
Decidability of DPDA equivalence

Colin Stirling
Division of Informatics
University of Edinburgh

email: cps@dcs.ed.ac.uk

Abstract

A proof of decidability of equivalence between deterministic pushdown
automata is presented using a mixture of methods developed in concur-
rency and language theory. The technique appeals to a tableau proof
system for equivalence of configurations of strict deterministic grammars.

1 The DPDA problem

Ingredients of pushdown automata with ε-transitions are a finite set of states P ,
a finite set of stack symbols S, a finite alphabet A and a finite family of basic
transitions, each of the form pS

a−→ qα where p, q are states, a ∈ A ∪ {ε}, S
is a stack symbol and α is a sequence of stack symbols. A configuration of an
automaton is any expression pα, p ∈ P and α ∈ S∗ whose behaviour is determined
by the basic transitions together with the following prefix rule, where β ∈ S∗:

if pS a−→ qα then pSβ a−→ qαβ

The language accepted by a configuration pα is {w ∈ A∗ : ∃q ∈ P . pα w−→ qε}
where the extended transitions for words are defined as expected. Note that
ε-transitions are swallowed in the usual fashion. Acceptance is by empty stack
(and not by final state, see [5]).

A deterministic pushdown automaton, DPDA, has restrictions on its basic
transitions (where pS a−→ abbreviates pS a−→ qα for some q and some α)

if pS a−→ qα and pS
a−→ rβ then q = r and α = β

if pS a−→ and a ∈ A then not(pS ε−→)

Moreover one can assume that in a basic transition pS
a−→ qα the length of α

is less than 3, and that ε-transitions can only pop the stack: if pS ε−→ qα then

1

pX pYX pYYX pYYYX ...

p rX rYX rYYX

a, c

b b b b

a a a a

c c c

ε ε ε ε
...ε

pX
a−→ pX pX

b−→ pε pX
c−→ pX rX

ε−→ pε

pY
a−→ pε pY

b−→ rε pY
c−→ pY Y rY

ε−→ rε

Figure 1: A DPDA

α = ε. One consequence of the restrictions is that the language accepted by a
configuration is prefix-free: if w is accepted then no proper prefix of w is accepted.
Thus if ε is accepted then no other word is. In the following we assume ε-free
DPDAs1. Figure 1 depicts a simple DPDA whose basic transitions are listed
under the diagram.

The DPDA decidability problem was first posed in 1966 [2]. Is there an effect-
ive procedure for deciding whether or not two configurations of a DPDA accept
the same language?2 Why is the decision question so difficult to answer, des-
pite all the intensive work on the problem over the past 30 years? Because one
needs to expose the right structure. It appears that the notation of pushdown
configurations, although simple, is not rich enough. Attempts to prove the res-
ult (such as Valiant’s technique) examine differences between stack lengths and
potentially equivalent configurations. This method showed decidability of equi-
valence for real-time DPDAs which have no ε-transitions [7]. But when there are
ε-transitions it is possible for configurations of arbitrary size to be equivalent. For
example configurations pY nX and pY mX of Figure 1 are equivalent for all m and
n. Finally Sénizergues [8] showed decidability. However his proof is formidable
and is over 100 pages long [9]. It exposes structure in DPDAs using power series
which leads to quite difficult notation.

Instead we provide a proof using a mixture of techniques developed in concur-
rency theory for showing decidability of bisimulation equivalence and ideas from

1Classical DPDAs have final states, but for any language L recognised by a configuration of
such a DPDA there is a configuration of an ε-free DPDA with empty stack acceptance for the
language L$ where $ is an endmarker.

2As the disjoint union of two DPDAs is a DPDA, we can assume the decision question over
configurations of a single DPDA instead of between two different DPDAs.

2

language theory, especially those developed in [4]. The proof also essentially de-
pends on insights gained from trying to understand Sénizergues’s method. The
proof consists of two semi-decision procedures. One half of the proof is easy: if
two configurations do not accept the same language then there is a smallest word
which distinguishes them. Therefore we just need to establish semi-decidability of
accepting the same language. The crux of this part of the proof is that there is a
finite tableau proof that two configurations are equivalent. The method employs
ideas developed in [6, 1, 10]. It relies upon exposure of structure within DPDA,
so that we can “decompose” configurations. We shall build a structured language
(almost a process algebra) for describing configurations of a DPDA using strict
deterministic grammars.

2 Strict deterministic grammars

An ε-free context-free grammar in 3-Greibach normal form consists of a finite
family N of nonterminals, a finite alphabet A and a finite family of basic trans-
itions, each of the form X

a−→ α where X ∈ N , a ∈ A and α ∈ N ∗ such that
its length, |α|, is less than 3. A simple configuration is a sequence of nonter-
minals whose behaviour is determined by the basic transitions and the prefix
rule: if X a−→ α then Xβ

a−→ αβ where β ∈ N ∗. The language accepted by
a simple configuration is the set of words {w ∈ A∗ : α w−→ ε}. However we
shall also consider composite configurations which are finite families of simple
configurations. We use the (process calculus) notation α1 + . . . + αn for such a
configuration. The language accepted by a composite configuration is the union
of the languages accepted by its components.

We are interested in a restricted family of context-free grammars, the strict
deterministic grammars [3, 4]. Assume a context-free grammar (in 3-Greibach
normal form). Let ≡ be a partition of its nonterminals N . We extend ≡ to
sequences of nonterminals, α ≡ β if α = β or there is a δ such that α = δXα1

and β = δY β1 and X ≡ Y and X 6= Y . The partition ≡ on N is strict if the
basic transitions obey the following two conditions:

if X a−→ α and Y a−→ δ and X ≡ Y then α ≡ δ
if X a−→ α and Y a−→ α and X ≡ Y then X = Y

An immediate consequence of these conditions is that if X a−→ ε and X ≡ Y and
X 6= Y then not(Y a−→). A context-free grammar is strict deterministic if there
exists a strict partition of its nonterminals.

We now examine some properties of strict deterministic grammars. First the
strictness conditions generalise to words (see [4] for a proof).

Fact 1
i. If X w−→ α and Y

w−→ δ and X ≡ Y then α ≡ δ.

3

ii. If X w−→ α and Y
w−→ α and X ≡ Y then X = Y .

Therefore if X ≡ Y then the languages accepted by X and Y are prefix-disjoint
and if X 6= Y then they accept disjoint languages (again see [4] for a proof).

Fact 2 If X ≡ Y and X
w−→ ε then

i. not(Y u−→ ε) for any proper prefix u of w, and
ii. not(Y w−→ ε) when X 6= Y .

Our main concern is with a subset of composite configurations. A composite
configuration β1 + . . .+βn is admissible if βi ≡ βj for each pair of components βi
and βj. For ease of notation we also assume that the empty sum, ∅, is admissible.
In [4] admissible configurations are called “associates”. Notice that if X ≡ Y

then for any w the sum
∑
{β : X w−→ β or Y w−→ β} is admissible. Moreover

“reachability” under any word preserves admissibility (yet again see [4] for a
proof).

Fact 3 If β1 + . . .+βn is admissible then for any w the following is admissible∑
{β ′1 : β1

w−→ β ′1}+ . . .+
∑
{β ′n : βn

w−→ β ′n}

An ε-free DPDA can be transformed into an equivalent 3-Greibach normal
form strict deterministic grammar (and vice versa) [3]. For every pair of states p,
q and stack symbol S introduce a nonterminal [pSq] (whose language will be {w ∈
A∗ : pS w−→ qε}). The basic transitions for a ∈ A are also translated: pS a−→ qε

becomes [pSq] a−→ ε, pS a−→ qT becomes the family for each r, [pSr] a−→ [qT r],
and pS

a−→ qTU becomes the family for each r and p′, [pSr] a−→ [qTp′][p′Ur].
Erase all ε-nonterminals (if pS ε−→ qε then [pSq] is an ε-nonterminal) from the
right hand side of any transition. Next delete all transitions involving redundant
nonterminals (those which accept no words). It is easy to check that the partition
≡ relating pairs [pSq] and [pSr] is strict. A configuration pS1S2 . . . Sn of a DPDA
becomes the following admissible configuration, where the summation is over all
pi, 1 ≤ i ≤ n ∑

[pS1p1][p1S2p2] . . . [pn−1Snpn]

after all ε-nonterminals are erased and all components involving redundant nonter-
minals are removed.

An example is the translation of the DPDA of Figure 1 into a strict determ-
inistic grammar. First the basic transitions are transformed as follows.

[pXp] a−→ [pXp] [pXr] a−→ [pXr] [pXp] b−→ ε

[pXp] c−→ [pXp] [pXr] c−→ [pXr]
[pY p] a−→ ε [pY r] b−→ ε [pY p] c−→ [pY p][pY p]
[pY p] c−→ [pY r][rY p] [pY r] c−→ [pY p][pY r] [pY r] c−→ [pY r][rY r]

4

There are also two ε-nonterminals, [rXp] and [rY r]. These are erased from
the right hand side of any transition: the transition [pY r] c−→ [pY r][rY r] is
changed to [pY r] c−→ [pY r]. There are also two redundant nonterminals [pXr]
and [rY p]. All transitions involving these nonterminals are removed. This reduces
the transitions to the following

[pXp] a−→ [pXp] [pXp] b−→ ε [pXp] c−→ [pXp]
[pY p] a−→ ε [pY r] b−→ ε [pY p] c−→ [pY p][pY p]
[pY r] c−→ [pY p][pY r] [pY r] c−→ [pY r]

The set of nonterminals is {[pXp], [pY p], [pY r]} and the partition is into the
sets {{[pXp]}, {[pY p], [pY r]}}. An example configuration pY Y X of the DPDA
becomes the following admissible configuration

[pY p][pY p][pXp] + [pY p][pY r] + [pY r]

The DPDA problem is equivalent to the question of decidability of (language)
equivalence between admissible configurations of a strict deterministic grammar.
Therefore we now extend the transition relation to admissible configurations. The
idea is as in process calculi that one builds transitions from a composite process
out of transitions of its components. First the basic transitions are determinized
by coalescing all the basic transitions of a nonterminal with the same label:
if X a−→ α1 and . . . and X

a−→ αn then form the single transition X
a−→

α1+. . .+αn3. We also assume that if not(X a−→) then X a−→ ∅. Consequently for
each nonterminal X and each a ∈ A there is a single transition rule X a−→

∑
αj.

For instance the rule for [pY r] and c above becomes [pY r] c−→ [pY p][pY r]+[pY r].
The transition rule for admissible configurations, the prefix rule, is then as follows.

if Xi
a−→
∑

αij then
∑

Xiβi
a−→
∑∑

αijβi

For example the admissible configuration corresponding to pY Y X above has the
following c transition

[pY p][pY p][pXp] + [pY p][pY r] + [pY r]
↓ c

[pY p][pY p][pY p][pXp] + [pY p][pY p][pY r] + [pY p][pY r] + [pY r]

The resulting configuration corresponds to pY Y Y X.
The extended transition relation w−→, w ∈ A∗, is defined as usual. Con-

sequently the language accepted by an admissible configuration β1 + . . . + βk is
the set of words {w : β1 + . . .+βk

w−→ ε}. The rest of the paper is devoted to the
proof of decidability of language equivalence between admissible configurations.
In the next section we introduce some useful notation. In section 4 we isolate
crucial combinatorial properties of admissible configurations which underpin the
tableau proof system for showing decidability in section 5.

3By strictness α1 + . . .+ αn is admissible.

5

3 Measures, shapes and recursive nonterminals

Assume a fixed strict deterministic grammar in 3-Greibach normal form without
redundant nonterminals. We use α, β, . . . to range over sequences of nonterminals
and E, F , G, . . . to range over admissible configurations. The size of E, written
|E|, is the length of its longest sequence of nonterminals: if E is β1 + . . . + βn
then |E| is max{|βj| : 1 ≤ j ≤ n}4. Notice that for each n there are only finitely
many admissible configurations of size n.

We assume a fixed total ordering on the alphabet A. From this we define a
total ordering on words: u < v if |u| < |v| or when |u| = |v| u is lexicographically
less than v. If u < v we say that u is shorter than v. For each nonterminal
X there is a unique shortest word u such that X u−→ ε. We let w(X) denote
this word and we let the norm of X, written n(X), be its length. An important
measure is M which is just larger than the maximum norm.

M = 1 + max {n(X) : X is a nonterminal}

The notion of norm extends to admissible configurations: n(E) is the length of
the shortest word u such that E u−→ ε5. Infinitely many different admissible
configurations can have the same norm (and this is one reason why the decision
problem is difficult).

An admissible configuration has a variety of “shapes” as it can be presented
in many different ways using the following (obvious) equalities.

E + ∅ = E ∅E = ∅
E(F +G) = EF + EG (E + F)G = EG + FG

One basic shape is “head nonterminal form” X1G1 + . . .+XkGk where Xi 6= Xj,
i 6= j, and Xi ≡ Xj : some of theGis may be ε. In this case theXis are the “heads”
and the Gis are the “tails”. Another important head form is β1G1+. . .+βnGn+E′

where βi ≡ βj (and βi 6= βj, i 6= j) and |βi| = |βj| and Gi is not ε, and |E′| ≤ |βi|.
Instead one may focus on “tail” forms. If Xi

w−→ Ei for each i : 1 ≤ i ≤ k (where
some Eis may be ∅) then X1G1 + . . .+XkGk

w−→ E1G1 + . . .+EkGk. The shape
E1G1 + . . . + EkGk highlights the tails. Because the grammar is in 3-Greibach
normal form |Ei| ≤ 1 + |w| for each i. In this example the “head” E1 + . . .+ Ek
is itself admissible. Tail forms E1G1 + . . . + EkGk are only permitted when the
“head” is admissible. For instance [pY p][pY p][pXp] + [pY p][pY r] + [pY r] is not
permitted to have as tail form [pY p]G1 + ([pY p] + ε)G2. However it does have
the form [pY p]G1 + [pY r]G2.

Another useful notation is “the result of E after u”, written E · u. This
is the configuration F such that E

u−→ F , which can be ∅. An example is

4We let |∅| = 0.
5We assume n(∅) =∞.

6

(X1G1 + . . . + XnGn) · w(Xi) = Gi. If |u| < min{n(Ei) : 1 ≤ i ≤ k} then
(E1G1 + . . .+ EkGk) · u = (E1 · u)G1 + . . .+ (Ek · u)Gk.

Although the starting point is a fixed strict deterministic grammar we shall
extend it with auxilary nonterminals, ranged over by V , each of which has an
associated definition V

def= H. We say that (V1, . . . , Vn) is a family of recursive
nonterminals if for each i : 1 ≤ i ≤ n either Vi

def= Hi1V1 + . . . + HinVn where
Hi1 +. . .+Hin is admissible and each Hij is distinct and does not contain auxilary
nonterminals, or Vi

def= Vj and j ≤ i and Vj
def= Vj . An auxilary nonterminal

can only appear as a final element in a sequence of nonterminals. Admissibility
is extended to such families of sequences as follows. A configuration which is a
singleton V is admissible, and β1V ′1+. . .+βkV ′k is admissible if the head β1+. . .+βk
is admissible and each βj is distinct, and there is a family of recursive nonterminals
(V1, . . . , Vn) such that each V ′i is one of the Vjs. An admissible configuration can
therefore be presented in tail form E1V1 + . . . + EnVn. We assume that |V | = 1
for each recursive nonterminal V .

The transition rules are extended to the wider class of admissible configura-
tions with the following rule

if E w−→ Vi and Vi
def= H then E w−→ H

The definition of E · u is refined so that it is always unique: if E u−→ Vi and
Vi

def= H then E · u = H. Consequently if E · u = Vi then Vi
def= Vi. The language

accepted by an extended configuration E is the set {w : (E ·w) = Vi}. We view
a recursive nonterminal Vi such that Vi

def= Vi as a terminating nonterminal. The
norm of E, n(E), is again the length of the smallest word accepted by E. In the
sequel we are only interested in normed configurations. This implies that in a
recursive family (V1, . . . , Vn) there is at least one terminating nonterminal.

Two configurations E and F are equivalent, written E ∼ F , if they accept
the same language and, when applicable, agree on terminating recursive nonter-
minals. If E and F are normed then E and F accept the same language iff they
“reject” the same words, and because the language accepted by a configuration
is prefix-free it follows that E ∼ F iff for all words w

(E · w) = ∅ iff (F · w) = ∅ and (E · w) = Vi iff (F · w) = Vi

Later we use this consequence as the criterion for equivalence of configurations.
Below are some obvious properties of equivalence, including congruence.

Fact 1

i. If E ∼ F then for all u ∈ A∗, E · u ∼ F · u.
ii. If E ∼ E′ and F ∼ F ′ then E + F ∼ E′ + F ′.
iii. If EF ∼ G and F ∼ F ′ then EF ′ ∼ G.

7

iv. If EF ∼ G and E ∼ E′ then E′F ∼ G.
v. If E ∼ F then n(E) = n(F).

The family (V ′1 , . . . , V ′n) of recursive nonterminals refines the family (V1, . . . , Vn)
when the following two conditions hold.

if Vi
def= H1V1 + . . .+HnVn then V ′i

def= H1V ′1 + . . .+HnV ′n
if Vi

def= Vj and V ′i
def= H then V ′j

def= H

A refined family agrees on the definitions of nonterminating nonterminals and
preserves equality of definitions, but may contain fewer terminating nonterminals.
Because equivalence of configurations includes agreement of terminating recursive
nonterminals, equivalence is preserved by refinement.

Fact 2 If E1V1 + . . . + EnVn ∼ F1V1 + . . . + FnVn and (V ′1 , . . . , V ′n) refines
(V1, . . . , Vn) then E1V ′1 + . . . + EnV ′n ∼ F1V ′1 + . . .+ FnV ′n.

Equivalence can be “approximated”. For n ≥ 0 we say that E and F are
n-equivalent, written E ∼n F , if for all words w whose length |w| ≤ n

(E · w) = ∅ iff (F · w) = ∅ and (E · w) = Vi iff (F · w) = Vi

Note that for each n it is decidable whether E ∼n F . Moreover E ∼ F iff E ∼n F
for all n ≥ 0. Below are some routine properties of the approximants ∼n.

Fact 3
i. If E ∼n F then for all u ∈ A∗ where |u| ≤ n, E · u ∼n−|u| F · u.
ii. If E ∼n F and 0 ≤ m < n then E ∼m F .
iii. If E ∼n F and F 6∼n G then E 6∼n G.
iv. If E ∼n E′ and F ∼n F ′ then E + F ∼n E′ + F ′.
v. If EF ∼n G and E ∼n E′ then E′F ∼n G.

4 Imbalance and size

Consider trying to show that E ∼ F . One approach is goal directed. Start with
the goal E = F (to be understood as, “is E ∼ F ?”) and then reduce it to
subgoals. Keep reducing to further subgoals until one reaches either obviously
true subgoals (such as G = G) or obviously false subgoals (such as G = H when
n(G) 6= n(H)). This naive technique which is described more formally in terms
of tableaux in the next section is the approach adopted.

Assume that E has shape E1G1 + . . . + EnGn and that F has similar shape
F1G1 + . . . + FnGn. The measure of “imbalance” between E and F with these

8

shapes is max { |Ei|, |Fi| : 1 ≤ i ≤ n}. An important step in the proof is that
one can bound imbalance by reducing goals to balanced subgoals.

Proposition 1 If X1H1 + . . .+XkHk ∼ F and E1H1 + . . .+ EkHk ∼ F ′ then
E1(F · w(X1)) + . . . + Ek(F · w(Xk)) ∼ F ′.
Proof: Let E be X1H1 + . . .+XkHk. Assume E ∼ F and E1H1 + . . .+EkHk ∼
F ′. Since (E · w(Xi)) = Hi it follows that Hi ∼ (F · w(Xi)). By congruence
E1H1 + . . . + EkHk ∼ E1(F · w(X1)) + . . . + Ek(F · w(Xk)), see Fact 1 of the
previous section. 2

Proposition 1 will be used to reduce imbalance. Let X1H1 + . . .+XkHk = F
and E1H1 + . . .+EkHk = F ′ be two goals where X1 + . . .+Xk

w−→ E1 + . . .+Ek,
F

w−→ F ′, |w| = M and n(F ′) > 0. Therefore |Ei| ≤ M + 1 for each i. If F
contains recursive nonterminals then it has head form β1G1 + . . . + βnGn where
|βi| = M + 1 and Gi 6= ε or |βi| < M + 1 and Gi is a recursive nonterminal
Vj . If F does not contain recursive nonterminals then it has a similar head form
β1G1 + . . .+ βn−1Gn−1 + JGn where |βi| = M + 1 and |J | < M + 1 and Gn = ε.
Assume that F does not contain recursive nonterminals (the other case is almost
similar). Let (βi ·w) be F ′i and (J ·w) be F ′n and therefore |F ′i | ≤ 2M +1 for each
i. Because F ′ = F ·w the second goal is E1H1 + . . .+EkHn = F ′1G1 + . . .+F ′nGn.
If the two starting goals are true then Proposition 1 justifies reduction to the
subgoal

E1(F · w(X1)) + . . .+ Ek(F · w(Xk)) = F ′1G1 + . . .+ F ′nGn

Because |w(Xi)| < M for each i, the left hand side configuration has the following
matrix form

E1(β1 · w(X1))G1 + . . .+ E1(J · w(X1))Gn +
...

...
Ek(β1 · w(Xk))G1 + . . .+ Ek(J · w(Xk))Gn

where |Ei(βj · w(Xi))| ≤ 3M + 2, and |Ei(J · w(Xi))| < 3M + 2. Collecting
terms together the subgoal therefore has the tail form E′1G1 + . . . + E′nGn =
F ′1G1 + . . .+ F ′nGn where the maximum imbalance is 3M + 2.

Next we need to show that introducing balanced subgoals is “sound” (there is
a fuller discussion of soundness in the next section). The next Proposition shows
that if the starting goals are not true then falsity is preserved when introducing
a balanced subgoal.

Proposition 2 If n ≥ m and m ≥M −1 and E1H1 + . . .+EkHk 6∼n−m F ′ and
X1H1 + . . . +XkHk ∼n F then E1(F · w(X1)) + . . . + Ek(F · w(Xk)) 6∼n−m F ′.

Proof: Assume n ≥ m ≥ M − 1 and X1H1 + . . . + XkHk ∼n F . Therefore
Hi ∼n−|w(Xi)| (F · w(Xi)). Because |w(Xi)| ≤ M − 1, Hi ∼n−m (F · w(Xi)).
Therefore E1H1 + . . .+EkHk ∼n−m E1(F ·w(X1)) + . . .+Ek(F ·w(Xk)). Assume

9

E1H1 + . . . + EkHk 6∼n−m F ′. By Fact 3 iii of the previous section the result
follows. 2

Bounding imbalance between configurations is not enough for showing decid-
ability. The sizes of subgoals may keep growing. The next and crucial step in the
argument is a mechanism for controlling size. It is at this point that we appeal
to recursive nonterminals. The balanced goal,

(1) E1G1 + . . . + EnGn = F1G1 + . . . + FnGn

where the Eis and Fis do not contain recursive nonterminals, can be reduced to
a subgoal of the form

(2) E1V1 + . . . + EnVn = F1V1 + . . . + FnVn

where (V1, . . . , Vn) is a family of recursive nonterminals. The mechanism for
reducing goal (1) to goal (2) involves constructing the recursive family (V1, . . . , Vn)
from a subsidary family of goals, Ei

1G1 + . . .+Ei
nGn = F i

1G1 + . . .+F i
nGn where

i ≥ 1, with the same tails as (1).

Proposition 3 If k ≥ 1 and Ei
1G1 + . . .+Ei

nGn ∼ F i
1G1 + . . .+F i

nGn for each
i : 1 ≤ i ≤ k and every Ei

j and F i
j does not contain recursive nonterminals then

there is a family of recursive nonterminals (V1, . . . , Vn) such that
1. Ei

1V1 + . . .+ Ei
nVn ∼ F i

1V1 + . . .+ F i
nVn for each i : 1 ≤ i ≤ k,

2. if Vi
def= H1V1 + . . .+HnVn then Gi ∼ H1G1 + . . .+HnGn.

3. if Vi
def= Vj then Gi ∼ Gj .

Proof: The proof proceeds by iteratively refining families of recursive nonter-
minals for each Ei

1G1 + . . .+ Ei
nGn ∼ F i

1G1 + . . . + F i
nGn in order starting with

i = 1. Let E be E1
1G1 + . . . + E1

nGn and let F be F 1
1G1 + . . . + F 1

nGn. For the
base case V 0

i
def= V 0

i , 1 ≤ i ≤ n. Clearly 2 and 3 hold for each V 0
i . Assume that

the jth family (V j
1 , . . . , V

j
n), j ≥ 0, is given and that 2 and 3 hold for each V j

i .
Let E′ be E1

1V
j

1 + . . .+ E1
nV

j
n and let F ′ be F 1

1V
j

1 + . . .+ F 1
nV

j
n . If E′ ∼ F ′ then

we have dealt with the first equation. Now let E be E2
1G1 + . . .+E2

nGn and F be
F 2

1G1+. . .+F 2
nGn and let E′ be E2

1V
j

1 +. . .+E2
nV

j
n and let F ′ be F 2

1V
j

1 +. . .+F 2
nV

j
n .

If E′ ∼ F ′ then we have dealt with the second equation too. We keep repeating
this until either all the equations are exhausted (and then (V j

1 , . . . , V
j
n) is the

required family of recursive nonterminals) or E is El
1G1 + . . . + El

nGn and F is
F l

1G1 + . . .+F l
nGn and E′ is El

1V
j

1 + . . .+El
nV

j
n and and F ′ is F l

1V
j

1 + . . .+F l
nV

j
n

and E′ 6∼k F ′ for a least k. Let u be the smallest distinguishing word for E′ and
F ′. There are two possibilities. First that one and only one of (E′ ·u) and (F ′ ·u)
is ∅. Second is that just one of this pair is a particular terminating nonterminal
V j
i . We show below that the first possibility is impossible because E ∼ F . In

the case of the second possibility we refine the family of recursive nonterminals

10

to (V j+1
1 , . . . , V j+1

n) where each V j+1
i obeys conditions 2 and 3. By Fact 2 of

section 3, Ei
1V

j+1
1 + . . .+Ei

nV
j+1
n ∼ F i

1V
j+1

1 + . . .+F i
nV

j+1
n for all i < l. Hence we

continue the construction for E is El
1G1 + . . .+El

nGn and F be F l
1G1 + . . .+F l

nGn

and E′ is El
1V

j+1
1 + . . . + El

nV
j+1
n and F ′ is F l

1V
j+1

1 + . . . + F l
nV

j+1
n .

We now examine the case when E′ 6∼k F ′ and u = a1 . . . ak is the smallest
distinguishing word. Consider the following four sequences when Z is E′, F ′, E
and F respectively

(Z · a1), . . . , (Z · a1 . . . ai), . . . , (Z · a1 . . . ak)

Consider the initial part of the sequence in the case Z is E′ up to the first prefix,
if there is one, u1 = a1 . . . am such that Z ·u1 = E′′ where E′′ = H1V

j
1 +. . .+HnV j

n

and (E′ · a1 . . . am−1) am−→ V j
i . From 2 we know that Gi ∼ H1G1 + . . . + HnGn

because V j
i

def= E′′. The initial part of the sequence when Z is E up to E ·
a1 . . . am−1 is similar to the initial part for Z is E′ in that they have the same
“heads”. Consequently E ·u1 = Gi. Therefore the sequence for Z is E is updated
from position m to k. Let E · a1 . . . as, for s ≥ m, be (H1G1 + . . . + HnGn) ·
am+1 . . . as. This updating restores the same heads in the two sequences Z is E
and Z is E′ until the next occurrence of a Gi′ in the updated sequence for Z
is E. We repeatedly update the new sequence for Z is E whenever there is a
later position E′ · a1 . . . at = H ′1V

j
1 + . . . + H ′nV

j
n and V j

i′
def= H ′1V

j
1 + . . . + H ′nV

j
n

and E · a1 . . . at in the (updated) sequence is Gi′ for t < k. The same updating
construction is applied to the sequences when Z is F ′ and Z is F . Note that
repeated updating of the sequences for E and F does not affect the property that
their corresponding positions are equivalent.

The final positions of the sequences for E′ and F ′ are the elements E′ · u
and F ′ · u. If one of them is ∅ then one of the final positions of the updated
sequences for E and F is also ∅, which would contradict that E ∼ F . Therefore
one of them is a terminating recursive nonterminal V j

i . Without loss of generality
assume that E′ · u = V j

i . Consider the final element of the updated sequence for
E. It is either Gi or Gt when V j

t
def= V j

i (and i ≤ t). In the second case by 2,
Gt ∼ Gi. Consider now the final element F ′ · u.

The first case is that F ′ ·u is H ′1V
j

1 + . . .+H ′nV
j
n and in the updated sequence

F · u is H ′1G1 + . . . + H ′nGn (where no Hi is ε). Because E ∼ F it follows that
Gi ∼ H ′1G1 + . . .+H ′nGn. The family (V j

1 , . . . , V
j
n) is refined to (V j+1

1 , . . . , V j+1
n)

as follows. First V j+1
i

def= H ′1V
j+1

1 + . . .+H ′nV
j+1
n . Next for any index t such that

V j
t

def= V j
i let V j+1

t
def= H ′1V

j+1
1 + . . . + H ′nV

j+1
n . For the other entries we merely

update the index j to j + 1 on the V j
i s on both sides of def=. By construction

properties 2 and 3 both hold for the new family (V j+1
1 , . . . , V j+1

n).
The second case is that F ′ · u = V j

i′ . Therefore the final element F · u in
the updated sequence is either Gi′ or Gt′ such that Gt′ ∼ Gi′ where V j

t′
def= V j

i′

and i′ ≤ t′. Because E′ · u = V j
i we know that i 6= i′ since u distinguishes

11

E′ and F ′. However Gi ∼ Gi′ because E ∼ F . Consider min{i, i′}. Without
loss of generality assume it is i′. The refined family of recursive nonterminals
(V j+1

1 , . . . , V j+1
n) is defined as follows. First V j+1

i
def= V j+1

i′ . Secondly for any
index t such that V j

t
def= V j

i let V j+1
t

def= V j+1
i′ . For the rest of the entries we just

update the index j to j+ 1 as in the first case. By construction, properties 2 and
3 hold for the new family of recursive nonterminals.

The stages of the construction produce a sequence of families of recursive
nonterminals (V 0

1 , . . . , V
0
n), . . . , (V j

1 , . . . , V
j
n), . . .where each family refines the pre-

vious family. The final step in the proof is that the iteration must terminate by
stage n− 1. At each stage j exactly one terminating nonterminal V j

i is directly
refined. Other elements V j

t when V j
t

def= V j
i and t > i may also be refined. No

element V k
i with index i is directly refined more than once. Therefore by stage

n − 1 the iteration must terminate with the family (V n−1
1 , . . . , V n−1

n). Now it is
a simple argument that if property 1 does not hold by stage n − 1 then afterall
E 6∼ F for the then current E and F . 2

The recursive family (V1, . . . , Vn) as constructed in the proof of Proposition 3
is said to be “canonical” for the family Ei

1G1 + . . .+Ei
nGn = F i

1G1 + . . .+F i
nGn

of true goals. The construction of canonical nonterminals is independent of the
tails Gi.

Fact 1 If (V1, . . . , Vn) is canonical for Ei
1G1 + . . .+Ei

nGn ∼ F i
1G1 + . . .+F i

nGn

then it is also canonical for the family Ei
1J1 + . . . + Ei

nJn ∼ F i
1J1 + . . . + F i

nJn,
where i : 1 ≤ i ≤ k.

The assembly of a canonical family proceeds in stages. Each recursive family
(V j+1

1 , . . . , V j+1
n) refines (V j

1 , . . . , V
j
n). As the construction must terminate by

stage j = n− 1, at most n of the goals Ei
1G1 + . . .+Ei

nGn = F i
1G1 + . . .+ F i

nGn

are used in the refinement process. The other goals play no role. The building
of the V j+1

i s from the V j
i s appeals to the smallest distinguishing word uj+1 for

E′ 6∼ F ′ (when E′ is El
1V

j
1 + . . .+El

nV
j
n and F ′ is F l

1V
j

1 + . . .+F l
nV

j
n). We have no

insight as to the upper bound on |uj+1|. For instance it is not determined by the
maximum norm of the heads El

i and F l
i . Indeed this turns out to be the reason

why the procedure for equivalence of the next section is only semi-decidable.
Next we wish to show that introducing canonical recursive nonterminals is

“sound” for a family of goals (see the next section for a fuller discussion of
soundness). We need to consider how to introduce recursive nonterminals when
the family of goals need not all be true. The idea is to approximate canonicity
by defining when a recursive family (V1, . . . , Vn) is “canonical to depth d” where
d ≥ 0, for a family of goals Ei

1G1 + . . . + Ei
nGn = F i

1G1 + . . . + F i
nGn when

Ei
1G1 + . . .+Ei

nGn ∼m F i
1G1 + . . .+F i

nGn for m > d for each i. The construction
is the same as in Proposition 3, except that we stop at the first stage j ≥ 0 with
(V j

1 , . . . , V
j
n) as the required family of recursive nonterminals if the sum of the

distinguishing words sj = |u1| + . . . + |uj| is no larger than d, and E′ ∼d−sj F ′

12

for the current E′ and F ′. A goal E = F is “m-true” if E ∼m F . Given m it is
decidable whether a finite family of goals are m-true. Furthermore given d < m
it is decidable whether family (V1, . . . , Vn) is canonical to depth d for a finite
family Ei

1G1 + . . .+Ei
nGn ∼m F i

1G1 + . . .+ F i
nGn. If (V1, . . . , Vn) is canonical to

depth d for a family of goals which are m-true then it is also canonical to depth
d for that family for any k > m, provided they are k-true. Being canonical to
depth d is independent of the tails: if (V1, . . . , Vn) is canonical to depth d for
Ei

1G1 + . . . + Ei
nGn ∼m F i

1G1 + . . . + F i
nGn then it is also canonical to depth d

for the family Ei
1J1 + . . .+Ei

nJn ∼m F i
1J1 + . . .+ F i

nJn with the same heads but
different tails. Moreover if (V1, . . . , Vn) is canonical for a family of (true) goals
then there is a smallest d for which it is canonical to depth d. This motivates
the next result, which guarantees that introduction of recursive nonterminals is
“sound”.

Proposition 4 If 0 < k < n and 0 < d < m and (V1, . . . , Vn) is canonical
to depth d for the family of goals Ei

1G1 + . . . + Ei
nGn = F i

1G1 + . . . + F i
nGn

where Ei
1G1 + . . . + Ei

nGn ∼m F i
1G1 + . . . + F i

nGn for each i : 1 ≤ i ≤ k, and
E1G1 + . . . + EnGn 6∼m−d F1G1 + . . . + FnGn then E1V1 + . . . + EnVn 6∼m−d
F1V1 + . . .+ FnVn.

Proof: Assume (V1, . . . , Vn) is canonical to depth d where d < m for the family of
goals Ei

1G1 + . . .+Ei
nGn = F i

1G1 + . . .+ F i
nGn, and that Ei

1G1 + . . .+Ei
nGn ∼m

F i
1G1 + . . . + F i

nGn for each i : 1 ≤ i ≤ k. By construction of the canonical
nonterminals to depth d, it follows that if Vi

def= H1V1 + . . .+HnVn then Gi ∼m−d
H1G1+. . .+HnGn and if Vi

def= Vj then Gi ∼m−d Gj . Next assume that E 6∼m−d F
when E is E1G1 + . . .+EnGn and F is F1G1 + . . .+FnGn, but E′ ∼m−d F ′ when
E′ is E1V1 + . . . + EnVn and F ′ is F1V1 + . . . + FnVn. Consider the smallest
word u = a1 . . . ak which distinguishes E and F . Note that E · a1 . . . ai 6∼m−(d+i)

F · a1 . . . ai and E′ · a1 . . . ai ∼m−(d+i) F
′ · a1 . . . ai. Consider the following four

sequences when Z is E, F , E′ and F ′: (Z · a1), . . . (Z · a1 . . . ak′) where either
k′ = k or k′ < k and the final elements for the sequences for Z is E′ and F ′ is
a terminating nonterminal Vi. The idea is as in the proof of Proposition 3 to
update the sequences for Z is E and Z is F so that they have the same heads
as as those for Z is E′ and Z is F ′. Consider the initial prefix u1 = a1 . . . ai of
Z is E′, if there is one, such that Z · u1 = E′′ and E′′ = H1V1 + . . . + HnVn

and (E′ · a1 . . . ai−1) ai−→ Vj . Hence E · u1 = Gj. Because Vj
def= E′′ the following

hold: Gj ∼m−d H1G1 + . . . + HnGn and E · u1 = Gj 6∼m−(d+i) F · u1. Therefore
by Fact 3 iii of section 3, H1G1 + . . . + HnGn 6=m−(d+i) F · u1. Therefore the
sequence for Z is E is updated from position i to k′: E · a1 . . . as, s > i, becomes
(H1G1 + . . .+ HnGn) · ai+1 . . . as. This updating restores the same heads in the
two sequences for Z is E and Z is E′ until the next occurrence of a Gi′ in the first
sequence in which case we then again update it. The same updating construction
is applied to the sequence Z is F using Z is F ′. The repeated updating of the

13

sequences for E and F does not affect the property that their corresponding
positions j are inequivalent at m − (d + j). Consider now the final elements in
the updated sequences for E and F . The first case is that one and only one of
the elements is ∅, but then one and only one of the corresponding elements in
the sequences for E′ and F ′ is also ∅ which is a contradiction. The second case
is that one of the elements, say in the sequence for E, is a terminating recursive
nonterminal Uj, which means that some Gi is Uj. But then the corresponding
element in the sequence for E′ is also a terminating nonterminal Vi (because
Gi ∼m−d H iff H is Gi). Therefore the corresponding element in the sequence for
F ′ is also Vi and so the final element in the sequence for F is Uj as well. 2

5 Tableaux

The proof of decidability is completed by presenting a tableau proof system for
demonstrating equivalence of admissible configurations. The proof system is goal
directed and consists of two kinds of rules, “simple” and “conditional”. Simple
rules have the form

Goal
Subgoal1 . . . Subgoaln

C

where Goal is what currently is to be proved and the subgoals are what it reduces
to, provided the side condition C holds. A conditional rule has the form

Goal1
...

Goalk
... C

Goal
Subgoal

where Goal is the current goal to be shown and there is a single subgoal to which
it reduces provided that the goals Goal1,. . .,Goalk occur above Goal on the path
between it and the root (starting goal) and provided that the side condition C
holds. Goals and subgoals are all of the form E = F where E and F are (normed)
admissible configurations which may contain recursive nonterminals.

There is also the important notion of when a current goal counts as final.
Final goals are classified as either successful or unsuccessful. A tableau proof for
a starting Goal is a finite proof tree, whose root is Goal and all of whose leaves
are successful final goals, and all of whose inner subgoals are the result of an
application of one of the rules. It is our intention to show that E ∼ F iff there is
a tableau proof for E = F .

There is one simple rule UNF presented in Figure 2. A goal E = F reduces

14

UNF

E = F

E · a1 = F · a1 . . . E · ak = F · ak
A = {a1, . . . , ak}

Figure 2: Simple tableau rule

to the subgoals E ·ai = F ·ai for each ai ∈ A. UNF obeys local completeness and
soundness. Completeness is that if the goal is true then so are all the subgoals.
This is clear from Fact 1 i of section 3. Soundness is that if all the subgoals are
true then so is the goal, or equivalently if the goal is false then so is at least one
of the subgoals. A finer version uses approximants, which provide a measure of
how false a goal E = F is. Consider the smallest n such that E 6∼n F . For UNF
if the goal is false at n+ 1, E 6∼n+1 F , then at least one of the subgoals is false
at n, E · a 6∼n F · a, see Fact 3 i of section 3.

The conditional rules are given in Figure 3. The BAL rules introduce “bal-
ance” between goals, and CUT introduces recursive nonterminals. Completeness
for BAL is that if the premise goals (those above the subgoal) are true then so
is the subgoal which follows from Proposition 1 of the previous section. The
statement of completeness for CUT is that there are correct applications of it. If
(V1, . . . , Vn) is canonical for the first k premises then there is a depth d for which
it is canonical. Moreover (V1, . . . , Vn) needs to be a recursive family for the true
goal E1G1 + . . .+EnGn = F1G1 + . . .+FnGn, in which case the subgoal follows6.

For soundness of the conditional rules consider global soundness of the proof
system. The overall idea is that if there is a successful tableau whose root is false
then there is a path through the tableau within which each subgoal is false. The
idea is refined using approximants. If the root is false then there is an offending
path (of false goals) through the tableau within which the approximant indices
decrease whenever rule UNF has been applied, and hence this would mean that
a successful final goal is false (which, as we shall show, is impossible). Soundness
of the conditional rules is that if the premises are on an offending path then the
subgoal preserves the falsity index of the goal immediately above it. In the case
of BAL(R) assume that the offending path passes through the premise goals.
There is a least n such that for the initial premise F ∼n X1H1 + . . . + XkHk

and F 6∼n+1 X1H1 + . . . + XkHk. As there are exactly M applications of UNF
between the initial and final premise it follows that F ′ ∼n−M E1H1 + . . .+EkHk.
However, as this is the offending path F ′ 6∼(n−M)+1 E1H1 + . . .+EkHk. Therefore
by Proposition 2 of the previous section F ′ 6∼(n−M)+1 E1(F ·w(X1))+ . . .+Ek(F ·
w(Xk)). The same argument proves soundness of BAL(L). There is a similar

6If (V1, . . . , Vn) is canonical for the first k premises and E1V1+. . .+EnVn 6∼ F1V1+. . .+FnVn
then (V1, . . . , Vn) can be refined to (V ′1 , . . . , V ′n) so it is canonical for all the premises. Because
there can only be at most n − 1 refinements, eventually CUT will be applicable if goals with
the common tails Gi persist: see the later discussion.

15

BAL(R)

F = X1H1 + . . .+XkHk
... C1

F ′ = E1H1 + . . .+ EkHk

F ′ = E1(F · w(X1)) + . . .+ Ek(F · w(Xk))

BAL(L)

X1H1 + . . .+XkHk = F
... C1

E1H1 + . . .+ EkHk = F ′

E1(F · w(X1)) + . . .+ Ek(F · w(Xk)) = F ′

where C1 is the condition

1. There are precisely M applications of UNF between the top goal and the
bottom goal, and no application of any other rule.

CUT

E1
1G1 + . . .+ E1

nGn = F 1
1G1 + . . . + F 1

nGn
...

Ek
1G1 + . . . + Ek

nGn = F k
1G1 + . . .+ F k

nGn
... C2

E1G1 + . . .+ EnGn = F1G1 + . . .+ FnGn

E1V1 + . . .+ EnVn = F1V1 + . . .+ FnVn

where C2 is the condition

1. No Ei
j or F i

j contains recursive nonterminals.

2. (V1, . . . , Vn) is canonical to depth d for the goals Ei
1G1 + . . . + Ei

nGn =
F i

1G1 + . . .+ F i
nGn, 1 ≤ i ≤ k and k ≤ n.

3. There are at least d+ 1 applications of UNF between the goal Ek
1G1 + . . .+

Ek
nGn = F k

1G1 + . . .+ F k
nGn and E1G1 + . . .+EnGn = F1G1 + . . .+ FnGn

(as well as possibly other rules).

Figure 3: Conditional tableau rules

16

Successful final goals

E = F
... UNF
... at least once

1. E = E 2. E = F

Unsuccessful final goals

1. E = F when n(E) 6= n(F)

2. Vi = Vj when i 6= j and Vi
def= Vi, and Vj

def= Vj

Figure 4: Final goals

argument for CUT. Consider m > d such that Ei
1G1 + . . . + Ei

nGn ∼m F i
1G1 +

. . .+F i
nGn for each i : 1 ≤ i ≤ k and Ek

1G1 +. . .+Ek
nGn 6∼m+1 F k

1G1 +. . .+F k
nGn.

There are at least d+1 applications of UNF between the kth premise and the final
premise of the rule, and so as this is an offending path E1G1 + . . .+EnGn 6∼m−d
F1G1 + . . .+FnGn. Therefore by Proposition 4, E1V1 + . . .+EnVn 6∼m−d F1V1 +
. . .+ FnVn.

Final goals are presented in Figure 4. Unsuccessful goals are clearly false. A
final goal is successful if it is either an identity or a repeat. An offending path of
false goals with decreasing falsity indices cannot include either kind of successful
goal. Clearly it is not possible for E 6∼m E. For the other case, suppose the
offending path passes through E = F twice. At the first instance there is an m,
E ∼m F and E 6∼m+1 F , but as there is at least one application of UNF between
the two occurrences this would imply that E 6∼m F , which is a contradiction.

The first main result is that a successful tableau for E = F indeed constitutes
a proof that E ∼ F .

Theorem 1 If there is a successful tableau for E = F then E ∼ F .

Proof: Suppose there is a successful tableau for E = F but E 6∼ F . Then
there is a least n such that E 6∼n F . We now construct an offending path of
false goals through the tableau within which the approximant indices decrease
whenever UNF is applied. But this is impossible, for we must reach a successful
final goal as the tableau is finite. 2

More intricate is the proof of the converse of Theorem 1, that if E ∼ F
then there is a successful tableau for E = F . Given a true goal one applies the
rules, preserving truth, according to the strategy described below. It is therefore
not possible to reach an unsuccessful final goal. Thus the main issue is how to
guarantee that the tableau construction is finite. We show that on any infinite

17

path of goals developed using the strategy there must be infinitely many successful
final goals.

We start with a simple observation.

(1) For any m ≥ 0, there are only finitely many different goals E = F (whose
recursive nonterminals belong to (V1, . . . , Vn)) with |E| ≤ m and |F | ≤ m.

If F has recursive nonterminals in the family (V1, . . . , Vn) then we let rec(F) be
the size of the largest definition in the family, max{|H| : Vi

def= H}. The next
observation tells us how much a configuration can increase in size through an
application of UNF.

(2) For any a, |E · a| ≤ max{rec(E), |E|+ 1}.

The size of an application of BAL is the size of the configuration F in the initial
goal of the rule (see Figure 3), and the application is said to use the configuration
F . The resulting subgoal contains the configuration E1(F ·w(X1)) + . . .+Ek(F ·
w(Xk)). Ei is a “head” of an application and (F ·w(Xi)) is a “tail”. The size of
a head is bounded, |Ei| ≤M + 1 (using (2)). Moreover because E1 + . . .+ Ek is
itself admissible if Ei(F ·w(Xi))

u−→ (F ·w(Xi)) then (Ej(F ·w(Xj)) · u) = ∅ for
j 6= i. A further observation about BAL (which uses (2)) is as follows.

(3) If E′ = F ′ is the result of an application of BAL of size m then configura-
tions |E′|, |F ′| ≤ k + 2M , where k = max{m, rec(E′)}.

A configuration F without recursive nonterminals is “small” if |F | ≤ M2 +
4M+1, and F with recursive nonterminals is small if |F | ≤ rec(F)+M2+4M+1.
The strategy is to apply the BAL rules wherever possible when the sizes of their
applications are small, and otherwise to apply UNF. The rule CUT is not applied.
Any infinite path of goals containing infinitely many small applications of BAL,
and no application of CUT, must therefore contain infinitely many final goals
(“repeats”) by properties (3) and (1).

Next suppose there is an application of BAL which uses a large F of size m.
The strategy is to build a “block”. Assume that it is an application of BAL(L).

F
... BAL(L)

(∗) E1(F · w(X1)) + . . . + Ek(F · w(Xk)) = F ′

F is the “root configuration” of the block and (∗) is its “root goal” (which will
also be a potential root, the initial premise, of an application of CUT). Once
a block is initiated with BAL(L), the strategy is to repeatedly apply BAL(L)
wherever possible, and UNF otherwise7. However BAL(R) is permitted, once

18

F ′′

... BAL(L)
E′1(F ′′ · w(X ′1)) + . . . + E′k′(F

′′ · w(X ′k′)) = H
...

... UNFs
(F ′′ · w(X ′i)) = G1 = H1

...
...

Gk = Hk

Figure 5: A potential switch from BAL(L) to BAL(R)

the “tail” of an application of BAL(L) is exposed, see Figure 5. Assume an
application of BAL(L) using F ′′. Between its result and the goal G1 = H1 there
are no further applications of BAL(L), and G1 is a tail of the BAL application.
BAL(R) is now permitted provided it uses configuration Gi, i ≥ 1. BAL(R) is
not permitted using a configuration from a goal above G1 = H1. BAL(R) is
not enforced, for one can still apply BAL(L). The strategy is always to apply a
BAL rule whenever it is permitted. If BAL(R) is applied then the strategy is to
repeatedly apply BAL(R), and to use UNF otherwise. BAL(L) is only permitted
once a tail (F ′′·w(X ′i)) of an application of BAL(R) is the right hand configuration
of a goal. Thus a block consists of alternating sub-blocks of BAL(L)s and UNFs
and BAL(R)s and UNFs. If a later application of BAL is smaller than m then
either a new block with a smaller root configuration is initiated or the size of the
application is small and the earlier strategy applies.

Assume a root configuration F of size m with block root E1 = F1. Let π be
a path of goals E1 = F1, . . ., El = Fl, . . . belonging to the block developed from
E1 = F1 using the strategy. All applications of BAL have at least size m in this
path. We show the following crucial property.

(4) For every G which is used in an application of BAL in π there is a word u
such that G is (F ·u) and |(F · v)| > m− (M2 + 3M) for all prefixes v of u.

Property (4) holds for initial root configuration F because F is F ·ε and |F | = m.
Assume the block is initiated with a BAL(L). Consider a later application of
BAL(L) using F ′ (where there are no intervening applications of BAL(R)) as
depicted in the left derivation of Figure 6. F ′ arises from F via applications of
UNF (and possibly BAL(L)). Consequently there is a word u, constructed from
the applications of UNF, with F ′ = (F · u), and by assumption |F ′| ≥ m. For
every prefix v of u, (F · v) is a configuration on the path between F and F ′.

7If BAL(R) initiates the block then the strategy is to repeatedly apply BAL(R) and UNF.

19

F F ′

... BAL(L)
... BAL(L)

E1 = F1 Ej = Fj
...

...
F ′ (F ′ ·w(Xi))
... BAL(L)

...
En = Fn E′

...
... BAL(R)

El = Fl
...

Figure 6: Showing property (4)

Assume that for one of these configurations F ′′, |F ′′| ≤ m− (M2 + 3M). There
are two cases to examine.

The first case is that F ′′ occurs between a configuration used for a BAL and
its application (between, for example, F and F1 in Figure 6). The second case
is that F ′′ occurs at or after an application of BAL(L), between F1 and F ′ in
Figure 6. Consider the first case. There are at most M − 1 applications of UNF
between F ′′ and the application of BAL (because F ′′ cannot be the configuration
used in this application). Assume that E1 = F1 is the result of this BAL(L) which
uses F and that F ′ is the next configuration used in an application of BAL(L).
Because |F ′′| ≤ m−(M2 +3M) and there are at most M−1 applications of UNF
between it and F1, by (2) it follows that |F1| ≤ m − (M2 + 2M + 1). Because
|F ′| ≥ m, there must be at least (M2 + 2M + 1) applications of UNF between F1

and F ′ which are size increasing: for F1 must increase its size and become F ′. The
second case is also covered by these observations: if F ′′ occurs between F1 and F ′

then there must be at least (M2 + 3M) applications of UNF between F1 and F ′

which are size increasing. However within at most M2 +M applications of UNF
from F1 a tail (F · w(Xi)) of the application of BAL(L) must occur as the left
hand configuration of a goal. E1 has the form E′1(F ·w(X1))+ . . .+E′k(F ·w(Xk))
where |E′i| ≤ M + 1. Because BAL(L) does not apply between F1 and F ′, each
E′i’s size must be declining. If E1 in head nonterminal form is Y1H1 + . . .+ YlHl

then within M applications of UNF the left hand configuration must be Hj for
some j, and within another M applications of UNF Hj must lose its “head”
nonterminals, and so on. Consequently within M2 + M applications of UNF
between F1 and F ′ a goal (F ·w(Xi)) = Fk has to occur. F1 may have increased
in size in becoming Fk but only by M2 + M , and so |Fk| ≤ m − (M + 1). So
there are still at least M + 1 applications of UNF between Fk and F ′ which are

20

size increasing. However BAL(R) is now permitted, and clearly it must apply
between Fk and F ′ because there must be a sequence of M UNFs where the right
hand configurations are not decreasing in size. But this is a contradiction.

Next we show that property (4) continues to hold when there is a switch from
BAL(L) using F ′ to an application of BAL(R) using E′, pictured on the right in
Figure 6. BAL(R) is only permitted when a tail (F ′ · w(Xi)) of the application
of BAL(L) occurs as a left hand configuration. By assumption there is a word u
such that F ′ is (F · u). Therefore the tail (F ′ ·w(Xi)) is (F ·uw(Xi)). There are
no applications of BAL between this tail and E′, and therefore there is a word v
such that E′ is (F · uw(Xi) v). Moreover both F ′ and E′ have size at least m.
Assume that for some prefix v′ of w(Xi) v, |F ′ · v′| ≤ m− (M2 + 3M). There are
two cases to consider. First is that v′ is a prefix of w(Xi), and secondly that it
is a prefix of the form w(Xi) v′′. Because |w(Xi)| ≤M − 1 for the first case this
means that |(F ′ ·w(Xi))| ≤ m−(M2+2M+2). Therefore there has to be at least
(M2 + 2M + 2) applications of UNF between (F ′ ·w(Xi)) and E′ which increase
size, and for the second case there has to be at least M2 + 3M applications.
However BAL(L) is still permitted between (F ′ ·w(Xi)) and E′. Clearly BAL(L)
must therefore apply to a configuration belonging to a goal strictly above E′

because there must be a sequence of M UNFs where the left hand configurations
are not decreasing in size. But this is a contradiction.

The argument for (4) is now repeated for all further applications of BAL
within π.

Using (4) we now establish a final property which shows that CUT eventually
applies in a block. Assume a root configuration F of size m with block root
E1 = F1, and assume π is a path of goals belonging to this block developed using
the strategy. If F does not contain recursive nonterminals then it can be written
in head form β1G1+. . .+βnGn where |βi| = (M2+4M+1) or |βi| < (M2+4M+1)
and Gi = ε. Notice that there is an upper bound on the “width” n (as it can be
no more than the number of sequences of nonterminals whose length is at most
M2 + 4M + 1). In fact we can reduce the number of tails by amalgamating them
when they are the same: for instance, if Gi = Gj then we can have the expression
. . .+ (βi + βj)Gi + The final property for this case of F is

(5A) The result of every application of BAL within π has the form E1G1 +
. . . + EnGn = F1G1 + . . . + FnGn where the Gis are the tails of the root
configuration F .

If F does contain recursive nonterminals drawn from (U1, . . . , Ul) then it has a
similar head form β1G1 + . . . + βnGn where |βi| = (M2 + 4M + 1) and Gi 6= ε,
or |βi| < (M2 + 4M + 1) and Gi is a recursive nonterminal Uj. This is not quite
enough for stating the property, for besides the tails Gi we need a (bounded)
number of “supplementary” tails. Consider any βi with |βi| < (M2 + 4M + 1)
and let x1 be min{M, (M2 + 4M + 1)− |βi|}. Gi is a recursive nonterminal Uj . If

21

Uj
def= Uk then we include Uk as an extra tail. Otherwise Uj

def= Hj1U1 +. . .+HjlUl.
We now put the right hand side definition of Uj into head form βj1Gj1+. . .+βjkGjk

where |βji| = x1 and Gji 6= ε or |βji| < x1 and Gji is a recursive nonterminal.
We include the Gjis as extra tails. Next we iterate the construction, but for a
smaller size. Consider any |βji| < x1 and let x2 = x1 − |βji|. Assume Gji is
Uj′ . If Uj′

def= Uk′ then include Uk′ as an extra tail. Otherwise Uj′
def= H. Put H

into head form, β ′1G′1 + . . . + β ′k′G
′
k′ where |β ′i′| = x2 and G′i′ 6= ε or |β ′i′| < x2

and G′i′ is a recursive nonterminal. Include these G′i′s as supplementary tails.
For each β ′i′ such that |β ′i′| < x2 repeat this construction for size x3 = x2 − |β ′i′|.
And so on. Note that the sizes of the heads are decreasing M ≥ x1 > x2 >
Let G1, . . . , Gn be the primary tails of F . Here n is bounded by the number of
sequences of nonterminals (excluding the recursive nonterminals) whose length is
less than or equal to M2 + 4M + 1. Let Gn+1, . . . , Gn+k′ be the supplementary
tails. Here k′ is also bounded8. Thus the “width” n+ k′ is bounded. As with the
earlier case we can amalgamate equivalent tails. Notice that F has head form
β1G1 + . . . + βnGn + En+1Gn+1 + . . . + En+k′Gn+k′ (where each En+i is ∅). The
property corresponding to (5A) is as follows.

(5B) The result of every application of BAL within π has the form E1G1 + . . .+
En+k′Gn+k′ = F1G1 + . . . + Fn+k′Gn+k′ where the Gis are the primary and
supplementary tails of the root configuration F .

Condition (5) in its two versions essentially follows from (4) and admissibility.
Assume F does contain recursive nonterminals (the other case is similar but
easier). The head of F , β1 + . . . + βn is admissible. Each βi has the form
Xi

1 . . . X
i
t . Let βji be the jth suffix Xi

j . . . X
i
t of βi. By admissibility if βi

w−→ βji
then either βk

w−→ βjk (and Xi
1 . . .X

i
j−1 is the same sequence as Xk

1 . . .X
k
j−1) or

(βk · w) = ∅. Let G be used in an application of BAL in π. By property (4) G
must have the form E1β

b1
1 G1 + . . .+Enβbnn Gn where the head E1β

b1
1 + . . .+Enβbnn

is admissible, and if |βi| ≥ (M2 +3M) then bi = M2 +3M and if |βi| < M2 +3M
then βbii is ε. Note that for at least one |βi| = (M2 + 4M + 1), Ei 6= ∅. The result
of BAL using G (assume it is BAL(L)) has the following form where |u| = M
and |E′i| ≤M + 1.

(∗∗) E′1(G · w(X1)) + . . .+ E′k(G · w(Xk)) = (G · u)

It is at this point that we may need the supplementary tails to account for (G ·u)
and (G · w(Xi)). The first case is that they only contain primary tails and have
the form E′′1β

b′1
1 G1 + . . . E′′nβ

b′n
n Gn where if |βi| ≥ (M2 +4M) then b′i is (M2 +4M)

and if |βi| < (M2 + 4M) then βb
′
i
i is ε. The second case is that they “enter” a tail

8k′ is at most the maximum of n and 2M times the number of sequences of nonterminals
(not including recursive ones) whose length is less than or equal to M .

22

Gi when it is a recursive nonterminal and βb
′
i
i is ε: for instance, (G · u) is (Uj · u′)

for some suffix u′ of u (and so, |u′| < M). In which case (Uj · u′) has the form
E′′1Gn+1 + . . .+E′′k′Gn+k′ (where the Gn+is are supplementary tails and the heads
are very small, |E′′i | ≤ 2M + 1). This concludes the proof of (5).

Property (5) ensures that eventually in a block CUT is applicable, and that
in any infinite path containing infinitely many CUTs there are infinitely many
final goals. Assume that E′1 = F ′1 is the root goal of a block which is the result
of BAL(L) using F . This root goal is (* *) when G is F . Assume F has recurs-
ive nonterminals (the other case is similar). Therefore from (5B) the left hand
configuration has the form E1G1 + . . . + En+k′Gn+k′ where |Ei| ≤ M2 + 6M for
1 ≤ i ≤ n and |Ei| ≤ 3M + 2 for n < i ≤ n+k′, and the right hand configuration
(F · u) has the similar form F1G1 + . . .+ Fn+k′Gn+k′ where |Fi| ≤M2 + 5M + 1
for 1 ≤ i ≤ n and |Fi| ≤M + 1 for n < i ≤ n+ k′. Many of the Eis and Fis may
be ∅. Because both the width, n+ k′, and the sizes of the “heads” are bounded,
there can only be finitely many root goals (of a block) with different heads. Let
(V1, . . . , Vn+k′) be the canonical family of recursive nonterminals for the root goal
with depth d. Consider the first application of a BAL after d + 1 applications
of UNF. Assume the result is E′2 = F ′2 which has the form of (5B). The size of
the heads are bounded9. If (V1, . . . , Vn+k′) is a recursive family for this goal then
CUT can be applied. Otherwise the family is refined to give a recursive family
for E′1 = F ′1 and E′2 = F ′2 with depth d′. The argument is repeated. There can
only be at most n + k′ − 1 refinements to the recursive family of nonterminals,
and therefore CUT must eventually apply in a block. Moreover because there
can only be finitely many roots of a block with different heads, in any infinite
path with infinitely many applications of CUT there must be infinitely many final
goals.

Theorem 2 If E ∼ F then there is a successful tableau for E = F .

Proof: Assume that E ∼ F . Now we keep applying the rules preserving truth
using the strategy described above. If goals are small then one keeps applying
BAL(L), BAL(R) and UNF. Otherwise one tries to build a block and apply CUT.
By preserving truth it is not possible to reach an unsuccessful final goal. Also it
is not possible to become stuck, as UNF is always applicable unless a goal is final.
Hence the only issue is that the tableau construction goes on forever. Assume
that there is a an infinite path through the tableau. If CUT is only applied finitely
often on this path then consider the subsequence after its final application. All

9The largest head in the root goal has size M2 +6M . Let G be the resulting goal after d+1
applications of UNF. There can be at most d+ 1/M applications of BAL between the root and
G. From the argument for (4) if BAL does not apply within M2 + M applications of UNF
after G then both BAL rules are permitted, and if it still does not apply then the size of the
configurations in the goals must be diminishing. Thus, as a crude measure, there is an upper
bound of 2M2 + (d + k)M where k is a constant in the size of the heads in E′2 = F ′2 when it
has the form in (5B).

23

attempts to build a block are thwarted, and therefore infinitely often there are
small goals and so infinitely often there are final goals. Consequently CUT must
be applied infinitely often. However by the analysis above any application of CUT
is bounded independently of the tails and therefore we must introduce the same
family of recursive nonterminals infinitely often to goals with the same heads,
and therefore there must be infinitely many final goals. 2

6 Conclusion

We have provided a manageable proof of decidability of equivalence between
DPDAs. However because the procedure consists of two semi-decision procedures
we are unable to provide a complexity bound. More work is needed to see if
we can find a useful bound on the depth d for a canonical family of recursive
nonterminals.

An intriguing open question is whether there is a more general class of context-
free grammars than the strict deterministic for which language equivalence is
decidable.

The proof technique developed in this paper can also be applied to decision
problems for bisimulation equivalence. Language equivalence and bisimulation
equivalence coincide in the deterministic case (provided there is no redundancy).
In particular the technique developed here can be used to extend the result in
[10] to all pushdown processes.

Acknowledgement: I am deeply indebted to Olaf Burkart and Didier Caucal for
numerous discussions about DPDA, and to Geraud Sénizergues for explanations
of his result.

References

[1] Christensen, S., Hüttel, H., and Stirling, C. (1995). Bisimulation equival-
ence is decidable for all context-free processes. Information and Computa-
tion, 121, 143-148.

[2] Ginsberg, S., and Greibach, S. (1966). Deterministic context-free languages.
Information and Control, 620-648.

[3] Harrison, M. (1978). Introduction to Formal Language Theory, Addison-
Wesley.

[4] Harrison, M., Havel, I., and Yehudai, A. (1979). On equivalence of gram-
mars through transformation trees. Theoretical Computer Science, 9, 173-
205.

24

[5] Hopcroft, J., and Ullman, J. (1979). Introduction to Automata Theory,
Languages, and Computation, Addison-Wesley.

[6] Hüttel, H., and Stirling, C. (1991). Actions speak louder than words: prov-
ing bisimilarity for context free processes. Proceedings 6th Annual Sym-
posium on Logic in Computer Science, IEEE Computer Science Press, 376-
386.

[7] Oyamaguchi, M., Honda, N., and Inagaki, Y. (1980). The equivalence prob-
lem for real-time strict deterministic languages. Information and Control,
45, 90-115.

[8] Sénizergues, G. (1997). The equivalence problem for deterministic push-
down automata is decidable. Lecture Notes in Computer Science, 1256,
671-681.

[9] Sénizergues, G. (1998). L(A) = L(B)? Tech. Report LaBRI, Université Bor-
deaux I, pp. 1-166. (Submitted to Theoretical Computer Science.)

[10] Stirling, C. (1998). Decidability of bisimulation equivalence for normed
pushdown processes. Theoretical Computer Science, 195, 113-131.

25

