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Abstract

We prove two results concerning approximate counting of independent sets
in graphs with constant maximum degree ∆. The first implies that the
Monte Carlo Markov chain technique is likely to fail if ∆ ≥ 6. The second
shows that no fully polynomial randomized approximation scheme can exist
if ∆ ≥ 25, unless RP = NP.
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1 Introduction

Counting independent sets in graphs is one of several combinatorial counting
problems which have received recent attention. The problem is known to be #P-
complete, even for low degree graphs [3]. On the other hand, it has been shown
that, for graphs of maximum degree ∆ = 4, randomized approximate counting
is possible [7, 3]. This success has been achieved using the Monte Carlo Markov
chain method to construct a fully polynomial randomized approximation scheme
(fpras). This has led to a natural question as to how far this success might extend.

Here we consider in more detail this question of counting independent sets
in graphs with constant maximum degree. We prove two results. The first, in
Section 2, shows that the Monte Carlo Markov chain method is likely to fail for
graphs with ∆ = 6. This leaves open only the case ∆ = 5.

Our second result gives an explicit value of ∆ above which approximate count-
ing, using any kind of polynomial-time algorithm, is impossible unless RP = NP.
The bound we obtain is ∆ = 25, though we suspect that the true value is in
single figures, probably 6.

We note that Berman and Karpinski [2] have recently given new explicit
bounds for the approximation ratio for the maximum independent set and other
problems in low-degree graphs. These directly imply an inapproximability result
for counting. (See [7].) However, the bound on ∆ obtained this way is larger
than ours by at least two orders of magnitude.

2 Monte Carlo Markov chains

For a graph G, let I(G) denote the collection of independent sets of G. Let
M(G) be any Markov chain, asymptotically uniform on I(G), with transition
matrix PG. In this section G will be a bipartite graph with a vertex bipartition
into classes of equal size n. Let b(n) ≤ n be any function of n and suppose
we have PG(σ1, σ2) = 0 whenever |σ1 ⊕ σ2| > b(n), where ⊕ denotes symmetric
difference. We will say thatM(G) is b(n)-cautious. Thus a b(n)-cautious chain is
not permitted to change the status of more than b(n) of the vertices in G at any
step. Ideally, we would wish to have b(n) a constant (as in [7, 3]). However, we
will show that no b(n)-cautious chain on I(G) can mix rapidly unless b(n) = Ω(n).
Thus any chain which does mix rapidly on M(G) must change the status of a
sizeable proportion of the vertices at each step.

Specifically, we prove the following

Theorem 1 Let ∆ ≥ 6 and b(n) ≤ 0.35n. Then there exists a bipartite graph
G0, of maximum degree ∆, on n + n vertices (more precisely a sequence of such
graphs parameterised by n) with the following property: for any b(n)-cautious
Markov chain on I(G0), and almost every (in the uniform measure) choice of
starting state, the mixing time is Ω(eγn), for some constant γ > 0.
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Since, of course, there does exist an n-cautious chain which mixes rapidly, our
result cannot be strengthened much further. The remainder of this section is
devoted to the proof of Theorem 1.

We infer the existence of the graph G0 by random graph methods. Let Kn,n

denote the complete bipartite graph with vertex bipartition V1, V2, where |V1| =
|V2| = n, and let G be the union of ∆ perfect matchings selected independently
and uniformly at random in Kn,n. (Since the perfect matchings are independent,
they may well share some edges.) Denote by G(n, n,∆) the probability space of
bipartite graphs G so defined. Where no confusion can arise, we simply write G
for this class below. Note that G is a class of graphs with degree bound ∆.

Let 0 < α, β < 1 be chosen values. For G ∈ G, we consider the collection
IG(α, β) of σ ∈ I(G) such that |σ ∩ V1| = αn and |σ ∩ V2| = βn. (We assume
that αn, βn are integers, merely to ease exposition.) We will call σ ∈ IG(α, β) an
(α, β)-set. Using linearity of expectation, we may easily compute the expected
number E(α, β) = E(|IG(α, β)|) of (α, β)-sets in G: it is just the number of ways
of choosing an αn-subset from V1 and a βn-subset from V2, multiplied by the
probability that all ∆ perfect matchings avoid connecting the αn-subset to the
βn-subset. Thus,

E(α, β) =
(
n

αn

)(
n

βn

)[(
(1− β)n
αn

)/(
n

αn

)]∆

=
(

(1− β)(∆−1)(1−β)(1− α)(∆−1)(1−α)

ααββ(1− α − β)∆(1−α−β)

)n(1+o(1))

= eφ(α,β)n(1+o(1)), (1)

where

φ(α, β) = −α lnα− β lnβ −∆(1− α− β) ln(1− α − β)

+ (∆− 1)
(
(1− α) ln(1− α) + (1− β) ln(1− β)

)
. (2)

It follows that

∂φ

∂α
= − lnα− (∆− 1) ln(1− α) + ∆ ln(1− α− β), (3)

∂φ

∂β
= − lnβ − (∆− 1) ln(1− β) + ∆ ln(1− α− β), (4)

∂2φ

∂α2 = − 1
α

+
∆− 1
1− α −

∆
1− α− β , (5)

∂2φ

∂β2 = − 1
β

+
∆− 1
1− β −

∆
1− α− β , (6)

∂2φ

∂α∂β
= − ∆

1− α− β . (7)
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Now φ is defined on the triangle

T = {(α, β) : α, β ≥ 0, α + β ≤ 1},

and is clearly symmetrical in α, β. (The function φ is defined by equation (2)
on the interior of T , and can be extended to the boundary by taking limits.)
Moreover, using (3)–(7), the following facts are established in Appendix A about
the stationary points of φ on T :

(i) The function φ has no local minima, and no local maxima on the boundary
of T .

(ii) All local maxima of φ satisfy α+ β + ∆(∆− 2)αβ ≤ 1.

(iii) If ∆ ≤ 5, φ has only a single local maximum, which is on the line α = β.

(iv) If ∆ ≥ 6, φ has exactly two local maxima, symmetrical in α,β and a single
saddle-point on α = β.

From (iii) and (iv), we see that the distribution of the numbers of (α, β)-sets
undergoes a dramatic change from ∆ = 5 to ∆ = 6. For ∆ ≤ 5, the “typical”
(α, β)-set is “balanced” (i.e. has α ≈ β), whereas for ∆ ≥ 6 it is “unbalanced”.
We will examine the first unbalanced case, ∆ = 6, and make this precise.

We may determine numerically (see Appendix A) that the maximum of φ
with smaller α occurs at (α∗, β∗) ≈ (0.03546955, 0.40831988), and there is a
c ≥ 0.71513499 such that φ(α∗, β∗) > c. Therefore let us say (α, β) is a middle
point if |β−α| ≤ 0.35, and an (α, β)-set is a middle set if (α, β) is a middle point.
Let φmid denote the maximum of φ(α, β) for (α, β) a middle point. Then, since
by (iv) φmid is attained on |β − α| = 0.35, further numerical computation shows
that there is a constant γ ≥ 0.00018191 such that φmid < c − γ. Hence we have
shown that, for large enough n

E∗ = E(α∗, β∗) > exp(cn),
and

Emid =
∑

|β−α|≤0.35

E(α, β) < n2 exp(φmidn) < exp((c− γ)n).

Thus Emid < e−γnE∗. For G ∈ G, let X∗ denote the number of (α∗, β∗)-sets G
possesses and Xmid its number of middle sets. Then

E(Xmid − e−γnX∗) = Emid − e−γnE∗ < 0.

Thus, for large enough n, there must exist a G0 ∈ G such that

Xmid(G0) < e−γnX∗(G0). (8)
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This is the graph G0 of Theorem 1, and the remainder of our argument concerns
G0. Note that we have only shown the existence of G0, We cannot assert from
the above that a random graph in G is likely to satisfy (8), though more delicate
arguments might well establish this.

Now consider a 0.35n-cautious chainM(G0) =M0, on I(G0). We will exam-
ine the conductance [6], Φ(M0), ofM0. To this end, let S comprise all (α, β)-sets
with α ≥ β, i.e.

S =
{
σ ∈ I(G0) : |σ ∩ V1| ≥ |σ ∩ V2|

}
.

Then, if P0 is the transition matrix of M0,∑
σ1∈S

∑
σ2 /∈S

P0(σ1, σ2) < Xmid(G0), and |S| > X∗(G0). (9)

It follows from (9) that
Φ(M0) < e−γn.

Now, suppose the chain is started at a state chosen uniformly in S. By symmetry
this is equivalent to choosing a set uniformly from I(G0). Then, as shown by
Jerrum [5], the probability that the chain is still in S after t steps is at least
(1−Φ)t. Hence the variation distance of the chain from the uniform distribution
is at least (1− Φ)t − 1

2 . It follows, by a simple calculation, that if n ≥ 1/γ, the
mixing time (i.e. the time to reach variation distance e−1) is at least 0.0895eγn.

3 Hardness of approximate counting

The result of the previous section implies that the usual approach to approximat-
ing the number of independent sets in a low-degree graph must fail when ∆ ≥ 6,
at least in the worst case. Here we show that, if the degree bound is somewhat
larger, then any approach to approximating the number of independent sets is
doomed to failure, under a reasonable complexity assumption. Precisely, the
remainder of this section is devoted to proving the following

Theorem 2 Unless NP = RP, there is no polynomial time algorithm which es-
timates the logarithm of the number of independent sets in a ∆-regular graph
(∆ ≥ 25) within relative error at most ε = 10−6.

We give a randomized reduction from the following problem E2LIN2, analysed
by H̊astad [8]. The input is a system A of m equations over Z2 in n variables
x1, x2, . . . , xn, such that each equation has exactly two variables. (Thus each
equation is of the form xi + xj = 0 or xi + xj = 1.) The objective is to find a
maximum cardinality consistent subset of equations in A, i.e., to assign values
to the variables so as to maximize the number mC of satisfied equations. H̊astad
showed, using the powerful theory of PCP, that (unless NP = RP) there is no
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polynomial time algorithm which can estimate mC within any constant factor
smaller than 12/11.

Therefore consider an instance A of E2LIN2, as above. We will construct (by
a randomized algorithm) a graph G = (V,E), regular of degree ∆. We then show
that, if we can approximate the logarithm of the number of independent sets in G
to within the required relative error, we can (with high probability) approximate
the size of mC in A, to within a factor 12/11 − ε. Theorem 2 will then follow.

Let us write [n] = {1, 2, . . . , n}. We construct the graph G = G(A) as follows.
We assume m ≥ n, otherwise A is decomposable or consistent. Let M = m6 and,
for each i ∈ [n], let Ai be the multiset of equations containing xi, with (multiset)
cardinality di. We represent xi by a regular bipartite graph Hi = (Li, Ri, Fi) of
degree δ = ∆− 1. Here Li =

⋃
a∈Ai Li,a, Ri =

⋃
a∈Ai Ri,a where the sets Li,a, Ri,a

partition Li and Ri respectively, and for all i, a, |Li,a| = |Ri,a| = M . Thus Hi is
bipartite with both its vertex sets of size Mdi. Later, we will associate Li with
the assignment xi = 0, and Ri with xi = 1.

The graph Hi = (Li, Ri, Fi) will be sampled from G(Mdi,Mdi, δ), where G
is the class of random graphs defined in section 2. Here, however, we will reject
graphs which are not δ-regular. It is known [1] that a graph in G is regular of
full degree with constant probability (for constant δ). Moreover, the property of
being δ-regular can clearly be checked in polynomial time.

The equations a of A determine the edges connecting the Hi in G, as follows.
If a is the equation xi + xj = 1 (xi + xj = 0 resp.), we add an arbitrary perfect
matching between Li,a and Lj,a (Rj,a resp.) and another between Ri,a and Rj,a

(Lj,a resp.). Thus G is a regular graph of degree ∆. We will show that approx-
imating the logarithm of the number of independent sets in G to within a factor
(1 + 10−6) will allow us to approximate the E2LIN2 instance within the H̊astad
bound.

Before returning to the issue of approximation, we will need to establish some
crucial properties of the “typical” independent set in G. For this purpose, let I
be sampled uniformly from I(G). First we show that I “occupies about half the
available space” in each Li,a or Ri,a.

Let Li,a be the set of vertices in Li,a with no neighbour in I and let Li =⋃
a∈Ai Li,a.

Lemma 1 Then, except for probability e−Ω(m2), either |Li,a| < m4 or |Li,a| =
(2 +O(1/m))|I ∩ Li,a|.

Proof If we condition on I ∩ (V \ Li,a) then I ∩ Li,a is a random subset of
Li,a. If |Li,a| ≥ m4 then Chernoff’s bound implies that

Pr
(
|I ∩ Li,a| /∈

1
2
(
1± 1

m

)
|Li,a|

)
≤ 2 exp

(
− 1

3
m2),

from which the Lemma follows. 2
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Clearly we may define Ri,a and Ri symmetrically and prove an analogous
result. It is also clear that we may claim the Lemma for all i, a since there
are less than m2 such pairs. We now deduce that at least around half of Li is
“available” to I in Hi, if we fix I outside Hi.

Let L′i be the set of vertices in Li with no neighbour in I outside of Hi.

Lemma 2 Except for probability e−Ω(m2), |L′i| ≥ (1
2 −O(1/m))|Li|.

Proof We condition on the whole of I outside of Hi. If Li,a is joined by a
matching to Vj,a (V ∈ {L,R}) then, from Lemma 1, M ≥ (2 +O(1/m))|I ∩Vj,a|.
Hence

|{v ∈ Li,a : {v, w} ∈ E \ Fi implies w /∈ I}| ≥ (1
2 −O(1/m))|Li,a|.

Summing this over all a ∈ Ai gives the Lemma. 2

Again, we may define R′i and prove a corresponding result. We now show,
that for each i either |Li| or |Ri| is “small”. We will temporarily drop the suffix
i, and write H rather than Hi etc. Let N = |L| = dM ≤ m7, a = |L′|/N ,
b = |R′|/N . Without loss of generality, we assume a ≥ b and, from Lemma 2,
b ≥ 1

2 − O(1/m). Write σ = I ∩H, where I is a uniformly chosen independent
set in G. We will say that σ is an (α, β)-set if |σ ∩ L| = αaN , |σ ∩ R| = βbN .
Note that, while we treat α, β as continuous, there are in fact at most N values
for each of a, b, αa, βb (and hence N2 values of each of α, β).

Lemma 3 Let δ ≥ 24. If I is a uniformly chosen independent set in G then,
except for probability e−Ω(m2), min(|Li|, |Ri|) ≤ λN , where λ = 0.00943 .

Proof We argue conditionally on L′,R′. It is easy to see that there are
at least 2aN independent sets in H. We will show that, for α, β not satisfying
the condition of the Lemma, the number of (α, β)-sets is so much smaller than
this that they appear with probability e−Ω(m2). It will be sufficient to show that
the expected number of (α, β)-sets in such a case is 2aN−Ω(m2), since Markov’s
inequality will then imply the inequality for the actual number. Moreover, it will
be sufficient to prove this for any particular triple H, α, β, since there can be at
most N4n = eO(m lnm) different combinations of values of α, β in the whole of G.
Now the expected number of (α, β)-sets in H is

E(α, β) =
(
aN

αaN

)(
bN

βbN

)[(
(1− bβ)N
αaN

)/(
N

αaN

)]δ
≤
(
aN

αaN

)(
bN

βbN

)
(1− bβ)αaδN

≤
[(
αα(1− α)(1−α))−a (ββ(1− β)(1−β))−b e−αβabδ]N(1+o(1))

= eψ(α,β)N(1+o(1)), (10)
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where

ψ(α, β) = −a(α lnα + (1− α) ln(1− α))− b(β lnβ + (1− β) ln(1− β))− αβabδ.
(11)

It follows that

∂ψ

∂α
= a(− lnα + ln(1− α) − βbδ), ∂ψ

∂β
= b(− lnβ + ln(1− β)− αaδ),

(12)
∂2ψ

∂α2 =
−a

α(1− α)
,

∂2ψ

∂β2 =
−b

β(1− β)
,

∂2ψ

∂α∂β
= −abδ. (13)

The following two facts about ψ are easily verified.

ψ(α, β) ≥ ψ(1− α, β) if α ≤ 1
2 (14)

ψ(α, β) ≥ ψ(α, 1− β) if β ≤ 1
2 (15)

ψ(α, β) ≥ ψ(β, α) if β ≤ α ≤ 1− β (16)

We wish to determine the regions where ψ ≥ a ln 2. These are connected neigh-
bourhoods of the local maxima of ψ. From (12) we see that ψ has no boundary
maxima for α, β in the unit square U . Thus, from (13), ψ has only local maxima
or saddle-points in U , and a stationary point is a local maximum if and only if

α(1− α)β(1− β) ≤ 1/(abδ2). (17)

Thus, at any local maximum, either β(1− β) ≤ 1/(bδ) or α(1− α) ≤ 1/(aδ). If
the former, this and bδ ≥ 12 − o(1) imply β < .1, and hence β < 1.2/bδ. An
identical argument holds for α. Let us denote the rectangle [`α, uα]× [`β , uβ] by
[`α, uα | `β , uβ]. Thus any local maximum of ψ must lie in either [0, 1 | 0, 1.2/bδ]
or [0, 1.2/aδ | 0, 1]. In [0, 1.2/bδ | 0, 1.2/bδ], α, β < 0.1 and hence

ψ(α, β) < 2a(−0.1 ln(0.1)− 0.9 ln(0.9)) < a ln 2.

Then, from (14) and (15), we also have ψ(α, β) < a ln 2 in [1−1.2/bδ, 1 | 0, 1.2/bδ]
and [0, 1.2/bδ | 1− 1.2/bδ, 1]. Now, if β ≤ 1.2/bδ, let ρ = 1− 2α and consider the
upper bound

ψ(α, β) ≤ Ψ(ρ, β) = a(ln2− 1
2ρ

2) + bβ(1− lnβ)− 1
2(1− ρ)βabδ. (18)

For fixed β, it is easily shown that Ψ is maximized if ρ = 1
2bδβ < 0.6. If bδβ = 1.2,

then ρ = 0.6 and

max
ρ

Ψ(ρ, β) ≤ a(ln 2− 0.18) + 0.1a(1− ln(0.1))− 0.24a < a ln 2.
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Thus ψ < a ln 2 everywhere on the boundary of [1.2/bδ, 1− 1.2/bδ | 0, 1.2/bδ]
(but not including the shared boundary with U). Hence, by (16), ψ < a ln 2
everywhere on the boundary of [0, 1.2/bδ | 1.2/bδ, 1 − 1.2/bδ], which contains
[0, 1.2/aδ | 1.2/bδ, 1 − 1.2/bδ]. Moreover ψ(α, β) ≥ ψ(β, α) for all points (α, β)
in [1.2/bδ, 1 − 1.2/bδ | 0, 1.2/bδ]. It follows that it is sufficient to determine β∗

such that ψ(α, β∗) < a ln 2 everywhere in [1.2/bδ, 1− 1.2/bδ |β∗, 1.2/bδ]. To this
end again consider

Ψ0(β) = max
ρ

Ψ(ρ, β) = a ln 2 + bβ(1− lnβ)− 1
2abβδ+ 1

8ab
2β2δ2.

Now Ψ0 < a ln 2 if
bβδ2 − 4δ + 8(1− lnβ)/a < 0.

This inequality is satisfied provided

2
(

1−
√

1− 2bβ(1− lnβ)/a
)
< bβδ < 2

(
1 +

√
1− 2bβ(1− lnβ)/a

)
.

The right hand inequality is clearly irrelevant since we are assuming β ≤ 1.2/bδ.
Thus we need only consider the left hand inequality, i.e. for fixed γ = bβ < 1.2/δ,
we require

γδ > max
1
2−o(1)≤b≤a≤1

2
(

1−
√

1− 2γ(1− ln γ + ln b)/a
)
.

Considering first b, the maximum occurs when b = a. So we have

γδ > max
1
2−o(1)≤a≤1

2
(

1−
√

1− 2γ(1− ln γ + ln a)/a
)
.

But, since a ≥ γ, the maximum now occurs when a = 1
2 . Thus we require

γδ > 2
(

1−
√

1− 4γ(1− ln γ − ln 2)
)
.

To achieve γ = 0.004715, we require δ ≥ 23.3.
Thus we have shown that min(aα, bβ) < 0.004715. The conclusion now follows

immediately from Lemma 1. 2

We now establish the relationship between the number of independent sets in
Γ and the maximum size of a consistent subset of A. Let I = I(G). For σ ∈ I
let Sσ ⊆ [n] be defined by

Sσ = {i : |Li ∩ σ| > |Ri ∩ σ|, i ∈ [n]}.

For S ⊆ [n] let IS = {σ ∈ I : Sσ = S} and let µS = |IS|. Recall that m is the
number of equations in A.
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Lemma 4 For S ⊆ [n], let θ(S) be the number of equations in A satisfied by the
assignment xi = 1 (i ∈ S), xi = 0 (i /∈ S). Then

4Mθ(S)3M(m−θ(S)) ≤ µS ≤ 4Mθ(S)3M(m−θ(S))22λmM (1 + o(1)), (19)

where λ is as in Lemma 3.

Proof Fix S ⊆ [n] and for σ ∈ IS we let Jσ = σ ∩
(⋃

i∈S Li ∪
⋃
i/∈S Ri

)
.

Informally, Jσ restricts σ to the left or right of each subgraph Hi, according to
which side contains the larger part of σ. Let

µ̂S = |{Jσ : σ ∈ IS}| ≤ µS .

We show that

µ̂S = 4Mθ(S)3M(m−θ(S)). (20)

This immediately proves the lower bound in (19). Furthermore, Lemma 1 implies
that for a fixed value J of Jσ there are (up to a factor (1 + e−Ω(m2)) at most∏

i∈[n]

2λdiM = 2λM
P
i di = 22λmM

sets σ ∈ IS with Jσ = J . The upper bound then follows.
To prove (20) we consider the number of possible choices for J ∩Li,a, J ∩Ri,a,

J ∩ Lj,a and J ∩Rj,a for every equation a : xi + xj = za (za ∈ {0, 1}). For given
S, let us define

Xi,a =

{
Li,a, if i ∈ S;
Ri,a, if i /∈ S.

Then there are two cases, determined by the status of a.

(1) Equation a is satisfied by the assignment derived from S. Then there are
2M choices for each of J ∩Xi,a, J ∩Xj,a, giving 4M in all.

(2) Equation a is not satisfied by the assignment derived from S. Then the
subgraph of G induced by Xi,a ∪ Xj,a is a matching of size M , and hence
contains 3M independent sets.

Multiplying the estimates from the two cases over all a ∈ A proves (20) and the
Lemma. 2

We now proceed to the proof of Theorem 2. Let ZI = ZI(G) denote the
logarithm of the number of independent sets of G(A). Let ZC = ZC(A) denote
the maximum number of consistent equations in A.

Let YI be some estimate of ZI satisfying |YI/ZI − 1| ≤ ε = 10−6. Using YI we
define

YC =
(
YI
M
−m ln 3

)
1 + 10−5

ln(4/3)
.
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A simple calculation will then show that 1 ≤ YC/ZC ≤ 12/11 − ε, so that YC
determines ZC with sufficient accuracy to beat the approximability bound for
E2LIN2.

From Lemma 4 we see that

YI ≥ (1− ε)M(ZC ln(4/3) +m ln 3).

Hence, since ZC ≥ m/2,

YC/1.00001 ≥ (1− ε)ZC −
εm ln 3
ln(4/3)

≥ ZC
(

1− ε ln 12
ln(4/3)

)
≥ 0.999991ZC ,

which implies YC ≥ ZC . On the other hand Lemma 4 also implies that

YI ≤ (1 + ε)
[
M
(
ZC ln(4/3) +m ln 3 + 2mλ ln 2

)
+ n ln 2

]
,

where λ ≤ 0.00943. Hence

YC/1.00001 ≤ (1 + ε)ZC +
εm ln 3
ln(4/3)

+
(1 + ε)2mλ ln 2

ln(4/3)
+

(1 + ε) ln 2
n ln(4/3)

≤ ZC

(
1 + ε+

ε ln 6
ln(4/3)

+
4 ln 2(1 + ε)λ

ln(4/3)
+O

(
1
n2

))
≤ ZC

(
1.0908907 +O

(
1
n2

))
,

which implies YC/ZC ≤ 12/11 − ε for n large enough.
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Appendix A

We prove the claims made in Section 2 concerning the function φ.

(i) From (5), it can easily be checked that ∂2φ/∂α2 < 0 on the interior of
T , and hence φ can have no interior local minima. On α = 0, φ has a
maximum at β = 1

2 using (4), but then from (3) we find ∂φ/∂α = +∞ at
α = 0, β = 1

2 . Similarly β = 0. On α+ β = 1, both ∂φ/∂α, ∂φ/∂β = −∞,
so φ can have no maximum.

(ii) Since both ∂2φ/∂α2, ∂2φ/∂β2 < 0, φ has a maximum if and only if the
Hessian of φ has positive determinant. The condition for this is α + β +
∆(∆− 2)αβ ≤ 1, as may be checked from (5)–(7).

(iii) From (3) and (4), the conditions for a stationary point of φ may be written

β = f(α), α = f(β),

where

f(x) = 1−x−x1/∆(1−x)1−1/∆ = (1−x)

[
1−

(
x

1− x

)1/∆
]

(0 ≤ x ≤ 1).

Thus at any stationary point

α = f(f(α)). (21)

Clearly f(x) ≤ 0 for x ≥ 1
2 , so α < 1

2 at any stationary point. Similarly
β < 1

2 . To study the roots of (21), the change of variable y = (α/(1−α))1/∆
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proves convenient. With a little calculation we may express α, f(α), and
f(f(α)) in terms of y:

α =
y∆

1 + y∆

f(α) = (1− α)(1− y) =
1− y

1 + y∆

and

f(f(α)) = (1− f(α)) −
(
f(α)(1− f(α))∆−1)1/∆

=
(
α+

y

1 + y∆

)
− 1

1 + y∆

(
(1− y)(y + y∆)∆−1)1/∆

= α +
y

1 + y∆

[
1−

(
(1− y)(1 + y∆−1)∆−1

y

)1/∆
]

;

so that (21) is equivalent to

(1 + y∆−1)∆−1 =
y

1− y (0 ≤ y < 1). (22)

Note that the implicit mapping from α to y is a bijection, so we may
legitimately study the solution set of (21) through that of (22). Note also
that (22) has a root y′ satisfying y+ y∆ = 1, and this exists for any ∆ > 0.
The reader may check that y + y∆ = 1 is equivalent to α = f(α), and thus
y′ satisfies α = β. To analyse (22) in general, let

g(y) = (∆− 1) ln(1 + y∆−1) + ln(1− y)− ln y,

so g(y) = 0 has the same roots as (22). Then one may check that g′(y) = 0
if and only if

h(y) def= ∆(∆− 2)y∆−1 − (∆− 1)2y∆ − 1 = 0.

But h(0) = −1, h(1) = −2, and h has a single maximum on [0, 1] at
y′′ = (∆− 2)/(∆ − 1). Now h(y′′) = (∆ − 2)∆/(∆ − 1)∆−1 − 1 > 0 if and
only if ∆ ≥ 6, and h(y′′) < 0 otherwise. Therefore h has two roots in [0, 1]
if ∆ ≥ 6, otherwise no roots.. Thus g has a single root in [0, 1] if ∆ ≤ 5,
otherwise at most three roots. In the latter case, however, g(0) = +∞,
g(1) = −∞, g(y′) = 0 and a simple calculation shows

g′(y′) =
(∆− 1)2(1− y′)2 − 1

y′(1− y′) > 0

if and only if ∆ ≥ 6, and g′(y′) < 0 otherwise. These facts imply that g has
exactly three roots if ∆ ≥ 6.
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Now the reader may check that the point (α′, α′) corresponding to y′ (i.e.,
given by solving y′ = (α′/(1− α′))1/∆) satisfies

α + β + ∆(∆− 2)αβ ≤ 1, i.e.
(

1− α
α

)(
1− β
β

)
≥ (∆− 1)2,

if and only if y′ ≥ y′′. This holds if and only if ∆ ≤ 5. Thus this point is a
maximum for ∆ ≤ 5, otherwise a saddle-point.

Thus φ has one stationary point in T (on α = β) if ∆ ≤ 5, and this is a
maximum.

(iv) By the above, if ∆ ≥ 6, φ has no boundary maximum on T ′ = {(α, β) ∈ T :
α ≤ β} and therefore has a maximum in the interior of T ′ by continuity.
By symmetry there is also a maximum in T \T ′. Thus, when ∆ ≥ 6, φ has
two symmetrical maxima and a single saddle-point on the line α = β.
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