . . . rm. This gives the inequalities

sn
(
s[r′0/x] r1 . . . rm

)
6 sn

(
s[r0/x] r1 . . . rm

)
and sn(r′0) < sn(r0).

By the induction hypothesis, t ∈ SN.
Otherwise, the redex reduced is in s or one of r1 . . . rm, and we have

t = (λx. s′) r0 r′1 . . . r′m where s[r0/x] r1 . . . rm −→β1 s′[r0/x] r′1 . . . r′m, and ap-
plying the induction hypothesis gives t ∈ SN. �

Exercise 3.3 Refine the proof of lemma 3.2 to show that if t can be derived
by using the clauses of (1) n times, then sn(t) 6 n.

Show that SN is the least set closed under the three clauses (1)—i.e., that
every SN term can be derived using those clauses.

Exercise 3.4 Show that if x is free in s, and s[r0/x] r1 . . . rm ∈ SN, then
(λx. s) r0 . . . rm ∈ SN.

The λI-calculus ΛI is given in exactly the same way as Λ, except that
in all λ-abstractions λx. s, the variable x is required to be free in s. Show
that every weakly normalising ΛI term is strongly normalising. Hint: use the
standardisation results of exercise 1.20 and the first part of this exercise.

We wish to make the following definition, recursive in types:

• Redo is the set of strongly normalising terms of type o, for any ground
type o.

• RedA→B is the set of terms f of type A→B, such that for any r ∈ RedA,
we have f r ∈ RedB .
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Unfortunately, this does not quite work for our purposes, as the contexts of f
and r might be different. One way of avoiding this issue is to reformulate λ→

slightly, so that variables have types pre-assigned, rather than being declared
in contexts. Another way is to simply keep track of contexts; we therefore
make the following definition of the sets of reducible terms:

Redo =
{
(Γ, r)

∣∣ r ∈ SN, Γ ` r : o
}

for ground types o, and

RedA→B =
{
(Γ, f)

∣∣ Γ ` f : A→B, (Γ∆, f r) ∈ RedB ∀(Γ∆, r) ∈ RedA
}
.

Lemma 3.5 1. If (Γ, s) ∈ RedB then s ∈ SN.

2. If Γ ` x r1 . . . rm : B, and r1, . . . , rm ∈ SN, then(
Γ, x r1 . . . rm

)
∈ RedB .

3. If (Γ, s[r0/x] r1 . . . rm) ∈ RedB, Γ ` r0 : A and r0 ∈ SN, then(
Γ, (λx:A. s) r0 r1 . . . rm

)
∈ RedB.

Proof: We prove the properties simultaneously by induction on the type
B. For B = o, 1. is trivial, and 2. and 3. are properties of SN. Suppose that
B = C→D.

For 1., let z be a variable not in Γ, so that by the induction hypothesis of 2.
for C, (Γz:C, z) ∈ RedC. As (Γ, s) ∈ RedC→D, we have (Γz:C, s z) ∈ RedD,
so that by the induction hypothesis of 1. for D, s z ∈ SN and hence s ∈ SN
also.

For 2., take any (Γ∆, rm+1) ∈ RedC. By the IH 1. for C, we have that
rm+1 ∈ SN, so that by the IH 2. for D, (Γ∆, x r1 . . . rm+1) ∈ RedD. The
definition of RedC→D now gives (Γ, x r1 . . . rm) ∈ RedB .

For 3., take any (Γ∆, rm+1) ∈ RedC. Then, (Γ∆, s[r0/x] r1 . . . rm+1) ∈
RedD, so that by the IH, (Γ∆, (λx:A. s) r0 r1 . . . rm+1) ∈ RedD. This shows
that (Γ, (λx:A. s) r0 r1 . . . rm) ∈ RedB . �
Exercise 3.6 Check that if (Γ, s) ∈ RedB, then (Γx:A, s) ∈ RedB also.

3.2 The Main Induction

We prove that terms of λ→ are SN, by showing that they are members of the
reducibility sets defined above. The definition of RedA→B as the set of those
terms which give a function from RedA to RedB, means that the sets RedA
form something like a model of λ→. Our proof that every term is reducible
will be a structural induction bearing a more than passing similarity to the
definition of the interpretation of a term in a model.
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Lemma 3.7 Suppose y1:B1 . . . yn:Bn ` r : A. For any (Γ, sj) ∈ RedBj
(1 6 j 6 n), we have (Γ, r[s1/y1 . . . sn/yn]) ∈ RedA.

Proof: We write s/y for s1/y1 . . . sn/yn. The proof is by induction on the
term r.

For r a variable, the lemma is trivial.
Consider an application t r where r : A and t : A→ B. The induction

hypotheses are that (Γ, t[s/y]) ∈ RedA→B and (Γ, r[s/y]) ∈ RedA. The
definition of RedA→B gives (Γ, (t r)[s/y]) ∈ RedB, as required.

Consider a λ-abstraction, λx:A. b : A→ B. Take any (ΓΓ′, a) ∈ RedA.
For each j, (ΓΓ′, sj) ∈ RedBj , so that by the induction hypothesis,(

ΓΓ′, b[s/y, a/x]
)
∈ RedB .

Also, a ∈ SN as a ∈ RedA, so that by 3. of lemma 3.5, we have(
ΓΓ′, (λx:A. b)[s/y] a

)
∈ RedB .

By the definition of RedA→B , we get
(
Γ, (λx:A. b)[s/y]

)
∈ RedA→B . �

Theorem 3.8 Every term of λ→ is SN.

Proof: Given y1:B1 . . . yn:Bn ` r : A, take Γ = y1:B1 . . . yn:Bn and sj = yj
in the lemma above. This gives (Γ, r) =

(
Γ, r[y/y]

)
∈ RedA, and so r ∈ SN.

�

Exercise 3.9 Gödel’s system T is the following extension of λ→: take the
ground type to be N , and introduce constructs 0, S and R with the following
rules:

Γ ` 0 : N
Γ ` n : N

Γ ` S(n) : N

Γ ` n : N Γ ` a : A Γ, x:A ` r : A

Γ ` R(n, a, x. r)

The type N is intended to represent the natural numbers, with 0 and S
being zero and the successor function. The operator R gives definitions by
recursion: R(n, a, x. f x) is intended to be fn(a). This is expressed by the
following reduction rules:

R(0, a, x. r) −→ a R(S(n), a, x. r) −→ r[R(n, a, x. r)/x].

Adapt the proof of theorem 3.8 to prove SN for Gödel’s T .
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3.3 A Combinatorial Proof

We give another proof of SN for λ→ that is less abstract in the sense that
it doesn’t require the predicates RedA. The combinatorial methods we use
here are less general—for instance, cannot be applied to Gödel’s T—but can
be formalised in a logic of first order arithmetic, such as Peano Arithmetic.
The technique is in essence that used by Gentzen to prove cut-elimination for
LK, the classical sequent calculus. Later, we shall give an even less abstract
proof, one that is formalisable in primitive recursive arithmetic.

We shall call a term inductively normalising (IN) if it is derivable by
the three clauses (1). By lemma 3.2, the inductively normalising terms are
strongly normalising.

We shall call a type A substitutive if IN is closed under the following
clause:

Γ ` r : A Γx:A ∆ ` s : B r ∈ IN s ∈ IN
s[r/x] ∈ IN

∀Γ, r, x, ∆, s, B. (2)

The type A is called applicative if IN is closed under:

Γ ` t : A→B Γ ` r : A t ∈ IN r ∈ IN
t r ∈ IN

∀Γ, t, B, r. (3)

Lemma 3.10 Every substitutive type is applicative.

Proof: Let A be a substitutive type. We show that IN is closed under (3)
by induction on the fact that t ∈ IN.

If t = x r1 . . . rm with r1, . . . , rm ∈ IN, then as r ∈ IN also, we have
t r = x r1 . . . rm r ∈ IN.

If t = λx:A. s with s ∈ IN, then as A is substitutive, we have s[r/x] ∈ IN
and hence t r = (λx:A. s) r ∈ IN.

If t = (λz:C. s) r0 . . . rm where s[r0/z] r1 . . . rm ∈ IN and r0 ∈ IN, then
by the induction hypothesis, s[r0/z] r1 . . . rm r ∈ IN. As also r0 ∈ IN, we get
t r = (λz:C. s) r0 . . . rm r ∈ IN. �

Lemma 3.11 Suppose that A = A1 → · · · → AM → o, where each Ai is
applicative. Then A is substitutive.

Proof: We show that IN is closed under (2) by induction on the fact that
s ∈ IN.

If s = x s1 . . . sm where s1, . . . , sm ∈ IN, then by the induction hypothesis,
si[r/x] ∈ IN (1 6 i 6 m). The term si[r/x] has type Ai, which is applicative,
so that s[r/x] = r s1[r/x] . . . sm[r/x] ∈ IN.
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If s = y s1 . . . sm where s1, . . . , sm ∈ IN and y 6= x, then by the induction
hypothesis, si[r/x] ∈ IN (1 6 i 6 m). Then s[r/x] = y s1[r/x] . . . sm[r/x] ∈
IN.

If s = λy:B. s′ where s′ ∈ IN, then by the induction hypothesis, s′[r/x] ∈
IN so that s[r/x] = λy:B. s′[r/x] ∈ IN.

If s = (λy:B. s′) r0 . . . rm where s′[r0/y] r1 . . . rm ∈ IN and r0 ∈ IN, then
by the induction hypothesis,

s′[ rx ]
[
r0[ rx ]

/
y
] (

r1[ rx ]
)
. . .
(
rm[ rx ]

)
=
(
s′[r0/y] r1 . . . rm

)[
r/x
]
∈ IN,

and r0[r/x] ∈ IN, so that s[r/x] =
(
λy:B. s′[ r

x
]
)(

r0[ rx ]
)
. . .
(
rm[ r

x
]
)
∈ IN. �

Theorem 3.12 Every term of λ→ is SN.

Proof: An induction on types using lemmas 3.10 and 3.11 shows that every
type is applicative. Together with the definition of IN, this shows that IN is
closed under all the typing rules of λ→, so that induction on the derivation
of Γ ` s : B gives s ∈ IN. �

4 Quantitative Normalisation

In this section we give a quantitative analysis of normalisation in λ→. We
shall give an upper bound for these questions: given a term t, how many
reduction steps need to be carried out to reach normal form? how big is the
normal form? The results we give were originally proven by Statman.

Later, we will also give lower bounds, showing that any algorithm that
gives any information about the normal form of a term t, has a run-time
comparable to that needed to reduce terms to normal form.

4.1 Complete Developments

Our analysis starts with the following notion of the complete development
D(t) of a term t. Intuitively, D(t) is given by reducing every redex in t, but
not any of the new redexes created by reducing the original redexes. Formally,

D(x) = x D(λx:A. s) = λx:A.D(s) D((λx:A. s) r) = D(s)[D(r)/x]

and
D(x r) = xD(r) D(t s r) = D(t s)D(r).

The last two clauses are equivalent to D(t r) = D(t)D(r) for t not a λ-
abstraction.
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Exercise 4.1 Show that if r −→β1 s, then s −→β D(r) −→β D(s). Show
that if r −→β n s, then s −→β Dn(s), and (a) give another proof of the
Church-Rosser property, and (b) show that if r is weakly normalising, then
DN (r) is normal for some r.

4.2 Redex Depths

Given Γ ` s : B, and a sub-term occurrence t in the term s, there is a
corresponding sequent in the form Γ∆ ` t : C in the (unique) derivation of
Γ ` s : B. We call C the type of t (or t : C).

Exercise 4.2 Formalise the notion of the sequent corresponding to an oc-
currence above. Show that for an α-class s, and an occurrence in s0 ∈ s,
that the type of the occurrence does not depend on s0.

Given a redex (λx:A. s) r in t, its redex type is the type of λx:A. s.4

If t −→β1 t′ by reducing a redex (λx:A. s) r with redex type A→B, then
the redexes in t′ can be classified as follows:

1. Those redexes in t′ which correspond to redexes in t.

2. If s is in the form λx′:A′. s′, and the redex occurs in a position in the
form (λx:A. s) r r′ in t, then s[r/x] r′ = (λx′:A′. s′[r/x]) r′ is a redex in
t′, with redex type B.

3. If r is in the form λz:C. r′, and there is an occurrence x s′ in s, then
there is the redex r s′[r/x] = (λz:C. r′)(s′[r/x]) in t′, with redex type A.

The redex types in t′ are thus among: 1. the redex types of redexes in t,
2. the type A, and 3. the type B. Considering instead D(t), we don’t get any
redexes of class 1., and so:

Lemma 4.3 Let Γ ` t : C. The redex type of a redex in D(t) is either A or
B, where A→B is a redex type in t.

Proof: A redex in s[r/x] has redex type which is either a redex type in s
or r, or type A, where r : A.

We use induction over the clauses defining D. Only two of the clauses
can create new redexes. For, D((λx:A. s) r) = D(s)[D(r)/x], the redexes
of D((λx:A. s) r) are either from D(s), from D(r), or are created by the
substitution and have redex type A. For D(t s r) = D(t s)D(r), each redex

4This is confusing, because the redex is a sub-term, and the type of the sub-term is not
the redex type.
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of D(t s r) is either from D(t s), D(r), or is D(t s)D(r). In the latter case,
D(t s) must be λ-abstraction of some type B, so that t s must be a redex
with redex type A→B. �

The depth d(A) of a type A is defined by d(o) = 0 and d(A→ B) = 1 +
max(d(A), d(B)). The redex depth of a term t is the maximum of the
depths of the redex types in t. The lemma above gives us another proof that
every term is weakly normalising:

Corollary 4.4 Let Γ ` s : B, and s have redex depth N . Then DN (s) is
normal.

4.3 Calculating Upper Bounds

Recall that the length l(s) of a term is defined by l(x) = 1, l(λx:A. s) =
1 + l(s) and l(t r) = 1 + l(t) + l(r). We also define the depth d(s) of a term
s by d(x) = 1, d(λx:A. s) = 1 + d(s) and d(t r) = 1 + max(d(t), d(r)).

Lemma 4.5 1. l(s) < 2d(s). d(s[r/x]) < d(s) + d(r).

2. d(D(s)) 6 l(s). l(D(s)) 6 2l(s).

3. If s has m redexes, then s −→β D(s) by a sequence of m one-step
reductions.

4. s has at most l(s)
2 redexes.

�

Exercise 4.6 Prove the above.

We define the repeated exponential 2mN by 2m0 = m and 2mN+1 = 22mN .

Theorem 4.7 For Γ ` s : B, let N be the redex depth of s. Then the
normal form of s has length 6 2l(s)N , and s (if not normal) has a reduction
sequence to normal form with length 6 2l(s)N−1.

Proof: By corollary 4.4, DN (s) is the normal form of s. That l(DN (s)) 6
2l(s)N follows by induction using 2. of the previous lemma.

We show that s −→β DN (s) in 6 2l(s)N−1 steps by induction on N . For
N = 1, we have that s −→β D(s) in 6 1

2 l(s) 6 2l(s)0 steps. By 3. and 4. of the
lemma above, we have that DN (s) −→β DN+1(s) in 6 1

2 l(DN (s)) 6 1
22
l(s)
N

steps. Then s −→β DN (s) −→β DN+1(s) in at most

2l(s)N−1 +
1
2
2l(s)N =

1
2
(2 · 2l(s)N−1 + 2l(s)N ) 6 1

2
(22l(s)N−1 + 2l(s)N ) = 2l(s)N
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steps. �

Exercise 4.8 The rank of a type is defined by rank(o) = 0, rank(A→B) =
max(rank(A) + 1, rank(B)). The redex rank of a term is the maximum of
the ranks of the redex types in the term. Modify the definition of D so that

D
(
(λx1 . . . λxm. s) r1 . . . rm

)
= D(s)

[
D(r1)/x1 . . .D(rm)/xm

]
.

Refine theorem 4.7 to have N the redex rank instead of the redex depth.

5 Quantitative Strong Normalisation

In the previous section we gave an upper bound for the lengths of reduction
sequences for a particular reduction strategy. In this section we will give
an upper bound for sn(t), the maximum lengths of any reduction sequences
starting from t.

We will do this by a method of translations. Give a term t, we will find a
new term |t| : o, such that sn(t) is in some sense computed by |t|. Combined
with the results of the previous section, this will give an upper bound for
sn(t). In order to make the translation work, given a term f of function type
A→B, we need not only |f |, but also a term mapping |r| to |f r|. We do this
by first defining functionals LrM : A whenever r : A, and operators ℵA : A→o
mapping LrM to |r|. The technique is due to Loader, who used it to prove
normalisation results. Gandy earlier gave a somewhat similar translation, in
order to derive strong normalisation from weak.

5.1 Translations

We introduce quite a lot of notation. Take two arbitrary variables Σ and C.
Let Ξ be the context Σ:o→o→oC:o. We define operators ΣA(·, ·) and ℵA(·),
and terms CA by recursion on types A:

Σo(i, a) = Σ i a, ℵo(i) = i, Co = C

and, taking x to avoid variable capture,

ΣA→B(i, f) = λx:A. ΣB(i, f x),

ℵA→B(f) = ℵB(f CA).

CA→B = λx:A. ΣB(ℵAx, CB),
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We have the following derived rules:

Γ ` i : o Γ ` r : A

ΞΓ ` ΣA(i, r) : A

Γ ` r : A

ΞΓ ` ℵA(r) : A ΞΓ ` CA : A
.

Given a term r, we define LrM by recursion on r:

LxM = x Lt rM = LtMLrM Lλx:A. sM = λx:A. ΣA(ℵAx, LsM).

This gives us the following derived rule:

Γ ` s : B

ΞΓ ` LsM : B.

We also have that L·M commutes with substitution:

Ls[r/x]M = LsM
[
LrM/x

]
.

Given x1:A1 . . . xm:Am ` s : B, we define

|s| = ℵBLsM[CA1/x1 . . . CAm/xm],

so that Ξ ` |s| : o.

5.2 Reduction of Translations

The relationship between the term |s| and the length of reduction sequences
starting from s is derived by examining the behaviour of |s| under reduction.

Lemma 5.1
ℵA
(
ΣA(i, r)

)
−→β Σ i (ℵAr) (4)∣∣λx:A. s

∣∣ −→β Σ(ℵACA) |s| (5)

If Γ ` x : A1→ · · · →Am→B and Γ ` ri : Ai (1 6 i 6 m), then∣∣x r1 . . . rm
∣∣ −→β Σ |r1|

(
. . .
(
Σ |rm| (ℵBCB)

)
. . .
)
. (6)∣∣(λx:A. s) r0 . . . rm

∣∣ −→β Σ
∣∣r0
∣∣ ∣∣s[r0/x] r1 . . . rm

∣∣ (7)

Proof: For (4), we use induction on types. The base case holds by defini-
tion, and the induction step is

ℵA→B
(
ΣA→B(i, f)

)
= ℵB

(
ΣA→B(i, f)CA

)
−→β ℵB

(
ΣB(i, f CA)

)
−→β Σ i (ℵB(f CA)) = Σ i (ℵA→Bf)
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We denote the substitution in the definition of |·| by σ, so that |s| = ℵBLsM[σ].
For (5), we have

|λx:A. s| = ℵA→B
(
λx:A. ΣB(ℵAx, LsM)[σ]

)
−→β ℵB

(
ΣB(ℵACA, LsM[σ, CA/x])

)
−→β Σ(ℵACA) (ℵBLsM[σ, CA/x])
= Σ (ℵACA) |s|.

For (6),∣∣x r1 . . . rm
∣∣ = ℵB

(
CA Lr1M[σ] . . . LrmM[σ]

)
−→β ℵB

(
ΣB

(
ℵA1Lr1M[σ], . . . , ΣB

(
ℵAmLrmM[σ], CB

)
. . .
))

= ℵB
(
ΣB

(
|r1|, . . . , ΣB

(
|rm|, CB

)
. . .
))

−→β Σ |r1|
(
. . .
(
Σ |rm| (ℵBCB)

)
. . .
)
,

where the last step uses (4) m times. For (7),

L(λx:A. s) r0 . . . rmM =
(
λx:A. ΣC(ℵAx, LsM)

)
Lr0M . . . LrmM

−→β ΣC

(
ℵALr0M, LsM[Lr0M/x]

)
Lr1M . . . LrmM

−→β ΣB

(
ℵALr0M, LsM[Lr0M/x] Lr1M . . . LrmM

)
= ΣB

(
ℵALr0M, Ls[r0/x] r1 . . . rmM

)
.

where C = A1→ · · · → Am→ B. Applying the definition |t| = ℵBLtM[σ] to
the above gives:∣∣(λx:A. s) r0 . . . rm

∣∣ −→β ℵB
(
ΣB(ℵALr0M, Ls[r0/x] r1 . . . rmM)

)
[σ]

−→β Σ
(
ℵALr0M[σ]

) (
ℵBLs[r0/x] r1 . . . rmM[σ]

)
= Σ

∣∣r0
∣∣ ∣∣s[r0/x] r1 . . . rm

∣∣
as required. �

For us, the crucial facts in the lemma above are that
∣∣x r1 . . . rm

∣∣ is expressed
in terms of the |ri|,

∣∣λx:A. s
∣∣ in terms of |s|, and

∣∣(λx:A. s) r0 . . . rm
∣∣ in terms

of |r0| and |s[r0/x] r1 . . . rm|. This will enable us to relate the size of the
normal form of |t| to the number of instances of the clauses of (1) needed to
derive t, and hence, by exercise 3.3, to sn(t).

5.3 Translations and Strong Normalisation

Lemma 5.2 Let µ be a natural number valued function defined on those
terms n with Ξ ` n : o, such that (a) if n −→β n′, then µ(n) = µ(n′), and
(b) µ(Σnm) > µ(n) + µ(m) + 1. Then sn(t) 6 µ|t| for any term t.
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Proof: By exercise 3.3, it suffices to show that

µ
∣∣x r1 . . . rm

∣∣ > µ
∣∣r1
∣∣+ · · ·+ µ

∣∣rm∣∣+ 1, µ
∣∣λx:A. s

∣∣ > µ
∣∣s∣∣+ 1

and
µ
∣∣(λx:A. s) r0 . . . rm

∣∣ > µ
∣∣s[r0/x] r1 . . . rm

∣∣+ ∣∣r0
∣∣+ 1.

These three inequalities follow immediately from the two properties of µ and
2., 3. and 4. of lemma 5.1. �

One such µ is given by letting µ(s) be the length of the normal form of s.
Combined with theorem 4.7, this gives:

Theorem 5.3 There is a constant K such that, for any term s of λ→, we
have sn(s) 6 2K·M ·l(s)N , where M (resp. N) is the maximum of the lengths
(resp. depths) of the types of the sub-terms of s.

Proof: By inspection, there is K such that l|s| 6 K ·M · l(s). The redexes
in |s| are sub-types of the types of sub-terms of s. Letting µ be the length
of normal form function, and applying theorem 4.7 and lemma 5.2 gives the
result. �

Exercise 5.4 Let M be the model of λ→ with M(o) the set of natural
numbers. By choosing a suitable valuation on Ξ, reprove strong normalisa-
tion using lemma 5.2. This is a quite general technique for proving strong
normalisation.

Exercise 5.5 Refine theorem 5.3 to give sn(s) 6 2K·l(s)N , where N is redex
rank of s. Hints:

The translation we used is more sophisticated than is required if we just
wish to bound sn(t). Show that taking the CA to be variables, and ℵA(r) =
CA→o r, in fact gives sn(t) bounded by the length the normal form of LtM.

Additionally, modify ΣA→B so that ΣA→B(i, λx:A. s) = λx:A. ΣB(i, s)
(the original definition β-reduces to this). Also, check that, if the t for
which we wish to bound sn(t) has no sub-term of type A, then we can take
ΣA→B(i, f) = f .

These modifications ensure that the types of redexes in LtM are exactly
the types of redexes in t, so that the N of our bound can be taken to be the
redex rank of t (using exercise 4.8).

To show that the exponent K·M ·l(t) can be reduced to K·l(t), carefully β-
expand (i.e., replace s[r/x] with (λx:A. s)r) the term LtM. Doing this correctly
should give a term with length bounded by K · l(t), and hence give the bound
sn(t) 6 2K·l(t)N .
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6 Lower Bounds for Normalisation

The upper bounds given in the previous two sections are not too bad, as the
following example shows.

For any number n and type A, let nA be the term λf:A→A. λx:A. fnx of
type (A→A)→A→A. It is easy to show that

mA→A nA = (nm)A.

Let the term bigA,n be given by

bigA,0 = 0A bigA,n+1 = bigA→A,n 2A.

By induction on n, we see that

bigA,n −→β (20
n)A.

The term bigo,n has redex rank n + 2, and length O(n), so that the upper
bound on the size of the normal form of bigo,n given in section 4 is 2O(n)

n+2 .
A program P that takes a natural number as input is called elementary

recursive (or Kalmar elementary) if there is K such that P (n) has run time
6 2nK . A function f is called elementary recursive if it is computed by an
elementary recursive program.5

The example above shows that the function computing the normal form of
a typed λ-term is not elementary recursive, while the bounds of the previous
sections show that that function is only just outside of elementary recursive.

In the following, we shall prove stronger versions of this, showing that
any function giving non-trivial information about normal forms of terms is
not elementary recursive.

For example, consider the closed terms of type o→ o→ o. There are
just two closed normal forms of this type: λx:o. λy:o. x and λx:o. λy:o.y.
Computing the normal form of a closed term of type o→o→o by β-reduction
is not elementary recursive. However, this leaves the possibility that there is
an elementary recursive program computing the same function by a different
method. We shall show that this is not the case:

Theorem 6.1 There is no elementary recursive program computing the nor-
mal form of closed terms of type o→ o→ o. �

This extends easily to give the no-non-trivial-information result:
5Note that due to the size of the functions 2nK , it is pretty much irrelevant what

formalism is used to express programs and their run-times—even an exponential difference
in efficiency between two formalisms can be accommodated by changing K.
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Corollary 6.2 Suppose that Γ ` s1 : A, Γ ` s2 : A. Let P be a program
such that if Γ ` t : A and t −→β si then P (t) returns i (i = 1, 2). Then P
is not elementary recursive.

Proof (of corollary from theorem): Let P be a such a program. We find
a program Q computing the normal of closed terms of type o→ o→ o as
follows.

Define the type substitution B[A/o] by o[A/o] = A, (C → D)[A/o] =
C[A/o]→ D[A/o]. Extend to terms by performing the type substitution
in each λ-abstraction. Define Q(t) to return λx:o. λy:o. x if P (t[A/o] s1 s2)
returns 1, and to return λx:o. λy:o. y if P (t[A/o] s1 s2) returns 2.

Clearly, if ` t : o→ o→ o, then Q(t) computes the normal form of t, and
by theorem 6.1, cannot be elementary recursive. The run-time of Q is only
a little more than that of P : if P were elementary recursive then so would
be Q. Hence P is not elementary recursive. �

6.1 Higher Order Propositional Classical Logic

Our proof of theorem 6.1 will proceed via encoding higher order propos-
itional classical logic (PCLω). The language of PCLω is as follows. There
are countably many variables VN = {xN0 , xN1 , . . .} of each rank N . Atomic
formulas are x0

i and xNi ∈ xN+1
j , connectives are ∨ (binary) and ¬ (unary),

and we have quantifiers ∃N of each rank. As a grammar:

F := V0 | VN ∈ VN+1 | F ∨ F |¬F | ∃NVN .F .

The logic is classical, so we define other connectives in the usual way, e.g.,

φ ∧ ψ := ¬(¬φ ∨ ¬ψ) φ⇒ ψ := ¬φ ∨ ψ

φ⇔ ψ := (φ⇒ ψ) ∧ (ψ⇒ φ) φ⊕ ψ := (φ ∧ ¬ψ) ∨ (¬φ ∧ ψ)

xN /∈ yN+1 := ¬(xN ∈ yN+1) ∀NxN . φ := ¬∃NxN .¬φ.

The semantics of PCLω is given as follows. Let B = {tt, ff}, and let B0 = B,
BN+1 = BBN . Then the rank N variables xN are interpreted as ranging
over BN . The atomic formula xN ∈ yN+1 is interpreted as yN+1(xN). The
connectives are interpreted in the usual way.

Exercise 6.3 Formalise the semantics. Define a valuation to be a function
σ mapping each variable xN into BN , and then define JφKσ ∈ B for formulae
φ and valuations σ.

Show that JφKσ depends only on φ and σx for variables x free in φ. In
particular, JφK is well-defined for closed φ.
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The set BN has 22
N elements, so that the obvious algorithm computing JφK

is non-elementary. In the appendix, we prove that:

Theorem 6.4 The function JφK for closed φ is not elementary. �

We shall encode BN in λ→, in such a way that we can give a reasonably short
encoding of iteration over the members of the BN , and then of the semantics
JφK. The function giving the encoding will be elementary recursive, which
together with theorem 6.4 will give a proof of theorem 6.1.

6.2 Encoding the Boolean Hierarchy

We encode the elements of the sets BN as closed terms of λ→. The encoding
is 1-many rather than 1-1. We define the types B = o→ o→ o, and B0 = B,
BN+1 = BN → B. The intention is that elements of the set BN will be
represented as closed type BN terms. We define the relations ∼N as follows.

For a ∈ B and Γ ` r : B, put a ∼ r iff either a = tt and r −→β

λx:o. λy:o. x or a = ff and r −→β λx:o. λy:o. y.
Let ∼0 be ∼, and put b ∼N+1 s iff b(a) ∼ s r whenever a ∼N r. We let

tt, ff : B be given by tt = λx:o. λy:o. x and ff = λx:o. λy:o. y, so that tt ∼ tt
and ff ∼ ff.

Exercise 6.5 Show that for each a ∈ BN there is r such that a ∼N r.

If ` R : (BN→A→A)→ A→ A, then R is called an N-A-iterator if it
β-reduces to

λf:BN→A→A. λx:A. f r0 (. . . (f r22
N−1 x) . . .) (8)

where the ri enumerate BN , in the sense that for each a ∈ BN , there is
exactly one i such that a ∼N ri.

We define r ∨ r′ = λx:o. λy:o. r x (r′ x y), ¬r = λx:o. λy:o. r y x for terms
r, r′ : o, so that r ∨ r′,¬r : o also. Other Boolean connectives are defined in
terms of these.

Given a N-B-iterator R, we define ∃N , ∀N : BN+1→B by

∃N = λf:BN+1.R (λx:BN . λy:B. y ∨ f x) ff

and
∀N = λf:BN+1. R (λx:BN. λy:B. y ∧ f x) tt.

We will write ∃NR and ∀NR when it is desired to emphasise the iterator.
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Exercise 6.6 Let R be a N-B-iterator. Show that if a ∼N+1 r then tt ∼
∃NRr iff a(b) = tt for some b ∈ BN , and ff ∼ ∃NRr iff a(b) = ff for all b ∈ BN .
Show the corresponding property of ∀NR .

An N-equality test is a term ` eq : BN → BN → B such that if a ∼ r,
a′ ∼ r′, then tt ∼ eq r r′ if a = a′, and ff ∼ eq r r′ if a 6= a′. Given an
N-B-iterator R, we define an N+1-equality test

eqR = λx, y:BN+1. ∀NR (λz:BN . x z⇔ y z).

Exercise 6.7 Prove that eqR really is an equality test.

Lemma 6.8 Given a type A, let IN,A be the type (BN →A→A)→A→A
of N-A-iterators. Suppose that R is an N-IN+1,A-iterator, and that eq is an
N-equality test. Then there is an N+1-A-iterator.

In fact, the existence of N-A-iterators is trivial, since for each a ∈ Bn there
is r such that a ∼ r. However, the obvious construction gives iterators of
size O(22

N ) or worse. The construction we give in the proof below will lead
to an N-A-iterator that is much smaller.

Observe that a N-IA-iterator iterates over a |BN | element set, while a
N+1-A-iterator iterates over a |BN+1| = 2|BN | element set. The idea of the
proof below is to define an operator Φ such that if G iterates over a m
element set, then ΦG iterates over a 2m element set. Then, applying R to
Φ, we obtain a term that iterates over a 2|BN | = |BN+1| element set.

Proof: Given a set S ⊂ BN+1, an S-A-iterator is a term of type IN+1,A

which β-reduces to

λf:BN→A→A. λx:A. f s0 (. . . (f sm−1 x) . . .)

where s0 . . . sm−1 enumerates S.
Given a set T ⊂ BN , a T -based A-iterator is a S-A-iterator where

S =
{
b ∈ BN+1

∣∣ b(x) 6= ff implies x ∈ T
}
.

A BN -based A-iterator is just an N+1-A-iterator. We will find a term

Φ : BN → IN+1,A→ IN+1,A

such that if a ∼N r, and F is a T -based A-iterator, with a /∈ T , then Φ r F
is a T∪{a}-based A-iterator.

Given b ∈ BN+1 and a ∈ BN , define b ∪ {a} ∈ BN+1 by (b ∪ {a})(a) = tt,
and (b ∪ {a})(x) = b(x) for x 6= a. Given terms s : BN+1 and r : BN ,
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define s ∪ {r} = λx:BN .(s x) ∨ (eq r x). If b ∼N+1 s and a ∼N r, then
b ∪ {a} ∼N+1 s ∪ {r}.

If G is an S-A-iterator, for some S ⊂ BN+1, β-reducing to

λf:BN+1→A→A. λx:A. f s0
(
. . .
(
f sm−1 x

)
. . .
)
, (9)

then
λf:BN+1→A→A. λx:A.G

(
λy:BN+1. f (y ∪ {r})

)
x (10)

reduces to
λf:BN+1→A→A. λx:A. f s′0

(
. . .
(
f s′m−1 x

)
. . .
)
, (11)

where s′i = si ∪ {r}. If a ∼ r, then the s′i enumerate S ′ =
{
b ∪ {a}

∣∣ b ∈ S
}
,

so that the term (10) is a S′-A-iterator.
Let Φ be

λz:BN . λG:IN+1,A.
λf:BN+1→A→A. λx:A. G

(
λy:BN+1. f (y ∪ {z})

)(
G f x

)
.

Given a ∼N r and an S-A-iterator G with normal form (9), combining (9)
and (11) gives that the term Φ r G reduces to

λf:BN+1→A→A. λx:A.f s′0
(
. . .
(
f s′m−1 (f s0 (. . . (f sm−1 x) . . .))

)
. . .
)
.

This shows that Φ r G is an S ′′-A-iterator where S ′′ = S ∪ S ′. In particular,
if G is a T -based A-iterator, then Φ r G is a T∪{a}-A-iterator, which is the
property we desire from Φ.

A ∅-based A-iterator is given by

G0 = λf:BN+1→A→A. λx:A. f (λz:BN . ff) x.

Let R′ be the term R ΦG0. As R is an N-IA-iterator, R′ reduces to

Φ r0
(
. . .
(
Φ rm−1 G0

)
. . .
)

where (for some ai) ai ∼ ri and the ai enumerate BN . As BN = ∅∪{am−1}∪
· · · ∪ {a0}, we have that R′ is a BN -based A-iterator, or in other words, a
N+1-A-iterator. �

Lemma 6.9 There is an elementary recursive function that given N and A,
gives a N-A-iterator.

Proof: A 0-A-iterator is given explicitly by

λf:B→A→A.λx:A.f tt (f ffx)

and λx:B. λy:B. x⇔ y is a 0-equality test. Induction with lemma 6.8 gives
N-A-iterators and N-equality tests for all N . We leave it to the reader to
check that these constructions are actually elementary recursive. �
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6.3 Encoding the Logic

We encode formulae of PCLω as λ→ terms, in such a way that the terms
compute the semantics. Specifically, if φ is a closed formula, then JφK ∼ pφq.
The encoding is elementary recursive, so this will derive theorem 6.1 from
theorem 6.4. For each N , let RN be a N-B-iterator as given by 6.9. The
iterators RN give us ∃N : BN+1→B.

Given a formula φ with free variables among xN1
1 . . . xNmm , we define pφq

such that
x1:BN1 . . .xm:BNm ` pφq : B

by induction on φ. We let pxq = x for any variable x. Let

px0
i q = xi pxNii ∈ xN+1

j q = xj(xi)

pφ ∨ ψq = pφq∨ pψq p¬φq = ¬pφq

and
p∃NxN . φq = ∃N (λx:BN .pφq).

Theorem 6.1 follows by checking that pφq is well-behaved:

Exercise 6.10 Suppose that σ is a valuation, such that σ(xNii ) ∼Ni ri (1 6
i 6 m). Show that JφKσ ∼ pφq[r1/x1 . . . rm/xm].

Check that pφq is an elementary recursive function of φ.

A PCLω is not Elementary Recursive

We outline a proof of theorem 6.4 that the valuation J·K for the logic PCLω
is not elementary recursive. We do this by encoding Turing machines with a
bound 22

N on their behaviour.

A.1 Basic Encoding in PCLω
We first examine the structure of the sets BN . BN has 22

N elements. We define
a bijection seqN : {0 . . . 22

N−1} −→ BN in a natural way. Let seq(0) = ff
and seq(1) = tt and seq0 = seq. Given seqN , and a number

∑
i<22

N
di · 2i in

binary notation, put

seqN+1

( ∑
i<22

N

di · 2i
)(

seqN(m)
)

= seq(dm).
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This considers elements of BN+1 as numbers in binary notation, the order of
the digits given by the numbering of BN .

We represent a series of predicates as PCLω formulae.
Take two binary numbers d =

∑
i<n di · 2i and e =

∑
i<n ei · 2i. We have

that d < e iff and only if there is a ‘pivot’ i0 < n such that di0 < ei0 and
di = ei for i0 < i < n. This inspires the following definition of the formulae
a <N a′: let a <0 a′ be ¬a ∧ a′, and let b <N+1 b′ be

∃Nx.
(
¬x ∈ b ∧ x ∈ b′ ∧ ∀Nx′.

(
x <N x′⇒ (x′ ∈ b⇔ x′ ∈ b′)

))
.

Defining SN (a, a′) := ∀Nx.
(
(a <N x) ⊕ (x <N a′)

)
encodes the successor

relation a′ = a + 1.
We turn to encoding combinatorial notions. Equality a =0 b, at rank 0, is

given by a⇔b. Equality a =N+1 b at rank N+1, is given by ∀Nx. x∈a⇔x∈b.
We encode finite sets as follows. For a1 . . . am rank N and b rank N +1,

the relation b = {a1 . . . am} is given by

∀Nx.
(
x ∈ b⇔ (x =N a1 ∨ · · · ∨ x =N am)

)
.

The Kuratowski pairing, c = (a, b) (where (a, b) = {{a}, {a, b}}) is given
by

∃N+1x. ∃N+1y.
(
c = {x, y} ∧ x = {a} ∧ y = {a, b}

)
.

where c has rank N + 2 and a, b have rank N .
We can give an efficient encoding of a =N n, where n is some given

number, and a has rank N . a =0 0 is ¬a, a =0 1 is a, and a =0 n is a ∧ ¬a
for n > 2. Given n = 2n1 + · · ·+ 2nm with the ni distinct, b =N+1 n is

∃Nx1 . . .∃Nxm.
(
b = {x1 . . .xm} ∧ x1 = n1 ∧ · · · ∧ xm = nm

)
.

Finally, b = 〈a0 . . . am−1〉, encoding small tuples, is

∃N+2p0 . . . ∃N+2pm−1. ∃Nj0 . . .∃Njm−1.
b = {p0 . . .pm−1} ∧

∧
i<m

pi = (ai, ji) ∧
∧
i<m

ji = i

for b rank N + 3 and the ai rank N .

Exercise A.1 Check that all the encodings above do what they should.

Exercise A.2 For a, b, c rank N +1, encode the predicates 0∈a, 22
N+1−1∈a,

and c = a + b.
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A.2 Encoding Turing Machines

We apply the constructs above to encode Turing machines. Since we are
encoding in the decidable logic PCLω, we cannot encode arbitrary runs of
Turing machines; instead we must consider a tape of some finite length, fixed
for that run.

We will use a slight variant on the usual notion of Turing machine. Instead
of the head being at a particular cell on the tape at each step, the head is
between two adjacent cells. The action taken depends on the state, and the
two cells adjacent to the head; the actions taken are to move either left or
right, updating the cell traversed.

Tapes are encoded as two tape halves—one to the left of the head and
one to the right of the head. In both directions, positions are numbered by
some BN , starting with 0 adjacent to the head, so that the two tape halves
l and r are encoded by elements of BN+1. The state s is encoded by another
element of BN+1, and the overall configuration of the machine by 〈l, s, r〉.

We encode various operations. We give four adjacency predicates of a
pair of tape halves:

adjtt,tt(l, r) := 0 ∈ l ∧ 0 ∈ r adjtt,ff(l, r) := 0 ∈ l ∧ 0 /∈ r

adjff,tt(l, r) := 0 /∈ l ∧ 0 ∈ r adjff,ff(l, r) := 0 /∈ l ∧ 0 /∈ r

These check for the four possibilities of the cells next to the tape head. The
shift predicate sh(t, t′) is given by(

∀Ni. ∀Nj. S(i, j)⇒ (i ∈ t⇔ j ∈ t′)
)
∧ 22

N−1 /∈ t.

This shifts a tape half along by one, and checks that at the far end, a ff
comes into, or goes out of, view.

There are four possible actions on tapes: moving either left or right,
while updating the cell traversed with either tt or ff. These are given by the
action predicates below:

actL,tt(l, r, l′, r′) := sh(l′, l) ∧ 0 ∈ r′ ∧ sh(r, r′)

actR,tt(l, r, l′, r′) := sh(l, l′) ∧ 0 ∈ l′ ∧ sh(r′, r)

actL,ff(l, r, l′, r′) := sh(l′, l) ∧ 0 /∈ r′ ∧ sh(r, r′)

actR,ff(l, r, l′, r′) := sh(l, l′) ∧ 0 /∈ l′ ∧ sh(r′, r)

A rule of the Turing machine is given by a sextuple (n, α, β, d, γ, n′), which
is read as follows: if we are in a configuration with state n and with α and
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β to the left and right, respectively, of the head, then move in direction
d ∈ {L, R}, update the cell traversed with γ, and transfer to state n′. The
update predicate trn,α,β,d,γ,n′(l, r, s, l′, r′, s′) saying that this rule updates
the configuration (l, s, r) to give (l′, s′, r′) is

s = n ∧ adjα,β(l, r) ∧ actd,γ(l, r, l′, r′) ∧ s′ = n′.

Encoding tuples, we also let trn,α,β,d,γ,n′(c, c′) be

∃N+1l s r l′ s′ r′. c = 〈l, s, r〉 ∧ c′ = 〈l′, r′, s′〉 ∧ trn,α,β,d,γ,n′(l, s, r, l′, s′, r′).

Taking the disjunction over a set of rules R = {ρ1 . . . ρM} gives us the trans-
ition relation transR(c, c′):

trρ1(c, c
′) ∨ . . . ∨ trρM (c, c′).

The initial configuration of the machine is defined to have ff everywhere
on the tape, and state 0. Hence init(c) is

∃N+1x. x = 0 ∧ c = 〈x, x, x〉.

A set S of states is run closed if it contains the initial configuration, and
whenever c ∈ S, there is c′ ∈ S updated from c by some rule. This is given
by closedR(S):

∃N+4c.
(
init(c)∧ c ∈ S

)
∧ ∀N+4c.

(
c ∈ S⇒∃N+4c′.

(
c′ ∈ S ∧ trans(c, c′)

))
.

There can fail to be a run closed set for a Turing machine under the following
two conditions: either the machine reaches a state to which no rule applies,
or the machine reaches a state with a tt on the tape 22

N + 1 cells away from
the head. In these cases we say the machine 22

N -terminates, and otherwise
the machine loops.

Lemma A.3 There is an algorithm that given a Turing machine and N ,
decides whether or not the machine 22

N -terminates.

Proof: There are only finitely many configurations with no tt more than
22
N cells from the head. These can be enumerated, and the machine run until

either it terminates, or the machine loops. �

Exercise A.4 Check that J∃N+5S. closedR(S)K = ff if and only if R 22
N -

terminates.
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This gives a proof of theorem 6.4: if there were an elementary recursive
decision procedure for PCLω, then the encoding above would contradict the
following:

Lemma A.5 There is no elementary recursive algorithm that given a Turing
machine and N , decides whether or not the machine 22

N -terminates.

Proof Sketch: Suppose there was such an algorithm.
Let P (ρ, c, N) to be the predicate of a Turing machine ρ terminating from

initial configuration c in time 22
N . Then P (ρ, c, N) is elementary recursive.

By the usual sort of diagonalisation argument, this is impossible. �
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